Submitted:
07 August 2024
Posted:
12 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Tsunamigenic Sources
3. Wave Propagation
3.1. Conservation Laws
3.2. Potential Flow Theory
3.3. Long Wave Scaling
3.4. Depth Integration
3.5. Shallow-Water Equations
3.6. Boussinesq Equations
3.7. Numerical Solutions of Incompressible Navier-Stokes Equations
3.7.1. Projection Method
3.7.2. Direct Solution Based on Weighted Least-Squares Method
3.7.3. Free Surface Capture
4. Conclusion
Funding
Conflicts of Interest
References
- N.O.A.A.. Global Historical Tsunami Database, 2024.
- Titov, V.; Rabinovich, A.; Mofjeld, H.; Thomson, R.; González, F. The global reach of the 26 December 2004 Sumatra tsunami. Science 2005, 309, 2045–2048. [Google Scholar] [CrossRef]
- Aida, I. Numerical experiments for the tsunami propagation-the 1964 Niigata tsunami and the 1968 Tokachi-oki tsunami. Bull. Earthq. Res. Inst., Univ. Tokyo 1969, 47, 673–700. [Google Scholar]
- Hwang, L.; Divoky, D. Tsunami generation. Journal of Geophysical Research 1970, 75, 6802–6817. [Google Scholar] [CrossRef]
- Gomez, B.; Kadri, U. Numerical validation of an effective slender fault source solution for past tsunami scenarios. Physics of Fluids 2023, 35. [Google Scholar] [CrossRef]
- Bahena-Jimenez, S.; Bautista, E.; Méndez, F. Tsunami generation by a seabed deformation in the presence of a viscoelastic mud. Physics of Fluids 2023, 35, 012116. [Google Scholar] [CrossRef]
- Zhao, K.; Qiu, L.; Liu, Y. Two-layer two-phase material point method simulation of granular landslides and generated tsunami waves. Physics of Fluids 2022, 34. [Google Scholar] [CrossRef]
- Lo, P. Analytical and numerical investigation on the energy of free and locked tsunami waves generated by a submarine landslide. Physics of Fluids 2023, 35. [Google Scholar]
- Huang, X.; Chen, P.; Lee, E.; Han, X.; Sun, L.; Xu, Q. Source characterization of the December 2018 Anak Krakatau volcano sector collapse. Natural Hazards 2024, 1–20. [Google Scholar] [CrossRef]
- Liu, Y.; Fritz, H. Physical modeling of spikes during the volcanic tsunami generation. Physics of Fluids 2023, 35. [Google Scholar] [CrossRef]
- Kanojia, M.; Gurusamy, S.; Basu, B. Modeling of tsunami generated in stratified oceans by sub-aquatic volcanic eruptions. Physics of Fluids 2023, 35. [Google Scholar] [CrossRef]
- Han, P.; Yu, X. An unconventional tsunami: 2022 Tonga event. Physics of Fluids 2022, 34. [Google Scholar] [CrossRef]
- Renzi, E.; Bergin, C.; Kokina, T.; Pelaez-Zapata, D.; Giles, D.; Dias, F. Meteotsunamis and other anomalous “tidal surge” events in Western Europe in Summer 2022. Physics of Fluids 2023, 35. [Google Scholar] [CrossRef]
- Labbé, M.; Donnadieu, C.; Daubord, C.; Hébert, H. Refined numerical modeling of the 1979 tsunami in Nice (French Riviera): Comparison with coastal data. Journal of Geophysical Research: Earth Surface 2012, 117. [Google Scholar] [CrossRef]
- Galkin, V.; Golinko, V.; Malizhenkova, V.; Mirchina, N.; Pelinovsky, E. Propagation of Tsunami waves generated by elliptical sources. Sci Tsunami Hasards 1986, 4, 149. [Google Scholar]
- Pranowo, W.; Behrens, J.; Schlicht, J.; Ziemer, C. Adaptive mesh refinement applied to tsunami modeling: TsunaFLASH. In Proceedings of the The International Conference on Tsunami Warning (ICTW; 2010. [Google Scholar]
