Submitted:
11 September 2024
Posted:
13 September 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
1.1. Sorafenib Resistance in HCC
1.2. Primary Resistance
1.2.1. Epidermal Growth Factor Receptor (EGFR) Activation
1.2.2. Sestrin 2
1.2.3. Vascular Endothelial Growth Factor A (VEGFA)
1.3. Secondary Resistance
1.3.1. Autophagy
1.3.2. Exosomes
1.3.3. Ferroptosis
1.3.4. Cancer Stem Cells (CSCs)
1.3.5. Hypoxia
1.3.6. ATP-Binding Cassette (ABC) Transporters
2. Long Noncoding RNAs (lncRNAs) in Sorafenib Resistance
3. Conclusions and Future Directions
Relevance of Sorafenib Resistance in HCC
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Llovet, J.M., Focal gains of VEGFA: candidate predictors of sorafenib response in hepatocellular carcinoma. Cancer Cell, 2014. 25(5): p. 560-2.
- Heward J, Konali L, D’Avola A, et al. KDM5 inhibition offers a novel therapeutic strategy for the treatment of KMT2D mutant lymphomas. Blood. 2021;138(5):370-381. Blood, 2022. 140(10): p. 1183.
- Di Micco, A., et al., AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity. Proc Natl Acad Sci U S A, 2016. 113(32): p. E4671-80.
- Sanoff, H.K., et al., Sorafenib Effectiveness in Advanced Hepatocellular Carcinoma. Oncologist, 2016. 21(9): p. 1113-20.
- Terras, F.R., et al., Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell, 1995. 7(5): p. 573-88.
- Cheng, A.L., et al., Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol, 2009. 10(1): p. 25-34.
- Dempsey, J.L. and J.Y. Cui, Long Non-Coding RNAs: A Novel Paradigm for Toxicology. Toxicol Sci, 2017. 155(1): p. 3-21.
- Anilkumar, A.K., et al., Long Non-Coding RNAs: New Insights in Neurodegenerative Diseases. Int J Mol Sci, 2024. 25(4).
- Marin-Neto, J.A., et al., SBC Guideline on the Diagnosis and Treatment of Patients with Cardiomyopathy of Chagas Disease—2023. Arq Bras Cardiol, 2023. 120(6): p. e20230269.
- Mattina, J., et al., Inefficiencies and Patient Burdens in the Development of the Targeted Cancer Drug Sorafenib: A Systematic Review. PLoS Biol, 2017. 15(2): p. e2000487.
- Dib, M.J., et al., Proteomic Associations of Adverse Outcomes in Human Heart Failure. J Am Heart Assoc, 2024. 13(5): p. e031154.
- Brose, M.S., et al., Management of sorafenib-related adverse events: a clinician’s perspective. Semin Oncol, 2014. 41 Suppl 2: p. S1-s16.
- Walko, C.M. and C. Grande, Management of common adverse events in patients treated with sorafenib: nurse and pharmacist perspective. Semin Oncol, 2014. 41 Suppl 2: p. S17-28.
- Nakano, M., et al., Sorafenib for the treatment of advanced hepatocellular carcinoma with extrahepatic metastasis: a prospective multicenter cohort study. Cancer Med, 2015. 4(12): p. 1836-43.
- Tang, W., et al., The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther, 2020. 5(1): p. 87.
- He, Y., et al., New frontiers against sorafenib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Pharmacol Res, 2021. 170: p. 105732.
- Dahiya, M. and H. Dureja, Sorafenib for hepatocellular carcinoma: potential molecular targets and resistance mechanisms. J Chemother, 2022. 34(5): p. 286-301.
- Wallace, M.C., et al., The evolving epidemiology of hepatocellular carcinoma: a global perspective. Expert Rev Gastroenterol Hepatol, 2015. 9(6): p. 765-79.
- Lise, M., et al., Hyperthermic isolated liver perfusion for unresectable liver cancers: pilot study. J Chemother, 2004. 16 Suppl 5: p. 37-9.
- J, D.A.S.P., et al., An Overview of Renal Cell Carcinoma Hallmarks, Drug Resistance, and Adjuvant Therapies. Cancer Diagn Progn, 2023. 3(6): p. 616-634.
