Submitted:
06 August 2024
Posted:
08 August 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Mechanism of Action of Rituximab in Autoimmune Blistering Diseases
Disease Relapse after Rituximab Administration
Mechanisms of Resistance to Rituximab and Strategies to Overpass It
Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Kneisel, A.; Hertl, M. Autoimmune bullous skin diseases. Part 1: Clinical manifestations. J Dtsch Dermatol Ges 2011, 9, 844–857. [Google Scholar] [CrossRef] [PubMed]
- Joly, P.; Litrowski, N. Pemphigus group (vulgaris, vegetans, foliaceus, herpetiformis, brasiliensis). Clinics in dermatology 2011, 29, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Leiferman, K.M. Epidemiology and pathogenesis of bullous pemphigoid and mucous membrane pemphigoid. Available online: https://www.uptodate.com/contents/epidemiology-and-pathogenesis-of-bullous-pemphigoid-and-mucous-membrane-pemphigoid?search=pemphigoid&source=search_result&selectedTitle=3%7E107&usage_type=default&display_rank=3#H589244 (accessed on 01.05.2024).
- Nguyen, C.N.; Kim, S.J. Dermatitis Herpetiformis: An Update on Diagnosis, Disease Monitoring, and Management. Medicina (Kaunas) 2021, 57, 843. [Google Scholar] [CrossRef]
- Fortuna, G.; Marinkovich, M.P. Linear immunoglobulin A bullous dermatosis. Clin Dermatol 2012, 30, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Iranzo, P.; Herrero-González, J.E.; Mascaró-Galy, J.M.; Suárez-Fernández, R.; España, A. Epidermolysis bullosa acquisita: a retrospective analysis of 12 patients evaluated in four tertiary hospitals in Spain. Br J Dermatol 2014, 171, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Hertl, M.; Geller, S. Initial management of pemphigus vulgaris and pemphigus foliaceus. Available online: https://www.uptodate.com/contents/initial-management-of-pemphigus-vulgaris-and-pemphigus-foliaceus?search=pemphigus%20mortality&source=search_result&selectedTitle=2%7E89&usage_type=default&display_rank=2 (accessed on 01.05.2024).
- Joly, P.; Horvath, B.; Patsatsi, A.; Uzun, S.; Bech, R.; Beissert, S.; Bergman, R.; Bernard, P.; Borradori, L.; Caproni, M.; Caux, F.; Cianchini, G.; Daneshpazhooh, M.; De Dmochowski, M.; Drenovska, K.; Ehrchen, J.; Feliciani, C.; Goebeler, M.; Groves, R.; Guenther, C.; Hofmann, S.; Ioannides, D.; Kowalewski, C.; Ludwig, R.; Lim, Y.L.; Marinovic, B.; Marzano, A.V.; Mascaró, J.M. Jr.; Mimouni, D.; Murrell, D.F.; Pincelli. C.; Squarcioni, C.P.; Sárdy, M.; Setterfield, J.; Sprecher, E.; Vassileva, S.; Wozniak, K.; Yayli, S.; Zambruno, G.; Zillikens, D.; Hertl, M.; Schmidt, E. Updated S2K guidelines on the management of pemphigus vulgaris and foliaceus initiated by the european academy of dermatology and venereology (EADV). J Eur Acad Dermatol Venereol 2020, 34, 1900–1913. [Google Scholar] [PubMed]
- Maloney, D.G.; Smith, B.; Rose, A. Rituximab: mechanism of action and resistance. Semin Oncol 2002, 29, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Kridin, K.; Ahmed, A.R. The evolving role of rituximab in the treatment of pemphigus vulgaris: a comprehensive state-of-the-art review. Expert Opin Biol Ther 2021, 21, 443–454. [Google Scholar] [CrossRef]
- Hammers, C.M.; Chen, J.; Lin, C.; Kacir, S.; Siegel, D.L.; Payne, A.S.; Stanley, J.R. Persistence of anti-desmoglein 3 IgG (+) B-cell clones in pemphigus patients over years. J Invest Dermatol 2015, 135, 742–749. [Google Scholar] [CrossRef]
- Bohelay, G.; Caux, F.; Musette, P. Clinical and biological activity of rituximab in the treatment of pemphigus. Immunotherapy 2021, 13, 35–53. [Google Scholar] [CrossRef]
- Colliou, N.; Picard, D.; Caillot, F.; Calbo, S.; Le Corre, S.; Lim, A.; Lemercier, B.; Le Mauff, B.; Maho-Vaillant, M.; Jacquot, S.; Bedane, C.; Bernard, P.; Caux, F.; Prost, C.; Delaporte, E.; Doutre, M.S.; Dreno, B.; Franck, N.; Ingen-Housz-Oro, S.; Chosidow, O.; Pauwels, C.; Picard, C.; Roujeau, J.C.; Sigal, M.; Tancrede-Bohin, E.; Templier, I.; Eming, R.; Hertl, M.; D’Incan, M.; Joly, P.; Musette, P. Long-term remissions of severe pemphigus after rituximab therapy are associated with prolonged failure of desmoglein B cell response. Sci Transl Med 2013, 5, 175ra30. [Google Scholar] [CrossRef] [PubMed]
