Submitted:
26 August 2024
Posted:
27 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction and Main Results
2. Auxiliary Lemmas
3. Proof of Theorem 1
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fefferman, R.; Stein, E. Singular integrals on product spaces. Advances in Math. 1982, 45, 117–143. [Google Scholar] [CrossRef]
- Duoandikoetxea, J. Multiple singular integrals and maximal functions along hypersurfaces. Annal. Institut Four. (Grenoble). 1986, 36, 185–206. [Google Scholar] [CrossRef]
- Al-Salman, A.; Al-Qassem, H.; Pan, Y. Singular integrals on product domains. Indiana Univ. Math. J. 2006, 55, 369–387. [Google Scholar] [CrossRef]
- Fan, D.; Guo, K.; Pan, Y. Singular integrals with rough kernels on product spaces. Hokkaido Math. J. 1999, 28, 435–460. [Google Scholar] [CrossRef]
- Fefferman, R. Singular integrals on product domains. Bull. Amer. Math. Soc. 1981, 4, 195–201. [Google Scholar] [CrossRef]
- Al-Qassem, H.; Pan, Y. Lp boundedness for singular integrals with rough kernels on product domains. Hokkaido Math. J. 2002, 31, 555–613. [Google Scholar] [CrossRef]
- Al-Qassem, H. Singular integrals along surfaces on product domains. Anal. Theory Appl. 2004, 20, 99–112. [Google Scholar] [CrossRef]
- Al-Qassem, H.; Ali, M. Lp boundedness for singular integral operators with L(log+L)2 Kernels on Product Spaces. Kyungpook Math. J. 2008, 46, 377–387. [Google Scholar]
- Walsh, T. On the function of Marcinkiewicz. Studia Math. 1972, 44, 203–217. [Google Scholar] [CrossRef]
- Grafakos, L.; Stefanov, A. Lp bounds for singular integrals and maximal singular integrals with rough kernel. Indiana J. Math. 1998, 47, 455–469. [Google Scholar] [CrossRef]
- Ying, Y. Investigations on some operators with rough kernels in harmonic analysis. Ph.D., Zhejiang University, Hangzhou, China, 2002.
- Fan, D.; Wu, H. On the generalized Marcinkiewicz integral operators with rough kernels. Canad. Math. Bull. 2011, 54, 100–112. [Google Scholar] [CrossRef]
- Al-Qassem, H.; Chen, L.; Pan, Y. Boundedness of rough integral operators on Triebel-Lizorkin space. Publ. Mat. 2012, 56, 261–277. [Google Scholar] [CrossRef]
- Chen, J.; Fan, D.; Pan, Y. Singular integral operators on function spaces. J. Math. Anal. Appl. 2002, 276, 691–708. [Google Scholar] [CrossRef]
- Chen, J.; Jia, H.; Jiand, L. Boundedness of rough oscillatory singular integral on Triebel-Lizorkin spaces. J. Math. Anal. Appl. 2005, 306, 385–397. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, C. Boundedness of rough singular integral operators on the Triebel-Lizorkin spaces. J. Math. Anal. Appl. 2008, 337, 1048–1052. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, Y. Rough singular integrals on Triebel-Lizorkin space and Besov space. J. Math. Anal. Appl. 2008, 347, 493–501. [Google Scholar] [CrossRef]
- Coifman, R.; Weiss, G. Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 1977, 83, 4569–645. [Google Scholar] [CrossRef]
- Seeger, A. Singular integral operators with rough convolution kernels. J. Amer. Math. Soc. 1996, 9, 95–105. [Google Scholar] [CrossRef]
- Seeger, A.; Tao, T. Sharp Lorentz space estimates for rough operators. Math. Annal. 2001, 320, 381–415. [Google Scholar] [CrossRef]
- Zhang, C.; Tao, T. Weighted estimates for certain rough singular integrals. J. Korean Math. Soc. 2008, 45, 1561–1576. [Google Scholar] [CrossRef]
- Cheng, L.; Pan, Y. Lp bounds for singular integrals associated to surfaces of revolution. J. Math. Anal. Appl. 2002, 265, 163–169. [Google Scholar] [CrossRef]
- Cho, Y.; Hong, S.; Kim, J.; Yang, C. Multiparameter singular integrals and maximal operators along flat surfaces. Revista Matem. Iber. 2008, 2008 24, 1047–1073. [Google Scholar] [CrossRef]
- Duoandikoetxea, J.; Rubio de Francia, J. Maximal functions and singular integral operators via Fourier transform estimates. Inventiones math. 1986, 84, 541–561. [Google Scholar] [CrossRef]
- Fan, D.; Pan, Y. Singular integral operators with rough kernels supported by subvarieties. Amer. J. Math. 1997, 119, 799–839. [Google Scholar] [CrossRef]
- Le, H. A note on singular integrals with dominating mixed smoothness in Triebel-Lizorkin spaces. Acta Math. Scien. 2014, 34, 1331–1344. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