- Iyer, G., et al., Genome sequencing identifies a basis for everolimus sensitivity. Science, 2012. 338(6104): p. 221.
- Niu, L., et al., New insights into sorafenib resistance in hepatocellular carcinoma: Responsible mechanisms and promising strategies. Biochim Biophys Acta Rev Cancer, 2017. 1868(2): p. 564-570.
- Mao, W.F., et al., The important roles of RET, VEGFR2 and the RAF/MEK/ERK pathway in cancer treatment with sorafenib. Acta Pharmacol Sin, 2012. 33(10): p. 1311-8.
- Hatzivassiliou, G., et al., RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature, 2010. 464(7287): p. 431-5.
- Shukla, S., S. Ohnuma, and S.V. Ambudkar, Improving cancer chemotherapy with modulators of ABC drug transporters. Curr Drug Targets, 2011. 12(5): p. 621-30.
- Ghavami, S., et al., Epigenetic regulation of autophagy in gastrointestinal cancers. Biochim Biophys Acta Mol Basis Dis, 2022. 1868(11): p. 166512.
- Gnoni, A., et al., Role of BRAF in Hepatocellular Carcinoma: A Rationale for Future Targeted Cancer Therapies. Medicina (Kaunas), 2019. 55(12).
- Ezzoukhry, Z., et al., EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int J Cancer, 2012. 131(12): p. 2961-9.
- Dai, J., et al., Sestrin 2 confers primary resistance to sorafenib by simultaneously activating AKT and AMPK in hepatocellular carcinoma. Cancer Med, 2018. 7(11): p. 5691-5703.
- Ito, Y., et al., Expression and clinical significance of erb-B receptor family in hepatocellular carcinoma. Br J Cancer, 2001. 84(10): p. 1377-83.
- Zhu, Y.J., et al., New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin, 2017. 38(5): p. 614-622.
- Hwang, G.W., Foreword. Biol Pharm Bull, 2015. 38(7): p. 960.
- Sueangoen, N., A. Tantiwetrueangdet, and R. Panvichian, HCC-derived EGFR mutants are functioning, EGF-dependent, and erlotinib-resistant. Cell Biosci, 2020. 10: p. 41.
- Pang, L., et al., Activation of EGFR-KLF4 positive feedback loop results in acquired resistance to sorafenib in hepatocellular carcinoma. Mol Carcinog, 2019. 58(11): p. 2118-2126.
- Choi, K.H., et al., Synergistic Activity of Paclitaxel, Sorafenib, and Radiation Therapy in advanced Renal Cell Carcinoma and Breast Cancer. Transl Oncol, 2019. 12(2): p. 381-388.
- de Martel, C., et al., Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health, 2020. 8(2): p. e180-e190.
- Okuyan, H.M., et al., Association of serum lncRNA H19 expression with inflammatory and oxidative stress markers and routine biochemical parameters in chronic kidney disease. Clin Exp Nephrol, 2021. 25(5): p. 522-530.
- Zhang, H., C. Luo, and G. Zhang, LncRNA MCM3AP-AS1 Regulates Epidermal Growth Factor Receptor and Autophagy to Promote Hepatocellular Carcinoma Metastasis by Interacting with miR-455. DNA Cell Biol, 2019. 38(8): p. 857-864.
- Yu, M., et al., Epidermal Growth Factor Receptor Mutation Mechanisms in Nonsmall Cell Lung Cancer by Transcriptome Sequencing. Cancer Biother Radiopharm, 2022. 37(7): p. 560-568.
- Qu, J., et al., A paradoxical role for sestrin 2 protein in tumor suppression and tumorigenesis. Cancer Cell Int, 2021. 21(1): p. 606.
- Pasha, M., et al., Sestrin2 as a Novel Biomarker and Therapeutic Target for Various Diseases. Oxid Med Cell Longev, 2017. 2017: p. 3296294.
- Gu, X., et al., Sestrin mediates detection of and adaptation to low-leucine diets in Drosophila. Nature, 2022. 608(7921): p. 209-216.
