Submitted:
02 September 2024
Posted:
03 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Relevance and Problem Statement
1.2. Literature Review
1.3. Research Question and Scope
2. Methods
2.1. Data Preparation for Pattern Recognition
2.2. Accident-Related Variables
- Casualties: minor injury, severe injury, death at accident site, death within 30 days,
- Severe casualties: severe injury, death at accident site, death within 30 days.
2.3. Descriptive Analyses
2.4. Binomial Logistic Regression
2.5. PATTERMAX-Method
2.6. Blackpattern Impact Analysis
3. Results
3.1. Descriptive Analyses
3.2. Logistic Regression Analysis
3.3. PATTERMAX-Method
3.4. Blackpattern Impact Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Herry Conuslt, & KFV. (2022). Unfallkostenrechnung Straße 2022 (UKR 2022). Forschungsarbeiten des österreichischen Verkehrssicherheitsfonds, Wien: Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie (BMK).
- European Commission. (2020). Handbook on the external costs of transport. Version 2019 – 1.1, CE Delft, Directorate-General for Mobility and Transport.
- European Commission. (2019, December 18). Archive: Road safety statistics - characteristics at national and regional level. Retrieved August 8, 2021, from https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Road_safety_statistics__characteristics_at_national_and_regional_level&oldid=463733.
- Bundesministerium für Inneres (BMI) I. (2020). Straßenverkehrstote in Österreich. Retrieved July 7, 2021, from bmi.gv.at: https://www.bmi.gv.at/202/Verkehrsangelegenheiten/files/Jahresvergleich_1983_2020.pdf.
- Fian, T. (2021). From Blackspots to Blackpatterns: Pattern recognition with road traffic accident data. Dissertation. [CrossRef]
- Gutierrez-Osorio, C., & Pedraza, C.A. (2020). Modern data sources and techniques for analysis and forecast of road accidents: A review. Journal of Traffic and Transportation Engineering, 7, 432-446. [CrossRef]
- Kizito, A., & Semwanga, A.R. (2020). Modeling the Complexity of Road Accidents Prevention: A System Dynamics Approach. International Journal of System Dynamics Applications, 9, 24-41. [CrossRef]
- Martins, M.A., & Garcez, T.V. (2021). A multidimensional and multi-period analysis of safety on roads. Accident analysis and prevention, 162, 106401. [CrossRef]
- Khalsa, A. (2019). Study on Road Traffic Accidents and Prevention in India. A Review. International Journal for Research in Applied Science and Engineering Technology. [CrossRef]
- Karamanlis, I., Nikiforiadis, A., Botzoris, G.N., Kokkalis, A., & Basbas, S. (2023). Towards Sustainable Transportation: The Role of Black Spot Analysis in Improving Road Safety. Sustainability. [CrossRef]
- Reeves, K., Chandan, J.S., & Bandyopadhyay, S. (2019). Using statistical modelling to analyze risk factors for severe and fatal road traffic accidents. International Journal of Injury Control and Safety Promotion, 26, 364 - 371. [CrossRef]
- Gu, C., Xu, J., Gao, C., Mu, M., E., G., & Ma, Y. (2022). Multivariate analysis of roadway multi-fatality crashes using association rules mining and rules graph structures: A case study in China. PLOS ONE, 17. [CrossRef]
- Pande, A., & Abdel-Aty, M.A. (2009). A novel approach for analyzing severe crash patterns on multilane highways. Accident analysis and prevention, 41 5, 985-94. [CrossRef]
- Alin, D., Cofarue, C., & Popesku, M.V. (2023). Investigation of Single Vehicle Accidents Severity by Using a Probabilistic Approach. Mobility and Vehicle Mechanics. [CrossRef]