- Mansinha, L.; Smylie, D. The displacement fields of inclined faults. Bulletin of the Seismological Society of America 1971, 61, 1433–1440. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Babeyko, A.Y.; Hoechner, A.; Sobolev, S.V. Source modeling and inversion with near real-time GPS: a GITEWS perspective for Indonesia. Natural Hazards and Earth System Sciences 2010, 10, 1617–1627, Publisher: Copernicus GmbH. [Google Scholar] [CrossRef]
- Masterlark, T. Finite element model predictions of static deformation from dislocation sources in a subduction zone: Sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions. Journal of Geophysical Research: Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Masterlark, T.; Hughes, K. Next generation of deformation models for the 2004 M9 Sumatra-Andaman earthquake. Geophysical Research Letters 2008, 35. [Google Scholar] [CrossRef]
- Grilli, S.; Harris, J.; Tajalli Bakhsh, T.; Masterlark, T.; Kyriakopoulos, C.; Kirby, J.; Shi, F. Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far-and near-field observations. Pure and Applied Geophysics 2013, 170, 1333–1359. [Google Scholar] [CrossRef]
- Pelties, C.; Puente, J.; Ampuero, J.; Brietzke, G.; Käser, M. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes. Journal of Geophysical Research: Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Galvez, P.; Ampuero, J.; Dalguer, L.; Somala, S.; Nissen-Meyer, T. Dynamic earthquake rupture modelled with an unstructured 3-D spectral element method applied to the 2011 M 9 Tohoku earthquake. Geophysical Journal International 2014, 198, 1222–1240. [Google Scholar] [CrossRef]
- Harbitz, C.; Løvholt, F.; Pedersen, G.; Masson, D. Mechanisms of tsunami generation by submarine landslides: a short review. Norwegian Journal of Geology/Norsk Geologisk Forening 2006, 86. [Google Scholar]
- Kirby, J.; Grilli, S.; Horrillo, J.; Liu, P.; Nicolsky, D.; Abadie, S.; Zhang, C. Validation and inter-comparison of models for landslide tsunami generation. Ocean Modelling 2022, 170, 101943. [Google Scholar] [CrossRef]
- Roger, J.; Bull, S.; Watson, S.; Mueller, C.; Hillman, J.; Wolter, A.; Davidson, S. A review of approaches for submarine landslide-tsunami hazard identification and assessment. Marine and Petroleum Geology 2024, 106729. [Google Scholar] [CrossRef]
- Grilli, S.; Watts, P. Modeling of waves generated by a moving submerged body. Applications to underwater landslides. Engineering Analysis with boundary elements 1999, 23, 645–656. [Google Scholar] [CrossRef]
- Lynett, P.; Liu, P. A numerical study of submarine–landslide–generated waves and run–up. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 2002, 458, 2885–2910. [Google Scholar] [CrossRef]
- Watts, P.; Grilli, S.; Kirby, J.; Fryer, G.; Tappin, D. Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural hazards and earth system sciences 2003, 3, 391–402. [Google Scholar] [CrossRef]
- Grilli, S.; Watts, P. Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses. Journal of waterway, port, coastal, and ocean engineering 2005, 131, 283–297. [Google Scholar] [CrossRef]
- Watts, P. Wavemaker curves for tsunamis generated by underwater landslides. Journal of waterway, port, coastal, and ocean engineering 1998, 124, 127–137. [Google Scholar] [CrossRef]
- Watts, P.; Imamura, F.; Grilli, S. Comparing model simulations of three benchmark tsunami generation cases. Sci. Tsunami Hazards 2000, 18, 107–124. [Google Scholar]
- Walder, J.; Watts, P.; Sorensen, O.; Janssen, K. Tsunamis generated by subaerial mass flows. Journal of Geophysical Research: Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Løvholt, F.; Bondevik, S.; Laberg, J.; Kim, J.; Boylan, N. Some giant submarine landslides do not produce large tsunamis. Geophysical Research Letters 2017, 44, 8463–8472. [Google Scholar] [CrossRef]