- Eid, A.A., et al., Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression. Mol Cell Biol, 2013. 33(17): p. 3439-60.
- Jia, Y., et al., MiR-4756 promotes albumin-induced renal tubular epithelial cell epithelial-to-mesenchymal transition and endoplasmic reticulum stress via targeting Sestrin2. J Cell Physiol, 2019. 234(3): p. 2905-2915.
- Lefaucheur, J.P., et al., Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol, 2020. 131(2): p. 474-528.
- Dourson, M.L., et al., Data derived Extrapolation Factors for developmental toxicity: A preliminary research case study with perfluorooctanoate (PFOA). Regul Toxicol Pharmacol, 2019. 108: p. 104446.
- Yang, M., et al., CDKN2B antisense RNA 1 expression alleviates idiopathic pulmonary fibrosis by functioning as a competing endogenouse RNA through the miR-199a-5p/Sestrin-2 axis. Bioengineered, 2022. 13(3): p. 7746-7759.
- Ye, J., et al., A novel lncRNA-LINC01116 regulates tumorigenesis of glioma by targeting VEGFA. Int J Cancer, 2020. 146(1): p. 248-261.
- Pérez-Gutiérrez, L. and N. Ferrara, Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol, 2023. 24(11): p. 816-834.
- Lin, J., et al., Long non-coding RNA UBE2CP3 enhances HCC cell secretion of VEGFA and promotes angiogenesis by activating ERK1/2/HIF-1α/VEGFA signalling in hepatocellular carcinoma. J Exp Clin Cancer Res, 2018. 37(1): p. 113.
- Hu, R., et al., LncRNA TUSC8 suppresses the proliferation and migration of esophageal cancer cells by downregulation of VEGFA. J Cancer, 2021. 12(21): p. 6393-6400.
- Haga, Y., et al., Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines. PLoS One, 2017. 12(3): p. e0174153.
- Wang, J., et al., LncRNA SPRY4-IT1 facilitates cell proliferation and angiogenesis of glioma via the miR-101-3p/EZH2/VEGFA signaling axis. Cancer Med, 2023. 12(6): p. 7309-7326.
- Hagiwara, S., et al., Activation of JNK and high expression level of CD133 predict a poor response to sorafenib in hepatocellular carcinoma. Br J Cancer, 2012. 106(12): p. 1997-2003.
- Verma, A.K., et al., Autophagy Paradox of Cancer: Role, Regulation, and Duality. Oxid Med Cell Longev, 2021. 2021: p. 8832541.
- White, E. and R.S. DiPaola, The double-edged sword of autophagy modulation in cancer. Clin Cancer Res, 2009. 15(17): p. 5308-16.
- Devis-Jauregui, L., et al., Autophagy in the physiological endometrium and cancer. Autophagy, 2021. 17(5): p. 1077-1095.
- Feng, X., et al., MiR-25 enhances autophagy and promotes sorafenib resistance of hepatocellular carcinoma via targeting FBXW7. Int J Med Sci, 2022. 19(2): p. 257-266.
- Lu, S., et al., CD24 regulates sorafenib resistance via activating autophagy in hepatocellular carcinoma. Cell Death Dis, 2018. 9(6): p. 646.
- Wu, Y., J. Zhang, and Q. Li, Autophagy, an accomplice or antagonist of drug resistance in HCC? Cell Death Dis, 2021. 12(3): p. 266.
- Xiong, H., et al., LncRNA HULC triggers autophagy via stabilizing Sirt1 and attenuates the chemosensitivity of HCC cells. Oncogene, 2017. 36(25): p. 3528-3540.
- Zhang, P., et al., MicroRNA-3064-5p sponged by MALAT1 suppresses angiogenesis in human hepatocellular carcinoma by targeting the FOXA1/CD24/Src pathway. Faseb j, 2020. 34(1): p. 66-81.
- Qu, Z., et al., Exosomes derived from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro. J Exp Clin Cancer Res, 2016. 35(1): p. 159.
- Qian, H., et al., Autophagy in liver diseases: A review. Mol Aspects Med, 2021. 82: p. 100973.