- Cioca, L., & Ivașcu, L. (2017). Risk Indicators and Road Accident Analysis for the Period 2012–2016. Sustainability, 9, 1530. [CrossRef]
- Shibani, A., & Pervin, M.S. (2016). Analysis of traffic accident severity on Great Britain roadways and junctions. Engineering, Environmental Science, Geography. [CrossRef]
- Ju, Y.H., & Sohn, S.Y. (2011). Quantification method analysis of the relationship between occupant injury and environmental factors in traffic accidents. Accident analysis and prevention, 43 1, 342-51. [CrossRef]
- Yaman, T.T., Bilgiç, E., & Esen, M.F. (2020). Analysis of Traffic Accidents to Identify Factors Affecting Injury Severity with Fuzzy and Crisp Techniques. [CrossRef]
- Yaman, T.T., Bilgiç, E., & Esen, M.F. (2021). Analysis of traffic accidents with fuzzy and crisp data mining techniques to identify factors affecting injury severity. J. Intell. Fuzzy Syst., 42, 575-592. [CrossRef]
- Shaon, M.R., & Qin, X. (2020). Crash Data-Based Investigation into How Injury Severity Is Affected by Driver Errors. Transportation Research Record, 2674, 452 - 464. [CrossRef]
- Gilani, V., Hosseinian, S.M., Ghasedi, M., & Nikookar, M. (2021). Data-Driven Urban Traffic Accident Analysis and Prediction Using Logit and Machine Learning-Based Pattern Recognition Models. Mathematical Problems in Engineering, 2021, 1-11. [CrossRef]
- Sohn, S.Y., & Shin, H. (2001). Pattern recognition for road traffic accident severity in Korea. Ergonomics, 44, 107 - 117. [CrossRef]
- Khyara, H., Amine, A., & Nassih, B. (2023). Dependent and Independent Variables for Exploratory Analysis of Road Traffic Accidents. Proceedings of the International Conference on Industrial Engineering and Operations Management. [CrossRef]
- Athiappan, K., Karthik, C., Rajalaskshmi, M., Subrata, C., Rabiei-Dastjerdi, H., Liu, Y., Fernández-Campusano, C., & Gheisari, M. (2022). Identifying Influencing Factors of Road Accidents in Emerging Road Accident Blackspots. Advances in Civil Engineering. [CrossRef]
- Theofilatos, A., & Yannis, G. (2014). A review of the effect of traffic and weather characteristics on road safety. Accident analysis and prevention, 72, 244-56. [CrossRef]
- Aziz, S., & Ram, S. (2022). A Meta-analysis of the methodologies practiced worldwide for the identification of Road Accident Black Spots. Transportation Research Procedia. [CrossRef]
- Khorasani-Zavareh, D. (2011). System versus traditional approach in road traffic injury prevention: a call for action. Journal of Injury and Violence Research, 3, 61 - 61. [CrossRef]
- Rezapur-Shahkolai, F., Afshari, M., Doosti-Irani, A., Bashirian, S., & Maleki, S. (2022). Interventions to prevent road traffic injuries among pedestrians: a systematic review. International Journal of Injury Control and Safety Promotion, 29, 533 - 549. [CrossRef]
- Staton, C.A., Vissoci, J.R., Gong, E., Toomey, N., Wafula, R.B., Abdelgadir, J., Zhou, Y., Liu, C., Pei, F., Zick, B., Ratliff, C.D., Rotich, C., Jadue, N., de Andrade, L., von Isenburg, M., & Hocker, M.B. (2016). Road Traffic Injury Prevention Initiatives: A Systematic Review and Metasummary of Effectiveness in Low and Middle Income Countries. PLoS ONE, 11. [CrossRef]
- Gopalakrishnan, S. (2012). A Public Health Perspective of Road Traffic Accidents. Journal of Family Medicine and Primary Care, 1, 144 - 150. [CrossRef]
- KFV, & FGM. (2021). Österreichische Verkehrssicherheitsstrategie 2021–2030. Wien: Bundesministerium für Klimaschutz.
