Submitted:
02 August 2024
Posted:
14 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Signal Model of Airborne FDA Radar
3. The Proposed Method
3.1. The FDA Quadratic Range Dependence Compensation
3.2. Oblique Subspace Projection and Separation of Clutter across Different Range Ambiguous Regions
3.3. Residual Clutter Suppression
| Algorithm 1 The procedure of clutter separation and suppression |
|
4. Results and Discussion
4.1. Beam Response Pattren
4.2. Clutter Separation
4.3. SCNR Loss
4.4. Clutter suppression performance
5. Conclusions
Funding
References
- Yongkang Li, Tianyu Huo, Chenxi Yang, Tong Wang, Juan Wang, and Beiyu Li. An efficient ground moving target imaging method for airborne circular stripmap sar. Remote Sensing, 14(1), 2022. [CrossRef]
- Jiusheng Han, Yunhe Cao, Wenhua Wu, Yang Wang, Tat-Soon Yeo, Shuai Liu, and Fengfei Wang. Robust gmti scheme for highly squinted hypersonic vehicle-borne multichannel sar in dive mode. Remote Sensing, 13(21), 2021. [CrossRef]
- Haodong Li, Guisheng Liao, Jingwei Xu, and Lan Lan. An efficient maritime target joint detection and imaging method with airborne isar system. Remote Sensing, 14(1), 2022. [CrossRef]
- Joseph Guerci. Space-Time Adaptive Processing for Radar, Second Edition , Artech 2014.
- Linghui Miao, Shunsheng Zhang, Libing Huang, Junsong Ding, and Wen-Qin Wang. Moving target detection using fda-mimo radar with planar array. IEEE Geoscience and Remote Sensing Letters, 21:1–5, 2024. [CrossRef]
- Ning Cui, Keqing Duan, Kun Xing, and Zhongjun Yu. Beam-space reduced-dimension 3d-stap for nonside-looking airborne radar. IEEE Geoscience and Remote Sensing Letters, 19:1–5, 2022. [CrossRef]
- Wei Chen, Wenchong Xie, and Yongliang Wang. Short-range clutter suppression for airborne radar using sparse recovery and orthogonal projection. IEEE Geoscience and Remote Sensing Letters, 19:1–5, 2022. [CrossRef]
- Xiaofeng Wang, Yaduan Ruan, and Xinggan Zhang. Effective non-stationary clutter suppression method via elevation oblique subspace projection for moving targets detection with a space-based surveillance radar. Electronics, 12(14), 2023. [CrossRef]
- Xiangdong Meng, Tong Wang, Jianxin Wu, and Zheng Bao. Short-range clutter suppression for airborne radar by utilizing prefiltering in elevation. IEEE Geoscience and Remote Sensing Letters, 6(2):268–272, 2009. [CrossRef]
- Mingwei Shen, X. T. Meng, and L. L. Zhang. Efficient adaptive approach for airborne radar short-range clutter suppression. Iet Radar Sonar and Navigation, 6:900–904, 2012. [CrossRef]
- Xinzhe Li, Wenchong Xie, and Yongliang Wang. Clutter suppression algorithm for non-side looking airborne radar with high pulse repetition frequency based on elevation–compensation–prefiltering. IET Radar, Sonar & Navigation, 14(1):19–26, 2020.
- P. Antonik, M.C. Wicks, H.D. Griffiths, and C.J. Baker. Multi-mission multi-mode waveform diversity. In 2006 IEEE Conference on Radar, pages 14 pp.–, 2006.
- Jingwei Xu, Shengqi Zhu, and Guisheng Liao. Range ambiguous clutter suppression for airborne fda-stap radar. IEEE Journal of Selected Topics in Signal Processing, 9(8):1620–1631, 2015. [CrossRef]
- Jingwei Xu, Guisheng Liao, and Hing Cheung So. Space-time adaptive processing with vertical frequency diverse array for range-ambiguous clutter suppression. IEEE Transactions on Geoscience and Remote Sensing, 54(9):5352–5364, 2016. [CrossRef]
- Zizhou Qiu, Zhipeng Liao, Jingwei Xu, and Keqing Duan. Range-ambiguous clutter suppression for space-based early warning radar using vertical fda and horizontal epc. IEEE Geoscience and Remote Sensing Letters, 20:1–5, 2023. [CrossRef]
- Zhixin Liu, Shengqi Zhu, Jingwei Xu, Xiongpeng He, Keqing Duan, and Lan Lan. Range-ambiguous clutter suppression for stap-based radar with vertical coherent frequency diverse array. IEEE Transactions on Geoscience and Remote Sensing, 2023. [CrossRef]
- R.T. Behrens and L.L. Scharf. Signal processing applications of oblique projection operators. IEEE Transactions on Signal Processing, 42(6):1413–1424, 1994. [CrossRef]
- J. Ward. Space-time adaptive processing for airborne radar. In IEE Colloquium on Space-Time Adaptive Processing (Ref. No. 1998/241), pages 2/1–2/6, 1998.







| Parameter | Value |
|---|---|
| Platform height | 1000 m |
| Platform velocity | 120 m/s |
| Number of element in azimuth | 12 |
| Number of element in elevation | 24 |
| Number of pulse in one CPI | 128 |
| Input SNR | 20 dB |
| Input CNR | 60 dB |
| Bandwidth | 15 MHz |
| Pulse repetition frequency | 15000 Hz |
| Reference frequency | 1 GHz |
| Frequency increment | 681 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).