- Bouaziz, J.D.; Calbo, S.; Maho-Vaillant, M.; Saussine, A.; Bagot, M.; Bensussan, A.; Musette, P. IL-10 produced by activated human B cells regulates CD4(+) T-cell activation in vitro. Eur J Immunol 2010, 40, 2686–2691. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Yoshizaki, A.; Miyagaki, T.; Streilein, R.D.; Tedder, T.F.; Hall, R.P. 3rd. Regulatory B10 Cells Increase after Rituximab Therapy but Not after Conventional Immunosuppression in Patients with Pemphigus. J Invest Dermatol 2021, 141, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Mouquet, H.; Musette, P.; Gougeon, M.L.; Jacquot, S.; Lemercier, B.; Lim, A.; Gilbert, D.; Dutot, I.; Roujeau, J.C.; D’Incan, M.; Bedane, C.; Tron, F.; Joly, P. B-cell depletion immunotherapy in pemphigus: effects on cellular and humoral immune responses. J Invest Dermatol 2008, 128, 2859–2869. [Google Scholar] [CrossRef]
- Leshem, Y.A.; David, M.; Hodak, E.; Waitman, D.A.; Vardy, D.; Israeli, M.; Eskin-Schwartz, M.; Bergman, R.; Mimouni, D. A prospective study on clinical response and cell-mediated immunity of pemphigus patients treated with rituximab. Arch Dermatol Res 2014, 306, 67–74. [Google Scholar] [CrossRef]
- Eming, R.; Nagel, A.; Wolff-Franke, S.; Podstawa, E.; Debus, D.; Hertl, M. Rituximab exerts a dual effect in pemphigus vulgaris. J Invest Dermatol 2008, 128, 2850–2858. [Google Scholar] [CrossRef]
- Melet, J.; Mulleman, D.; Goupille, P.; Ribourtout, B.; Watier, H.; Thibault, G. Rituximab-induced T cell depletion in patients with rheumatoid arthritis: association with clinical response. Arthritis Rheum 2013, 65, 2783–2790. [Google Scholar] [CrossRef]
- Asothai, R.; Anand, V.; Das, D.; Antil, P.S.; Khandpur, S.; Sharma, V.K.; Sharma, A. Distinctive Treg associated CCR4-CCL22 expression profile with altered frequency of Th17/Treg cell in the immunopathogenesis of Pemphigus Vulgaris. Immunobiology 2015, 220, 1129–1135. [Google Scholar] [CrossRef]
- Sugiyama, H.; Matsue, H.; Nagasaka, A.; Nakamura, Y.; Tsukamoto, K.; Shibagaki, N.; Kawamura, T.; Kitamura, R.; Ando, N.; Shimada, S. CD4+CD25high regulatory T cells are markedly decreased in blood of patients with pemphigus vulgaris. Dermatology 2007, 214, 210–220. [Google Scholar] [CrossRef]
- Arakawa, M.; Dainichi, T.; Yasumoto, S.; Hashimoto, T. Lesional Th17 cells in pemphigus vulgaris and pemphigus foliaceus. J Dermatol Sci 2009, 53, 228–231. [Google Scholar] [CrossRef]
- El-Zawahry, B.; Bassiouny, D.; Hegazy, R.; Gawdat, H.; Shalaby, S.; Khorshied, M.; Saleh, M.A. Rituximab treatment in pemphigus vulgaris: effect on circulating Tregs. Arch Dermatol Res 2017, 309, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Maho-Vaillant, M.; Perals, C.; Golinski, M.L.; Hébert, V.; Caillot, F.; Mignard, C.; Riou, G.; Petit, M.; Viguier, M.; Hertl, M.; Boyer, O.; Calbo, S.; Fazilleau, N.; Joly, P. Rituximab and Corticosteroid Effect on Desmoglein-Specific B Cells and Desmoglein-Specific T Follicular Helper Cells in Pemphigus. J Invest Dermatol 2021, 141, 2132–2140.e1. [Google Scholar] [CrossRef] [PubMed]
- Baumjohann, D.; Preite, S.; Reboldi, A.; Ronchi, F.; Ansel, K.M.; Lanzavecchia, A.; Sallusto, F. Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 2013, 38, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Hébert, V.; Petit, M.; Maho-Vaillant, M.; Golinski, M.L.; Riou, G.; Derambure, C.; Boyer, O.; Joly, P.; Calbo, S. Modifications of the Transcriptomic Profile of Autoreactive B Cells From Pemphigus Patients After Treatment With Rituximab or a Standard Corticosteroid Regimen. Front Immunol 2019, 10, 1794. [Google Scholar] [CrossRef] [PubMed]