- Cerwenka, P., Hauger, G., Hörl, B., & Klamer, M. (2007). Handbuch der Verkehrssystemplanung. Österreichischer Kunst- und Kulturverlag, Wien.

| Driver | Vehicle | Roadway | Situation |
|---|---|---|---|
|
|
|
|
| BIS Features | Description |
|---|---|
| High Frequency | Blackpatterns that occur frequently in the dataset are prioritized. |
| High Impact | Blackpatterns with variables that have a strong influence on severe casualties are emphasized. |
| Strong Association | Blackpatterns that are statistically significant in their association with severe casualties are given higher priority. |
| Variable | Casualties n |
Severe casualties n |
P (X ∩ SC) % |
Fisher's exact test p |
Phi Coefficient |
MCV n |
|
|---|---|---|---|---|---|---|---|
| Sex | Male | 11.576 | 2.458 | 12,11% | ,000 | ,133 | 817 |
| Female | 8.706 | 972 | 4,79% | ,000 | -,133 | 1.132 | |
| Unknown sex | 11 | 1 | - | - | - | - | |
| Age class | 16 to 18 | 1.465 | 162 | 0,80% | ,000 | -,044 | 171 |
| 19 to 24 | 6.547 | 806 | 3,97% | ,000 | -,085 | 1.132 | |
| 25 to 34 | 4.323 | 697 | 3,43% | ,120 | -,011 | 830 | |
| 35 to 44 | 2.488 | 468 | 2,31% | ,008 | ,019 | 432 | |
| 45 to 54 | 2.180 | 476 | 2,35% | ,000 | ,046 | 382 | |
| 55 to 64 | 1.404 | 323 | 1,59% | ,000 | ,044 | 212 | |
| 64 and higher | 1.878 | 499 | 2,46% | ,000 | ,082 | 303 | |
| unknown age class | 8 | - | - | - | - | - | |
| *DL | No driving licence | 356 | 94 | 0,46% | ,020 | ,034 | 15 |
| Probationary driving licence | 2.805 | 303 | 1,49% | ,000 | -,065 | 391 | |
| Impairment | Alcohol | 2.858 | 481 | 2,37% | ,934 | -,001 | 246 |
| Distraction | 2.369 | 431 | 2,12% | ,079 | ,012 | 93 | |
| Fatigue | 1.518 | 317 | 1,56% | ,000 | ,030 | 134 | |
| Health | 432 | 91 | 0,45% | ,021 | ,016 | 38 | |
| Drugs | 66 | 15 | 0,07% | ,247 | ,009 | 3 | |
| Medicines | 50 | 10 | 0,05% | ,570 | ,004 | 2 | |
| Excitation | 7 | 2 | 0,01% | ,337 | ,006 | 1 | |
| Driving manoeuvres | Speeding | 3.608 | 579 | 2,85% | ,136 | -,011 | 131 |
| Skidding | 1.823 | 239 | 1,18% | ,000 | -.032 | 80 | |
| Hitting an obstacle next to road | 1.512 | 280 | 1,38% | ,086 | ,012 | 35 | |
| Hitting the guard rail | 1.378 | 181 | 0,89% | ,000 | -,027 | 37 | |
| Hitting a tree | 1.217 | 318 | 1,57% | ,000 | ,062 | 23 | |
| Misconduct by pedestrians | 503 | 79 | 0,39% | ,505 | -,005 | 12 | |
| Hit and run | 371 | 53 | 0,26% | ,186 | -,010 | 22 | |
| Sudden braking | 149 | 11 | 0,05% | ,002 | -.022 | 9 | |
| Overtaking | 147 | 26 | 0,13% | ,834 | ,002 | 8 | |
| Cutting curves | 128 | 27 | 0,13% | ,194 | ,009 | 4 | |
