Submitted:
20 September 2024
Posted:
23 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Inflation
3. A First-Order Estimate in
4. Primordial Fluctuations and the Inflaton Potential
4.1. Conventional Calculation of Perturbations
4.2. Including Second Order Variations
4.2.1. First Case:
4.2.2. Second Case:
4.2.3. Wavelength Cut-Off
5. Applications
5.1. First Model
5.2. Second Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
References
- A. H. Guth. The inflationary Universe: A possible solution to the horizon and flatness problems. Phys.Rev.D, 1981, D23, 347. [CrossRef]
- A. Starobinsky, Dynamics of phase transitions in the new inflationary universe and generation of perturbations, Phys. Lett., 1982, 117B, 175. [CrossRef]
- S. W. Hawking; I. G. Moss, Fluctuations in the inflationary universe, Nucl. Phys. 1983, B224, 180. [CrossRef]
- D.Lyth, Cosmology for Physicists, 2007, CRC Press.
- A. R. Liddle, D. H. Lyth. Cosmological inflation and large-scale structure, 2000, Cambridge Univ. Press.
- L. Kofman, A. D. Linde, A. A. Starobinsky, Reheating after inflation. Phys. Rev. Lett., 1994, 73, 3195. [arXiv:hep-th/9405187]. [CrossRef]
- A. R. Liddle, S. M. Leach, How long before the end of inflation were observable perturbations produced?, Phys. Rev. D, 2003, 68, 103503. [arXiv:astro-ph/0305263]. [CrossRef]
- P. A. R. Ade, N. Aghanim, M. Arnaud, et. al., Planck 2015 results. XIII. Cosmological parameters, 2015. ArXiv:1502.01589. [CrossRef]
- Collaboration Planck. Y. Akrami et al., Planck 2018 results. X. Constraints on inflation, 2018, arXiv:1807.06211. Also in A&A, Volume 641, September 2020, A10. [CrossRef]
- P. A. R. Ade et al. [Planck Collaboration], Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys., 2016, A13, 594. [arXiv:1502.01589]. [CrossRef]
- G. Hinshaw et al.[WMAPCollaboration], Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl., 2013, 19, 208. [arXiv:1212.5226]. [CrossRef]
- Aghanim, et al. Planck 2018 results-VI. Cosmological parameters, Astronomy & Astrophysics, 2020, 641, A6. [CrossRef]
- E. Okon, D. Sudarsky, Found. Phys., 2016, 46, 852–879. [CrossRef]
- J. Lidsey et al., Reconstructing the inflaton potential - an overview, Rev. Modern Phys., 1997, 69, 373. [CrossRef]
- I. Dalianis, Features in the Inflaton Potential and the Spectrum of Cosmological Perturbations, 2024. arXiv:2310.11581v2. [CrossRef]
- A. R. Liddle, P. Parsons, J. D. Barrow, Formalising the slow-roll approximation in inflation, Phys. Rev. D, 1994, 50, 7222. [arXiv:astro-ph/9408015]. [CrossRef]
- A. Linde, A new inflationary Universe scenario: A possible solution to the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett, 1987,108B, 389–393. [CrossRef]
- A. Linde, Inflation and Quantum Cosmology. In Inflation and Quantum Cosmology, 1990, Academic Press, Eds.; Publishing House: City, Country. [CrossRef]
- O. Aguiar et. al,The gravitational wave detector" Mario Schenberg": status of the project, Braz. J. Phys., 2002, 32, 866–868. [CrossRef]
- Konstantinos Dimopoulos, Introduction to Cosmic Inflation and Dark Energy, In Introduction to Cosmic Inflation and Dark Energy, 2021, CRC Press.
- H. B. G. Casimir, D. Polder, Phys. Rev., 1948, 73, 360. [CrossRef]
- A. D. Linde, Chaotic inflation. Phys. Lett. B, 1983, 129, 177-181. [CrossRef]
- G. S. Watson, An exposition on inflationary cosmology, 2000. arXiv:astro-ph/0005003. [CrossRef]
- D. H. Lyth and A. R. Liddle. The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure, 2009, Cambridge Univ. Press.
- Alan H. Guth, David I. Kaiser, and Yasunori Nomura. Inflationary paradigm after Planck 2013, Phys. Lett., 2014, B733, 112. [CrossRef]
| 1 | From now on, we consider the natural system of units, in which: and the gravitational constant will be: , implying , with GeV; the Planck time and Planck length are given by: s and cm, respectively. The Hubble parameter has energy units, , and the energy density of the scalar field is measured in . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