- Grilli, S.; Tappin, D.; Carey, S.; Watt, S.; Ward, S.; Grilli, A.; Muin, M. Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits. Indonesia. Scientific reports 2019, 9, 11946. [Google Scholar] [CrossRef]
- George, D.; Iverson, R. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2014, 470, 20130820. [Google Scholar] [CrossRef]
- Ma, G.; Kirby, J.; Hsu, T.; Shi, F. A two-layer granular landslide model for tsunami wave generation: Theory and computation. Ocean Modelling 2015, 93, 40–55. [Google Scholar] [CrossRef]
- Yavari-Ramshe, S.; Ataie-Ashtiani, B. A rigorous finite volume model to simulate subaerial and submarine landslide-generated waves. Landslides 2017, 14, 203–221. [Google Scholar] [CrossRef]
- Abadie, S.; Morichon, D.; Grilli, S.; Glockner, S. Numerical simulation of waves generated by landslides using a multiple-fluid Navier–Stokes model. Coastal engineering 2010, 57, 779–794. [Google Scholar] [CrossRef]
- Yu, M.; Lee, C. Multi-phase-flow modeling of underwater landslides on an inclined plane and consequently generated waves. Advances in Water Resources 2019, 133, 103421. [Google Scholar] [CrossRef]
- Higuera, P.; Wang, J.; Hu, J.; Yang, Z. Numerical Modeling of Water Waves in Coastal and Ocean Engineering, 2023.
- Komen, G.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P. Dynamics and modelling of ocean waves, 1996. Pages: 554.
- Young, I. Wind generated ocean waves; Elsevier, 1999. [Google Scholar]
- Cavaleri, L.; Alves, J.; Ardhuin, F.; Babanin, A.; Banner, M.; Belibassakis, K.; Benoit, M.; Donelan, M.; Groeneweg, J.; Herbers, T.; et al. Wave modelling–the state of the art. Progress in oceanography 2007, 75, 603–674. [Google Scholar] [CrossRef]
- Holthuijsen, L. Waves in oceanic and coastal waters; Cambridge university press, 2010. [Google Scholar]
- Booij, N.; Ris, R.; Holthuijsen, L. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of geophysical research: Oceans 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Ris, R.; Holthuijsen, L.; Booij, N. A third-generation wave model for coastal regions: 2. Verification. Journal of Geophysical Research: Oceans 1999, 104, 7667–7681. [Google Scholar] [CrossRef]
- Tolman, H. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. Journal of Physical Oceanography 1991, 21, 782–797. [Google Scholar] [CrossRef]
- Tolman, H. User manual and system documentation of WAVEWATCH III TM version 3.14. Technical note. MMAB contribution 2009, 276. [Google Scholar]
- (WW3DG, W.I.D.G. User manual and system documentation of WAVEWATCH III R version 5.16, 2016. Pages: 326 Place: College Park, MD, USA Type: Tech. Note 329,.
- Batchelor, G.K. An Introduction to Fluid Dynamics; Cambridge University Press, 2000. Google-Books-ID: aXQgAwAAQBAJ.
- Chung, T. Computational fluid dynamics; Cambridge university press, 2002. [Google Scholar]
- Versteeg, H. An introduction to computational fluid dynamics the finite volume method, 2/E; Pearson Education India, 2007. [Google Scholar]
- Anderson, J.D.; Degrez, G.; Dick, E.; Grundmann, R. Computational fluid dynamics: an introduction; Springer Science & Business Media, 2013. [Google Scholar]
- Blazek, J. Computational fluid dynamics: principles and applications; Butterworth-Heinemann, 2015. [Google Scholar]
- Nave, R. Bulk elastic properties. HyperPhysics, 2016.