| Hitting an obstacle on the road | 117 | 6 | 0,03% | ,001 | -,024 | 7 | |
| Changing lanes | 58 | 9 | 0,04% | 1,000 | -,002 | 3 | |
| Inadequate safety distance | 38 | 7 | 0,03% | ,828 | ,002 | 1 | |
| Reverse driving | 26 | 6 | 0,03% | ,429 | ,006 | 2 | |
| Phoning | 25 | 7 | 0,03% | ,175 | ,010 | 1 | |
| Turning around | 22 | 4 | 0,02% | ,780 | ,001 | 3 | |
| Fall from the vehicle | 22 | 11 | 0,05% | ,000 | ,029 | 2 | |
| Getting in lane | 18 | 4 | 0,02% | ,529 | ,004 | 1 | |
| Disregarding driving direction | 16 | 2 | 0,01% | 1,000 | -,003 | 1 | |
| Priority violation | 15 | 4 | 0,02% | ,302 | ,007 | 1 | |
| Driving towards left-hand side of road | 9 | 3 | 0,01% | ,184 | ,009 | 1 | |
| Forbidden overtaking | 8 | 2 | 0,01% | ,630 | ,004 | 1 | |
| Hitting a moving vehicle | 8 | 0 | 0,00% | ,367 | -,009 | 2 | |
| Disregarding driving ban | 5 | 2 | 0,01% | ,201 | ,010 | 1 | |
| Driving in parallel | 5 | 1 | 0,00% | 1,000 | ,604 | 1 | |
| Opening the vehicle door | 5 | 2 | 0,01% | ,201 | ,010 | 1 | |
| Hitting a stationary vehicle | 3 | 0 | 0,00% | 1,000 | -,005 | 1 | |
| Wrong-way driver | 1 | 0 | 0,00% | 1,000 | -,003 | 1 | |
| Disregarding red light | 1 | 0 | 0,00% | 1,000 | -,003 | 1 | |
| Dangerous stopping and parking | 0 | 0 | - | - | - | - | |
| Disregarding turning ban | 0 | 0 | - | - | - | - | |
| Missing indication of direction change | 0 | 0 | - | - | - | - | |
| Driving against one-way | 0 | 0 | - | - | - | - | |
| **ST | Driving without mandatory light | 0 | 0 | - | - | - | - |
| No safety belt applied | 1.401 | 699 | 3,44% | ,000 | ,240 | 60 |
| Variable | Casualties n |
Severe casualties n |
P (X ∩ SC) % |
Fisher's exact test p |
Phi Coefficient |
MCV n |
|
|---|---|---|---|---|---|---|---|
| Engine power (kW) | 0-24 kW | 11 | 3 | 0,01% | ,411 | ,006 | 2 |
| 24-90 kW | 15.412 | 2.393 | 11,79% | ,000 | -,066 | 975 | |
| 90-110 | 1.928 | 413 | 2,04% | ,000 | ,039 | 201 | |
| 110+ | 1.947 | 448 | 2,21% | ,000 | ,053 | 256 | |
| Kilometrage (km) |
0 to 15.000 | 156 | 24 | 0,12% | ,662 | -,004 | 13 |
| 15.000 to 75.000 | 605 | 89 | 0,44% | ,154 | -,010 | 51 | |
| 75.000 to 100.000 | 387 | 70 | 0,34% | ,541 | ,004 | 33 | |
| 100.000 to 150.000 | 663 | 104 | 0,51% | ,428 | -,006 | 44 | |
| 150.000 to 200.000 | 942 | 176 | 0,87% | ,141 | ,010 | 56 | |
| Vehicle colour |
Beige | 18 | 3 | 0,01% | 1,000 | ,000 | 5 |
| Blue | 3.166 | 478 | 2,36% | ,003 | -,021 | 868 | |
| Brown | 193 | 35 | 0,17% | ,637 | ,003 | 52 | |
| Bronze | 1 | 0 | 0,00% | 1,000 | -,003 | 1 | |
