Submitted:
24 September 2024
Posted:
25 September 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. A Central Lemma
3. Robin on Divisibility
4. On the Greatest Prime Divisor
5. Some Feasible Cases
6. On Possible Counterexample
7. A Conclusive Approach
Acknowledgments
References
- Nicolas, J.L. The sum of divisors function and the Riemann hypothesis. The Ramanujan Journal 2022, 58, 1113–1157. [Google Scholar] [CrossRef]
- Nicolas, J.L.; Robin, G. Highly Composite Numbers by Srinivasa Ramanujan. The Ramanujan Journal 1997, 1, 119–153. [Google Scholar] [CrossRef]
- Robin, G. Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. pures appl 1984, 63, 187–213. [Google Scholar]
- Choie, Y.; Lichiardopol, N.; Moree, P.; Solé, P. On Robin’s criterion for the Riemann hypothesis. Journal de Théorie des Nombres de Bordeaux 2007, 19, 357–372. [Google Scholar] [CrossRef]
- Vega, F. Robin’s criterion on divisibility. The Ramanujan Journal 2022, 59, 745–755. [Google Scholar] [CrossRef]
- Alaoglu, L.; Erdos, P. On Highly Composite and Similar Numbers. Transactions of the American Mathematical Society 1944, 56, 448–469. [Google Scholar] [CrossRef]
- Akbary, A.; Friggstad, Z. Superabundant numbers and the Riemann hypothesis. The American Mathematical Monthly 2009, 116, 273–275. [Google Scholar] [CrossRef]
- Ayoub, R. Euler and the Zeta Function. The American Mathematical Monthly 1974, 81, 1067–1086. [Google Scholar] [CrossRef]
- Hertlein, A. Robin’s Inequality for New Families of Integers. Integers 2018, 18. [Google Scholar]
- Platt, D.J.; Morrill, T. Robin’s inequality for 20-free integers. INTEGERS: Electronic Journal of Combinatorial Number Theory 2021. [Google Scholar]
- Dusart, P. Estimates of some functions over primes without RH. arXiv preprint 2010, arXiv:1002.0442. [Google Scholar]
- Aoudjit, S.; Berkane, D.; Dusart, P. On Robin’s criterion for the Riemann Hypothesis. Notes on Number Theory and Discrete Mathematics 2021, 27, 15–24. [Google Scholar] [CrossRef]
- Dusart, P. The kth prime is greater than k(lnk+lnlnk-1) for k≥2. Mathematics of Computation 1999, 68, 411–415. [Google Scholar] [CrossRef]
- Nazardonyavi, S.; Yakubovich, S. Superabundant numbers, their subsequences and the Riemann hypothesis. arXiv preprint 2013, arXiv:1211.2147v3. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