- Airy, G.B. Tides and Waves: Extracted from the Encyclopaedia Metropolitana, Tom. V Pag. 241-396; 1845. [Google Scholar]
- Alex, D.; Craik, D. The origins of water wave theory. Annu. Rev. Fluid Mech 2004, 36, 1–28. [Google Scholar]
- Whitham, G. Linear and nonlinear waves; John Wiley & Sons, 2011. [Google Scholar]
- Nwogu, O. Alternative form of Boussinesq equations for nearshore wave propagation. Journal of waterway, port, coastal, and ocean engineering 1993, 119, 618–638. [Google Scholar] [CrossRef]
- Wu, T. A unified theory for modeling water waves. Advances in applied mechanics 2001, 37, 1–88. [Google Scholar]
- Goto, C.; Ogawa, Y.; Shuto, N.; Imamura, F. Numerical method of tsunami simulation with the leap-frog scheme. IOC Manuals and Guides 1997, 35, 130. [Google Scholar]
- Titov, V.; Gonzalez, F. Implementation and testing of the method of splitting tsunami (MOST) model, 1997.
- Liu, P.; Woo, S.; Cho, Y. Computer programs for tsunami propagation and inundation; Cornell University, 1998. [Google Scholar]
- Imamura, F.; Yalciner, A.; Ozyurt, G. Tsunami modelling manual. In UNESCO IOC international training course on Tsunami Numerical Modelling; 2006; pp. 137–209. [Google Scholar]
- Synolakis, C.; Bernard, E.; Titiov, V.; Kanoglu, U.; Gonzalez, F. Standards, criteria, and procedures for NOAA evaluation of tsunami numerical models. In NOAA Technical Memorandum OAR PMEL-135; 2007. [Google Scholar]
- Synolakis, C.; Bernard, E.; Titov, V.; Kânoğlu, U.; González, F. Validation and Verification of Tsunami Numerical Models. Pure and Applied Geophysics 2008, 165, 2197–2228. [Google Scholar] [CrossRef]
- Harig, S.; Chaeroni, P.; S, W.; Behrens, J. Tsunami simulations on several scales: Comparison of approaches with unstructured meshes and nested grids. Ocean Dynamics 2008, 58, 429–440. [Google Scholar] [CrossRef]
- Zhang, Y.; Baptista, A. An efficient and robust tsunami model on unstructured grids. Part I: Inundation benchmarks. Pure and Applied Geophysics 2008, 165, 2229–2248. [Google Scholar] [CrossRef]
- George, D.; LeVeque, R. FINITE VOLUME METHODS AND ADAPTIVE REFINEMENT FOR GLOBAL TSUNAMI PROPAGATION AND LOCAL INUNDATION. Science of Tsunami Hazards 2006, 24, 319. [Google Scholar]
- Dutykh, D.; Poncet, R.; Dias, F. The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation. European Journal of Mechanics-B/Fluids 2011, 30, 598–615. [Google Scholar] [CrossRef]
- Glimsdal, S.; Pedersen, G.; Harbitz, C.; Løvholt, F. Dispersion of tsunamis: does it really matter? Natural Hazards and Earth System Sciences 2013, 13, 1507–1526. [Google Scholar] [CrossRef]
- Shigihara, Y.; Fujima, K. An adequate dispersive wave scheme for tsunami simulation. Coastal Engineering Journal 2014, 56, 1450003. [Google Scholar] [CrossRef]
- Peregrine, D. Long waves on a beach. Journal of fluid mechanics 1967, 27, 815–827. [Google Scholar] [CrossRef]
- McCowan, A. The range of application of Boussinesq type numerical short wave models. In Proceedings of the Proc., 22nd Congress, Lausanne, Switzerland; 1987; pp. 379–384. [Google Scholar]
- Chen, Q.; Madsen, P.; Schäffer, H.; Basco, D. Wave-current interaction based on an enhanced Boussinesq approach. Coastal Engineering 1998, 33, 11–39. [Google Scholar] [CrossRef]
- Madsen, P.; Schäffer, H. Higher–order Boussinesq–type equations for surface gravity waves: derivation and analysis. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 1998, 356, 3123–3181. [Google Scholar] [CrossRef]
- Agnon, Y.; Madsen, P.A.; Schäffer, H.A. A new approach to high-order Boussinesq models. Journal of Fluid Mechanics 1999, 399, 319–333, Publisher: Cambridge University Press. [Google Scholar] [CrossRef]