| Dark | 30 | 6 | 0,03% | ,626 | ,003 | 6 | |
| Yellow | 129 | 18 | 0,09% | ,408 | -,006 | 37 | |
| Gold | 18 | 3 | 0,01% | 1,000 | ,000 | 5 | |
| Grey | 2.702 | 462 | 2,28% | ,784 | ,002 | 770 | |
| Green | 1.219 | 262 | 1,29% | ,000 | ,031 | 281 | |
| Bright | 8 | 2 | 0,01% | ,630 | ,004 | 2 | |
| Orange | 130 | 24 | 0,12% | ,647 | ,003 | 41 | |
| Red | 2.272 | 381 | 1,88% | ,857 | -,001 | 602 | |
| Black | 3.981 | 652 | 3,21% | ,334 | -,007 | 958 | |
| Silver | 716 | 136 | 0,67% | ,127 | ,011 | 146 | |
| Purple | 49 | 8 | 0,04% | 1,000 | -,001 | 11 | |
| White | 1.907 | 323 | 1,59% | ,977 | ,000 | 497 | |
| Others | 1 | 1 | 0,00% | ,169 | ,016 | 1 | |
| Vehicle safety |
Insufficient vehicle security | 16 | 6 | 0,03% | ,040 | ,015 | 2 |
| Insufficient load securing | 6 | 0 | 0,00% | ,598 | -,008 | 1 | |
| Technical defects | 102 | 15 | 0,07% | ,682 | -,004 | 6 | |
| Vehicle fire | 18 | 11 | 0,05% | ,000 | ,035 | 1 | |
| Airbag not deployed | 8.138 | 819 | 4,04% | ,000 | -,149 | 975 |
| Variable | Casualties n |
Severe casualties n |
P (X ∩ SC) % |
Fisher's exact test p |
Phi Coefficient |
MCV n |
|
|---|---|---|---|---|---|---|---|
| Speed limit (km/h) |
Driving ban | 2.270 | 380 | 1,87% | ,833 | -,002 | 350 |
| 5 | 1 | 1 | 0,00% | ,169 | ,016 | 1 | |
| 10 | 1 | 0 | 0,00% | 1,000 | -,003 | 1 | |
| 20 | 2 | 0 | 0,00% | 1,000 | -,004 | 1 | |
| 30 | 173 | 33 | 0,16% | ,479 | ,005 | 13 | |
| 40 | 40 | 8 | 0,04% | ,533 | ,004 | 6 | |
| 50 | 505 | 71 | 0,35% | ,095 | -,012 | 56 | |
| 60 | 334 | 55 | 0,27% | ,877 | -,002 | 43 | |
| 70 | 1.421 | 218 | 1,07% | ,108 | -,011 | 321 | |
| 80 | 1.231 | 192 | 0,95% | ,225 | -,009 | 222 | |
| 90 | 3 | 0 | 0,00% | 1,000 | -,005 | 1 | |
| 100 | 12.292 | 2.148 | 10,58% | ,008 | ,019 | 2.232 | |
| 110 | 35 | 4 | 0,02% | ,502 | -,006 | 10 | |
| 120 | 2 | 0 | 0,00% | 1,000 | -,004 | 1 | |
| 130 | 1.983 | 321 | 1,58% | ,377 | -,006 | 488 | |
| Road type |
Highway | 2.593 | 417 | 2,05% | ,239 | -,008 | 488 |
| Expressway | 595 | 80 | 0,39% | ,024 | -,016 | 82 | |
| Country road | 14.457 | 2.416 | 11,91% | ,247 | -,008 | 2.232 | |
| Other roads | 2.220 | 463 | 2,28% | ,000 | ,037 | 248 | |
| Intersection | 439 | 62 | 0,31% | ,125 | -,011 | 62 | |
| Roundabout | 68 | 16 | 0,08% | ,146 | ,010 | 11 | |
| Road characteristics |
Deceleration lane | 10 | 2 | 0,01% | ,681 | ,002 | 1 |
| Acceleration lane | 3 | 1 | 0,00% | ,426 | ,005 | 1 | |
| One-way | 144 | 33 | 0,16% | ,054 | ,014 | 26 | |
| Construction site | 157 | 21 | 0,10% | ,286 | -,008 | 10 | |