- J, L.Y.a.W., Sorafenib-Induced Exosome Secretion Promotes Chemotherapy Resistance in Hepatoma Cell Line. Japanese Journal of Gastroenterology and Hepatology, 2021. 6(12): p. 1-7.
- Peng, W., et al., An exosome-related lncRNA signature correlates with prognosis, immune microenvironment, and therapeutic responses in hepatocellular carcinoma. Transl Oncol, 2023. 31: p. 101651.
- Zhou, H., et al., The Role of Exosomes in Viral Hepatitis and Its Associated Liver Diseases. Front Med (Lausanne), 2021. 8: p. 782485.
- Zhang, C., et al., lncRNA-HEIH in serum and exosomes as a potential biomarker in the HCV-related hepatocellular carcinoma. Cancer Biomark, 2018. 21(3): p. 651-659.
- Li, Y., et al., IL-6/STAT3 Signaling Contributes to Sorafenib Resistance in Hepatocellular Carcinoma Through Targeting Cancer Stem Cells. Onco Targets Ther, 2020. 13: p. 9721-9730.
- Vij, P. and D. Hardej, Evaluation of tellurium toxicity in transformed and non-transformed human colon cells. Environ Toxicol Pharmacol, 2012. 34(3): p. 768-82.
- Bebber, C.M., et al., Ferroptosis in Cancer Cell Biology. Cancers (Basel), 2020. 12(1).
- Sun, S., et al., Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther, 2023. 8(1): p. 372.
- Xie, Y., et al., Ferroptosis: process and function. Cell Death Differ, 2016. 23(3): p. 369-79.
- Lu, B., et al., The Role of Ferroptosis in Cancer Development and Treatment Response. Front Pharmacol, 2017. 8: p. 992.
- Nie, J., et al., Role of ferroptosis in hepatocellular carcinoma. J Cancer Res Clin Oncol, 2018. 144(12): p. 2329-2337.
- Sun, X., et al., Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology, 2016. 64(2): p. 488-500.
- Xu, Z., et al., Construction of a Ferroptosis-Related Nine-lncRNA Signature for Predicting Prognosis and Immune Response in Hepatocellular Carcinoma. Front Immunol, 2021. 12: p. 719175.
- Zhu, Z., et al., Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int J Cancer, 2010. 126(9): p. 2067-78.
- Ohashi, R., et al., Expression of MRP1 and ABCG2 is associated with adverse clinical outcomes of papillary thyroid carcinoma with a solid component. Hum Pathol, 2017. 67: p. 11-17.
- Lv, H., et al., Noncoding RNAs in liver cancer stem cells: The big impact of little things. Cancer Lett, 2018. 418: p. 51-63.
- Hou, Y.R., et al., The Conserved LncRNA DIO3OS Restricts Hepatocellular Carcinoma Stemness by Interfering with NONO-Mediated Nuclear Export of ZEB1 mRNA. Adv Sci (Weinh), 2023. 10(23): p. e2301983.
- Zan, Y., et al., MicroRNA-139 inhibits hepatocellular carcinoma cell growth through down-regulating karyopherin alpha 2. J Exp Clin Cancer Res, 2019. 38(1): p. 182.
- Li, M.M., et al., Identification and functional characterization of potential oncofetal targets in human hepatocellular carcinoma. STAR Protoc, 2022. 3(4): p. 101921.
- Liang, Y., et al., Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in hepatocellular carcinoma. Hepatology, 2013. 57(5): p. 1847-57.
- Liao, Y., et al., HSP90α Mediates Sorafenib Resistance in Human Hepatocellular Carcinoma by Necroptosis Inhibition under Hypoxia. Cancers (Basel), 2021. 13(2).
- Zhao, D., et al., Upregulation of HIF-2α induced by sorafenib contributes to the resistance by activating the TGF-α/EGFR pathway in hepatocellular carcinoma cells. Cell Signal, 2014. 26(5): p. 1030-9.
- Wang, L., et al., Hypoxia-induced LncRNA DACT3-AS1 upregulates PKM2 to promote metastasis in hepatocellular carcinoma through the HDAC2/FOXA3 pathway. Exp Mol Med, 2022. 54(6): p. 848-860.