- Gobbi, M.; Kirby, J. Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coastal Engineering 1999, 37, 57–96. [Google Scholar] [CrossRef]
- Madsen, P.; Bingham, H.; Liu, H. A new Boussinesq method for fully nonlinear waves from shallow to deep water. Journal of Fluid Mechanics 2002, 462, 1–30. [Google Scholar] [CrossRef]
- Lynett, P.; Liu, P. A two-layer approach to wave modelling. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 2004, 460, 2637–2669. [Google Scholar] [CrossRef]
- Chazel, F.; Benoit, M.; Ern, A.; Piperno, S. A double-layer Boussinesq-type model for highly nonlinear and dispersive waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2009, 465, 2319–2346. [Google Scholar] [CrossRef]
- Gisler, G.; Weaver, R.; Mader, C.; Gittings, M. Two-and three-dimensional asteroid impact simulations. Computing in Science & Engineering 2004, 6, 46–55. [Google Scholar]
- Gisler, G.; Weaver, R.; Gittings, M. SAGE calculations of the tsunami threat from La Palma. Sci. Tsunami Hazards 2006, 24, 288–301. [Google Scholar]
- Abadie, S.M.; Harris, J.C.; Grilli, S.T.; Fabre, R. Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects. Journal of Geophysical Research: Oceans 2012, 117. [Google Scholar] [CrossRef]
- Ma, G.; Shi, F.; Kirby, J. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling 2012, 43, 22–35. [Google Scholar] [CrossRef]
- Ramaswamy, B.; Kawahara, M. Lagrangian finite element analysis applied to viscous free surface fluid flow. International Journal for Numerical Methods in Fluids 1987, 7, 953–984. [Google Scholar] [CrossRef]
- Oñate, E.; Franci, A.; Carbonell, J. Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. International Journal for Numerical Methods in Fluids 2014, 74, 699–731. [Google Scholar]
- Reddy, J. An Introduction to Nonlinear Finite Element Analysis: with applications to heat transfer, fluid mechanics, and solid mechanics; Oxford university press, 2015. [Google Scholar]
- Idelsohn, S.; Oñate, E.; Pin, F. The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. International journal for numerical methods in engineering 2004, 61, 964–989. [Google Scholar] [CrossRef]
- Becker, P.; Idelsohn, S.; Oñate, E. A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the particle finite element method with fixed mesh. Computational Mechanics 2015, 55, 1091–1104. [Google Scholar] [CrossRef]
- Koshizuka, S.; Oka, Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear science and engineering 1996, 123, 421–434. [Google Scholar] [CrossRef]
- Duan, G.; Chen, B.; Koshizuka, S.; Xiang, H. Stable multiphase moving particle semi-implicit method for incompressible interfacial flow. Computer Methods in Applied Mechanics and Engineering 2017, 318, 636–666. [Google Scholar] [CrossRef]
- Monaghan, J. Simulating free surface flows with SPH. Journal of computational physics 1994, 110, 399–406. [Google Scholar] [CrossRef]
- Gómez-Gesteira, M.; Dalrymple, R. Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. Journal of waterway, port, coastal, and ocean engineering 2004, 130, 63–69. [Google Scholar] [CrossRef]
- Gómez-Gesteira, M.; Cerqueiro, D.; Crespo, C.; Dalrymple, R. Green water overtopping analyzed with a SPH model. Ocean Engineering 2005, 32, 223–238. [Google Scholar] [CrossRef]
- Chorin, A. Numerical solution of the Navier-Stokes equations. Mathematics of computation 1968, 22, 745–762. [Google Scholar] [CrossRef]
- Kim, D.; Choi, H. A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids. Journal of computational physics 2000, 162, 411–428. [Google Scholar] [CrossRef]