| Cycle path | 4 | 0 | 0,00% | 1,000 | -,006 | 1 | |
| Crosswalk | 3 | 0 | 0,00% | 1,000 | -,006 | 1 | |
| Pedestrian and cycle path | 10 | 2 | 0,01% | ,681 | ,002 | 3 | |
| Parking lane | 7 | 0 | 0,00% | ,610 | -,008 | 1 | |
| Secondary lane | 5 | 1 | 0,00% | 1,000 | ,001 | 1 | |
| Hard shoulder | 45 | 9 | 0,04% | ,551 | ,004 | 7 | |
| Banquet | 123 | 22 | 0,11% | ,729 | ,002 | 22 | |
| Straight road | 11.507 | 2.095 | 10,32% | ,000 | ,040 | 2.232 | |
| Tunnel | 89 | 26 | 0,13% | ,004 | ,022 | 8 | |
| Gallery | 15 | 8 | 0,04% | ,001 | ,026 | 1 | |
| Rest area | 26 | 6 | 0,03% | ,429 | ,006 | 2 | |
| Traffic island | 81 | 18 | 0,09% | ,233 | ,009 | 4 | |
| Underpass | 32 | 7 | 0,03% | ,476 | ,005 | 3 | |
| Middle separation | 777 | 104 | 0,51% | ,008 | -,019 | 137 | |
| Bridge | 157 | 41 | 0,20% | ,003 | ,022 | 7 | |
| Curve | 8.399 | 1.264 | 6,23% | ,000 | -,042 | 1.437 | |
| Narrow lane | 30 | 8 | 0,04% | ,149 | ,010 | 3 | |
| Entry or exit | 57 | 17 | 0,08% | ,019 | ,018 | 5 | |
| Tram or bus station | 8 | 2 | 0,01% | ,630 | ,004 | 1 | |
| Road condition |
Dry road | 10.441 | 2.126 | 10,48% | ,000 | ,095 | 2.232 |
| Wet road | 5.705 | 872 | 4,30% | ,000 | -0,27 | 1.225 | |
| Sand or grit on the road | 297 | 48 | 0,24% | ,809 | -,002 | 56 | |
| Wintry conditions | 3.771 | 370 | 1,82% | ,000 | -,090 | 938 | |
| Other conditions (oil, soil) | 95 | 17 | 0,08% | ,796 | ,002 | 16 | |
| TL* | Traffic light in full operation | 29 | 2 | 0,01% | ,213 | -,010 | 4 |
| Variable |
Casualties n |
Severe casualties n |
P (X ∩ SC) % |
Fisher's exact test p |
Phi Coefficient |
MCV n |
|
|---|---|---|---|---|---|---|---|
| Time | 12 a.m. to 6 a.m. | 3.367 | 713 | 3,51% | ,000 | ,051 | 245 |
| 6 a.m. to 12 p.m. | 6.283 | 889 | 4,38% | ,000 | -,049 | 586 | |
| 12 p.m. to 6 p.m. | 5.915 | 956 | 4,71% | ,070 | -,013 | 578 | |
| 6 p.m. to 12 a.m. | 4.728 | 873 | 4,30% | ,001 | ,023 | 368 | |
| WD* | Mon to Thu | 11.131 | 1.788 | 8,81% | ,000 | -,025 | 586 |
| Fri to Sun | 9.162 | 1.643 | 8,10% | ,000 | ,025 | 430 | |
| Season | Spring | 4.279 | 774 | 3,81% | ,021 | ,016 | 435 |
| Summer | 4.821 | 896 | 4,42% | ,000 | ,025 | 578 | |
| Autumn | 4.802 | 885 | 4,36% | ,001 | ,023 | 394 | |
| Winter | 6.391 | 876 | 4,32% | ,000 | -0,58 | 586 | |
| Weather condition |
Clear or overcast weather | 15.541 | 2.797 | 13,78% | ,000 | ,053 | 586 |
| Rain | 3.013 | 458 | 2,26% | ,007 | -,019 | 110 | |
| Hail, freezing rain | 124 | 17 | 0,08% | ,398 | -,007 | 12 | |
| Snow | 1.913 | 175 | 0,86% | ,000 | -,067 | 147 | |