- Zhang, Q., et al., Hypoxia-Responsive lncRNA AC115619 Encodes a Micropeptide That Suppresses m6A Modifications and Hepatocellular Carcinoma Progression. Cancer Res, 2023. 83(15): p. 2496-2512.
- Huang, W., et al., ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia, 2021. 23(12): p. 1227-1239.
- Wu, S. and L. Fu, Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol Cancer, 2018. 17(1): p. 25.
- Zhu, X., et al., HMOX1 Attenuates the Sensitivity of Hepatocellular Carcinoma Cells to Sorafenib via Modulating the Expression of ABC Transporters. Int J Genomics, 2022. 2022: p. 9451557.
- Huang, W.C., et al., BCRP/ABCG2 inhibition sensitizes hepatocellular carcinoma cells to sorafenib. PLoS One, 2013. 8(12): p. e83627.
- Wang, Y., et al., The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer. Expert Opin Drug Metab Toxicol, 2021. 17(3): p. 291-306.
- Huang, H., et al., LncRNA NR2F1-AS1 regulates hepatocellular carcinoma oxaliplatin resistance by targeting ABCC1 via miR-363. J Cell Mol Med, 2018. 22(6): p. 3238-3245.
- Gamaev, L., et al., The pro-oncogenic effect of the lncRNA H19 in the development of chronic inflammation-mediated hepatocellular carcinoma. Oncogene, 2021. 40(1): p. 127-139.
- Takahashi, K., et al., Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy. Mol Cancer Res, 2014. 12(10): p. 1377-87.
- Chen, S. and X. Xia, Long noncoding RNA NEAT1 suppresses sorafenib sensitivity of hepatocellular carcinoma cells via regulating miR-335-c-Met. J Cell Physiol, 2019. 234(9): p. 14999-15009.
- Schultheiss, C.S., et al., The long non-coding RNA H19 suppresses carcinogenesis and chemoresistance in hepatocellular carcinoma. Cell Stress, 2017. 1(1): p. 37-54.
- Jin, W., et al., Long non-coding RNA TUC338 is functionally involved in sorafenib-sensitized hepatocarcinoma cells by targeting RASAL1. Oncol Rep, 2017. 37(1): p. 273-28.
- Takahashi, K., et al., Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio, 2014. 4: p. 458-67.
- Quagliata, L., et al., High expression of HOXA13 correlates with poorly differentiated hepatocellular carcinomas and modulates sorafenib response in in vitro models. Lab Invest, 2018. 98(1): p. 95-105.
- Zhang, T., et al., SNHG3 correlates with malignant status and poor prognosis in hepatocellular carcinoma. Tumour Biol, 2016. 37(2): p. 2379-85.
- Ye, J., et al., Long noncoding RNA SNHG16 induces sorafenib resistance in hepatocellular carcinoma cells through sponging miR-140-5p. Onco Targets Ther, 2019. 12: p. 415-422.
- Sui, C., et al., LncRNA FOXD2-AS1 as a competitive endogenous RNA against miR-150-5p reverses resistance to sorafenib in hepatocellular carcinoma. J Cell Mol Med, 2019. 23(9): p. 6024-6033.
- Li, W., et al., LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells. J Exp Clin Cancer Res, 2019. 38(1): p. 183.
- Xue, Y., et al., Association between lncrna PCGEM1 polymorphisms and prostate cancer risk. Prostate Cancer Prostatic Dis, 2013. 16(2): p. 139-44, s1.
- Luo, Y., et al., Targeting lncRNAs in programmed cell death as a therapeutic strategy for non-small cell lung cancer. Cell Death Discov, 2022. 8(1): p. 159.
- Xiao, L., et al., Identification of a prognostic classifier based on EMT-related lncRNAs and the function of LINC01138 in tumor progression for lung adenocarcinoma. Front Mol Biosci, 2022. 9: p. 976878.
- Morlando, M. and A. Fatica, Alteration of Epigenetic Regulation by Long Noncoding RNAs in Cancer. Int J Mol Sci, 2018. 19(2).
- Pech, O. and C. Zippelius, Reply to Chen et al. Endoscopy, 2022. 54(2): p. 223.