- Hirt, C.; Nichols, B. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Farmer, J.; Martinelli, L.; Jameson, A. Fast multigrid method for solving incompressible hydrodynamic problems with free surfaces. AIAA journal 1994, 32, 1175–1182. [Google Scholar] [CrossRef]
- Donea, J.; Giuliani, S.; Halleux, J. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer methods in applied mechanics and engineering 1982, 33, 689–723. [Google Scholar] [CrossRef]
- Takashi, N.; Hughes, T. An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body. Computer methods in applied mechanics and engineering 1992, 95, 115–138. [Google Scholar] [CrossRef]
- Nithiarasu, P. An arbitrary Lagrangian Eulerian (ALE) formulation for free surface flows using the characteristic-based split (CBS) scheme. International journal for numerical methods in fluids 2005, 48, 1415–1428. [Google Scholar] [CrossRef]
- Quartapelle, L. Numerical solution of the incompressible Navier-Stokes equations, 2013. Place: Birkhäuser Volume: 113.
- Guermond, J.; Minev, P.; Shen, J. An overview of projection methods for incompressible flows. Computer methods in applied mechanics and engineering 2006, 195, 6011–6045. [Google Scholar] [CrossRef]
- Rannacher, R. On Chorin’s projection method for the incompressible Navier-Stokes equations. In Proceedings of the The Navier-Stokes Equations II—Theory and Numerical Methods: Proceedings of a Conference held in Oberwolfach, Germany, 2006; pp. 167–183.
- Harlow, F.; Welch, J. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of fluids 1965, 8, 2182. [Google Scholar] [CrossRef]
- Stelling, G.; Zijlema, M. An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. International journal for numerical methods in fluids 2003, 43, 1–23. [Google Scholar] [CrossRef]
- Ma, G.; Kirby, J.; Shi, F. Non-hydrostatic wave model NHWAVE: Documentation and user’s manual (version 2.0. Department of Civil and Environmental Engineering 2014. Publisher: Old Dominion University.
- Wang, L.; Qian, Z.; Zhou, Y.; Peng, Y. A weighted meshfree collocation method for incompressible flows using radial basis functions. Journal of Computational Physics 2020, 401, 108964. [Google Scholar] [CrossRef]
- Hu, H.; Chen, J.; Hu, W. Weighted radial basis collocation method for boundary value problems. International journal for numerical methods in engineering 2007, 69, 2736–2757. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, Q.; Wan, X. Optimization of non-hydrostatic Euler model for water waves. Coastal Engineering 2014, 91, 191–199. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.; Cokelet, E. The deformation of steep surface waves on water-I. A numerical method of computation. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1976, 350, 1–26. [Google Scholar]
- Baker, G.R.; Meiron, D.I.; Orszag, S.A. Generalized vortex methods for free-surface flow problems. Journal of Fluid Mechanics 1982, 123, 477–501. [Google Scholar] [CrossRef]
- Hou, T.; Lowengrub, J.; Shelley, M. Boundary integral methods for multicomponent fluids and multiphase materials. Journal of Computational Physics 2001, 169, 302–362. [Google Scholar] [CrossRef]
- Grilli, S.; Guyenne, P.; Dias, F. A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom. International journal for numerical methods in fluids 2001, 35, 829–867. [Google Scholar] [CrossRef]
- Chen, S.; Johnson, D.; Raad, P.; Fadda, D. The surface marker and micro cell method. International Journal for Numerical Methods in Fluids 1997, 25, 749–778. [Google Scholar] [CrossRef]
- Torres, D.; Brackbill, J. The point-set method: front-tracking without connectivity. Journal of Computational Physics 2000, 165, 620–644. [Google Scholar] [CrossRef]