| Fog | 636 | 102 | 0,50% | ,588 | -,004 | 37 | |
| High wind | 377 | 52 | 0,26% | ,113 | -,011 | 17 | |
| Light condition |
Daylight | 11.546 | 1.790 | 8,82% | ,000 | -,043 | 586 |
| Dusk or dawn | 1.604 | 266 | 1,31% | ,753 | -,003 | 111 | |
| Darkness | 6.828 | 1.311 | 6,46% | ,000 | ,044 | 368 | |
| Artificial light | 571 | 93 | 0,46% | ,730 | -,003 | 15 | |
| Limited visibility | 7 | 0 | 0,00% | ,610 | -,008 | 1 | |
| Glare from the sun | 109 | 24 | 0,12% | ,156 | ,010 | 8 |
| Variable | Regression coefficient β | Standard error SEM | p | exp(β) |
|---|---|---|---|---|
| no safety belt applied | 1,612 | 0,062 | 0,000 | 5,015 |
| gallery | 1,522 | 0,589 | 0,010 | 4,583 |
| vehicle fire | 1,394 | 0,541 | 0,010 | 4,029 |
| hitting an obstacle on the road | 1,222 | 0,426 | 0,004 | 3,394 |
| age class 16 to 18 | 0,840 | 0,104 | 0,000 | 2,317 |
| airbag not deployed | 0,803 | 0,046 | 0,000 | 2,233 |
| bridge | 0,773 | 0,197 | 0,000 | 2,166 |
| age class 19 to 24 | 0,743 | 0,057 | 0,000 | 2,101 |
| sudden braking | 0,693 | 0,324 | 0,032 | 2,000 |
| alcohol | 0,650 | 0,062 | 0,000 | 1,916 |
| hit and run | 0,552 | 0,161 | 0,001 | 1,737 |
| tunnel | 0,515 | 0,258 | 0,046 | 1,674 |
| one-way | 0,507 | 0,219 | 0,020 | 1,660 |
| age class 25 to 34 | 0,492 | 0,057 | 0,000 | 1,635 |
| male driver | 0,491 | 0,045 | 0,000 | 1,634 |
| intersection | 0,450 | 0,148 | 0,002 | 1,569 |
| other road | 0,397 | 0,082 | 0,000 | 1,487 |
| wintry conditions | 0,380 | 0,070 | 0,000 | 1,462 |
| hitting a tree | 0,365 | 0,075 | 0,000 | 1,441 |
| age class 35 to 44 | 0,308 | 0,065 | 0,000 | 1,361 |
| 0 a.m. to 6 a.m. | 0,307 | 0,058 | 0,000 | 1,359 |
| vehicle colour: green | 0,275 | 0,078 | 0,000 | 1,317 |
| county road | 0,247 | 0,062 | 0,000 | 1,280 |
| dry road | 0,232 | 0,047 | 0,000 | 1,261 |
| curve | 0,180 | 0,043 | 0,000 | 1,198 |
| engine power 24-90 kW | 0,175 | 0,046 | 0,000 | 1,192 |
| probationary driving licence | 0,166 | 0,078 | 0,033 | 1,181 |
| darkness | 0,165 | 0,049 | 0,001 | 1,180 |
| drifting left | 0,147 | 0,041 | 0,000 | 1,158 |
| speed limit 100km/h | 0,114 | 0,046 | 0,013 | 1,120 |
| hitting a guard rail | -0,313 | 0,091 | 0,001 | 0,731 |
| speed limit 50km/h | -0,329 | 0,144 | 0,022 | 0,719 |
| constant | -9,285 | 0,611 | 0,000 |
| BP ID | BP variables | Fisher’s exact test p |
Phi Coefficient ϕ |
Frequency n |
|---|---|---|---|---|
| BP1 | speed limit 130km/h, highway, right drift, male driver | 0,001 | 0,027 | 44 |
| BP2 | speed limit 100km/h, country road, left drift, male driver | 0,000 | 0,032 | 41 |