- Villanueva, A., Hepatocellular Carcinoma. N Engl J Med, 2019. 380(15): p. 1450-1462.
- Amjad, M.T., A. Chidharla, and A. Kasi, Cancer Chemotherapy, in StatPearls. 2024, StatPearls PublishingCopyright © 2024, StatPearls Publishing LLC.: Treasure Island (FL).
- Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020. 396(10258): p. 1204-1222.
- Zhu, X.Y., et al., Zhu et al. Reply. Phys Rev Lett, 2020. 125(7): p. 079702.
- Zanos, P., et al., Zanos et al. reply. Nature, 2017. 546(7659): p. E4-e5.


| Long noncoding RNAs | Effects on sorafenib resistance | Target | Mechanisms mediating resistance/major effects | Reference |
|---|---|---|---|---|
| NEAT1 | Promoting | miR-149-5p | LncRNA NEAT1 modulates sorafenib resistance in hepatocellular carcinoma through regulating the miR-149-5p/AKT1 axis | Niu et al., 2020 |
| miR-335 | Mediating sorafenib resistance by suppressing miR-335 expression, and dis-inhibition on c-Met-Akt signaling pathway | Chen et al., 2019 | ||
| H19 | Inhibiting | miR-675 | Over-expression of H19 can reduce cell proliferation to reduce chemical resistance after sorafenib treatment | Schultheiss et al., 2019 |
| TUC338 | Promoting | RASAL1 | TUC338, a lncRNA which is overexpressed in liver cancer and may act as a tumor inducer, to illustrate the function of lncRNA in the development process of chemoresistance in liver cancer in vitro and in vivo. Functionally involved in sorafenib resistance hepatocarcinoma cells by targeting RASAL1 | Jin et al., 2017 |
| ROR | Inhibiting | TGF-β | Sorafenib increases expression of ROR in vesicles inside and outside tumor cells, while siRNA to ROR increases sensitivity to chemotherapy | Takahashi et al., 2014 |
| HOTTIP | Inhibiting | HOXA13 | Stable over-expression of HOXA13 in liver cancer cell lines increases cancer cell proliferation and migration, and reduces its sensitivity to sorafenib | Quagliata et al., 2018 |
| SNHG3 | Promoting | miR 128 | Inducing HCC cells EMT via miR 128/CD151 cascade activation | Zhang et al., 2016 |
| SNHG16 | Promoting | miR-140-5p | Functioning as an endogenous sponge for miR-140-5p and the effects of SNHG16 knockdown on SR could be blocked by miR-140-5p inhibitor | Ye et al., 2019 |
| FOXD2-AS1 | Inhibiting | miR-150-5p | Over-expression of FOXD2-AS1 overcame the resistance of SR cells through functioned as a sponge for miR-150-5p to modulate TMEM9 expression |
Sui et al., 2019 |
| SNHG1 | Promoting | miR-21 | LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells | Li et al., 2019 |
| HOTAIR | Promoting | miR-217 | LncRNA HOTAIR Contributes to Sorafenib Resistance through Suppressing miR-217 in Hepatic Carcinoma | Tang et al., 2020 |
| TRERNA1 | Promoting | miR-22-3p | TRERNA1 upregulation mediated by HBx promotes sorafenib resistance and cell proliferation in HCC via targeting NRAS by sponging miR-22-3p | Song et al., 2021 |
| TTN-AS1 | Promoting | miR-16-5p | LncRNA TTN-AS1 intensifies sorafenib resistance in hepatocellular carcinoma by sponging miR-16-5p and upregulation of cyclin E1 | Zhou et al., 2021 |
| HEIH | Promoting | miR-98-5p/PI3K/AKT | LncRNA HEIH confers cell sorafenib resistance in hepatocellular carcinoma by regulating miR-98-5p/PI3K/AKT pathway | Shen et al., 2020 |
| CRNDE | Inhibiting | miR-543 | LncRNA CRNDE Promotes ATG4B-Mediated Autophagy and Alleviates the Sensitivity of Sorafenib in Hepatocellular Carcinoma Cells | Chen et al., 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