- Puckett, E.; Almgren, A.; Bell, J.; Marcus, D.; Rider, W. A high-order projection method for tracking fluid interfaces in variable density incompressible flows. Journal of computational physics 1997, 130, 269–282. [Google Scholar] [CrossRef]
- Osher, S.; Sethian, J. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of computational physics 1988, 79, 12–49. [Google Scholar] [CrossRef]
- Sussman, M.; Smereka, P.; Osher, S. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational physics 1994, 114, 146–159. [Google Scholar] [CrossRef]
- Unverdi, S.; Tryggvason, G. A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of computational physics 1992, 100, 25–37. [Google Scholar] [CrossRef]
- Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Jan, Y. A front-tracking method for the computations of multiphase flow. Journal of computational physics 2001, 169, 708–759. [Google Scholar] [CrossRef]
- Lee, E.; Wang, W.; Chen, P.; Jiao, Z.; Gong, Y.; Mu, D.; Liao, W. Mesh-free simulation of two-phase fluid flow in porous media based on the shock-fitting method. Journal of Petroleum Science and Engineering 2022, 215, 110637. [Google Scholar] [CrossRef]
- Zhang, Y.; Yeo, K.; Khoo, B.; Wang, C. 3D jet impact and toroidal bubbles. Journal of Computational Physics 2001, 166, 336–360. [Google Scholar] [CrossRef]
- Chen, S.; Johnson, D.; Raad, P. Velocity boundary conditions for the simulation of free surface fluid flow. Journal of Computational Physics 1995, 116, 262–276. [Google Scholar] [CrossRef]
- Ashgriz, N.; Poo, J.Y. FLAIR: Flux line-segment model for advection and interface reconstruction. Journal of Computational Physics 1991, 93, 449–468. [Google Scholar] [CrossRef]
- Rudman, M. Volume-tracking methods for interfacial flow calculations. International journal for numerical methods in fluids 1997, 24, 671–691. [Google Scholar] [CrossRef]
- Rider, W.; Kothe, D. Reconstructing volume tracking. Journal of computational physics 1998, 141, 112–152. [Google Scholar] [CrossRef]
- Gueyffier, D.; Li, J.; Nadim, A.; Scardovelli, R.; Zaleski, S. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. Journal of Computational physics 1999, 152, 423–456. [Google Scholar] [CrossRef]
- Sethian, J. Level set methods and fast marching methods; Cambridge: Cambridge UP, 1999; Vol. 98. [Google Scholar]
- Osher, S.; Fedkiw, R. Level set methods: an overview and some recent results. Journal of Computational physics 2001, 169, 463–502. [Google Scholar] [CrossRef]
- Sethian, J. Evolution, implementation, and application of level set and fast marching methods for advancing fronts. Journal of computational physics 2001, 169, 503–555. [Google Scholar] [CrossRef]
- Osher, S.; Fedkiw, R.; Piechor, K. Level set methods and dynamic implicit surfaces. Appl. Mech. Rev 2004, 57, 15–15. [Google Scholar] [CrossRef]
- Rider, W.; Kothe, D. Stretching and tearing interface tracking methods. In Proceedings of the 12th computational fluid dynamics conference; 1995; p. 1717. [Google Scholar]
- Enright, D. Use of the particle level set method for enhanced resolution of free surface flows; stanford university, 2002. [Google Scholar]
- Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchell, I. A hybrid particle level set method for improved interface capturing. Journal of Computational physics 2002, 183, 83–116. [Google Scholar] [CrossRef]
- Schulze, L.; Veettil, S.; Sbalzarini, I. A high-order fully Lagrangian particle level-set method for dynamic surfaces. Journal of Computational Physics 2024, 113262. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