| BP3 | speed limit 100km/h, country road, curve, left drift, male driver | 0,011 | 0,020 | 30 |
| BP4 | country road, right drift, female driver | 0,042 | 0,015 | 28 |
| BP5 | speed limit 100km/h, country road, left drift, male driver, fatigue | 0,001 | 0,028 | 20 |
| BP6 | speed limit 130km/h, highway, drifting right, male driver, fatigue | 0,040 | 0,015 | 16 |
| BP7 | speed limit 100km/h, country road, wet road, age 25-34, right drift, male driver | 0,001 | 0,027 | 12 |
| BP8 | speed limit 100km/h, country road, left drift, male driver, no safety belt applied | 0,000 | 0,031 | 10 |
| BP9 | speed limit 100km/h, country road, darkness, right drift, male driver | 0,003 | 0,026 | 10 |
| B10 | speed limit 80km/h, country road, right drift, male driver | 0,016 | 0,020 | 10 |
| BP ID | BP Frequency n |
BP Fisher’s exact test p |
BP Phi coefficient ϕ |
BP variables and their regression coefficients β | BIS | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| BP1 | 44 | 0,001 | 0,027 | Speed limit 130km/h | Highway | Right drift | Male driver | 628,4 | ||
| 0 | 0 | 0 | 0,491 | |||||||
| BP2 | 41 | 0,001 | 0,032 | Speed limit 100km/h | Country road | Left drift | Male driver | 804,7 | ||
| 0,114 | 0,247 | 0,147 | 0,491 | |||||||
| BP3 | 30 | 0,011 | 0,020 | Speed limit 100km/h | Country road | curve | Left drift | Male driver | 194,9 | |
| 0,114 | 0,247 | 0,180 | 0,147 | 0,491 | ||||||
| BP4 | 28 | 0,042 | 0,015 | Country road | Right drift | Female driver | 50,1 | |||
| 0,247 | 0 | 0 | ||||||||
| BP5 | 20 | 0,001 | 0,028 | Speed limit 100km/h | Country road | Left drift | Male driver | Fatigue | 167,6 | |
| 0,114 | 0,247 | 0,147 | 0,491 | 0 | ||||||
| BP6 | 16 | 0,040 | 0,015 | Speed limit 130km/h | Highway | Right drift | Male driver | Fatigue | 37,1 | |
| 0 | 0 | 0 | 0,491 | 0 | ||||||
| BP7 | 12 | 0,001 | 0,027 | Speed limit 100km/h | Country road | Wet road | Age 25-34 | Right drift | Male driver | 141,8 |
| 0,114 | 0,247 | 0 | 0,492 | 0 | 0,491 | |||||
| BP8 | 10 | 0,000 | 0,031 | Speed limit 100km/h | Country road | Left drift | Male driver | No safety belt | 982,9 | |
| 0,114 | 0,247 | 0,147 | 0,491 | 1,612 | ||||||
| BP9 | 10 | 0,003 | 0,026 | Speed limit 100km/h | Country road | Darkness | Right drift | Male driver | 71,6 | |
| 0,114 | 0,247 | 0,165 | 0 | 0,491 | ||||||
| BP10 | 10 | 0,016 | 0,020 | Speed limit 80km/h | Country road | Right drift | Male driver | 38,3 | ||
| 0 | 0,247 | 0 | 0,491 | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