- Naseer, S.Y.; Seiffert-Sinha, K.; Sinha, A.A. Detailed profiling of anti-desmoglein autoantibodies identifies anti-Dsg1 reactivity as a key driver of disease activity and clinical expression in pemphigus vulgaris. Autoimmunity 2015, 48, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Daneshpazhooh, M.; Kamyab, K.; Kalantari, M.S.; Balighi, K.; Naraghi, Z.S.; Shamohammadi, S.; Mortazavizadeh, S.M.; Ramezani, A.; Chams-Davatchi, C. Comparison of desmoglein 1 and 3 enzyme-linked immunosorbent assay and direct immunofluorescence for evaluation of immunological remission in pemphigus vulgaris. Clin Exp Dermatol 2014, 39, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Lavie, F.; Miceli-Richard, C.; Ittah, M.; Sellam, J.; Gottenberg, J.E.; Mariette, X. Increase of B cell-activating factor of the TNF family (BAFF) after rituximab treatment: insights into a new regulating system of BAFF production. Ann Rheum Dis 2007, 66, 700–703. [Google Scholar] [CrossRef] [PubMed]
- Hébert, V.; Maho-Vaillant, M.; Golinski, M.L.; Petit, M.; Riou, G.; Boyer, O.; Musette, P.; Calbo, S.; Joly, P. Modifications of the BAFF/BAFF-Receptor Axis in Patients With Pemphigus Treated With Rituximab Versus Standard Corticosteroid Regimen. Front Immunol 2021, 12, 666022. [Google Scholar] [CrossRef] [PubMed]
- Albers, L.N.; Liu, Y.; Bo, N.; Swerlick, R.A.; Feldman, R.J. Developing biomarkers for predicting clinical relapse in pemphigus patients treated with rituximab. J Am Acad Dermatol 2017, 77, 1074–1082. [Google Scholar] [CrossRef]
- Tavakolpour, S.; Mahmoudi, H.; Balighi, K.; Abedini, R.; Daneshpazhooh, M. Sixteen-year history of rituximab therapy for 1085 pemphigus vulgaris patients: A systematic review. Int Immunopharmacol 2018, 54, 131–138. [Google Scholar] [CrossRef]
- Saleh, M.A. A prospective study comparing patients with early and late relapsing pemphigus treated with rituximab. J Am Acad Dermatol 2018, 79, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Cambridge, G.; Perry, H.C.; Nogueira, L.; Serre, G.; Parsons, H.M.; De La Torre, I.; Dickson, M.C.; Leandro, M.J.; Edwards, J.C. The effect of B-cell depletion therapy on serological evidence of B-cell and plasmablast activation in patients with rheumatoid arthritis over multiple cycles of rituximab treatment. J Autoimmun 2014, 50, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Shimanovich, I.; Baumann, T.; Schmidt, E.; Zillikens, D.; Hammers, C.M. Long-term outcomes of rituximab therapy in pemphigus. J Eur Acad Dermatol Venereol 2020, 34, 2884–2889. [Google Scholar] [CrossRef]
- Schmidt, E.; Hennig, K.; Mengede, C.; Zillikens, D.; Kromminga, A. Immunogenicity of rituximab in patients with severe pemphigus. Clin Immunol 2009, 132, 334–341. [Google Scholar] [CrossRef]
- Gamonet, C.; Ferrand, C.; Colliou, N.; Musette, P.; Joly, P.; Girardin, M.; Humbert, P.; Aubin, F. Lack of expression of an alternative CD20 transcript variant in circulating B cells from patients with pemphigus. Exp Dermatol 2014, 23, 66–67. [Google Scholar] [CrossRef]
- Rezvani, A.R.; Maloney, D.G. Rituximab resistance. Best Pract Res Clin Haematol 2011, 24, 203–216. [Google Scholar] [CrossRef]
- Di Gaetano, N.; Xiao, Y.; Erba, E.; Bassan, R.; Rambaldi, A.; Golay, J.; Introna, M. Synergism between fludarabine and rituximab revealed in a follicular lymphoma cell line resistant to the cytotoxic activity of either drug alone. Br J Haematol 2001, 114, 800–809. [Google Scholar] [CrossRef]
- Klepfish, A.; Gilles, L.; Ioannis, K.; Rachmilewitz, E.A.; Schattner, A. Enhancing the action of rituximab in chronic lymphocytic leukemia by adding fresh frozen plasma: complement/rituximab interactions & clinical results in refractory CLL. Ann N Y Acad Sci 2009, 1173, 865–873. [Google Scholar]
- Wang, S.Y.; Veeramani, S.; Racila, E.; Cagley, J.; Fritzinger, D.C.; Vogel, C.W.; St John, W.; Weiner, G.J. Depletion of the C3 component of complement enhances the ability of rituximab-coated target cells to activate human NK cells and improves the efficacy of monoclonal antibody therapy in an in vivo model. Blood 2009, 114, 5322–5330. [Google Scholar] [CrossRef]
- Borgerding, A.; Hasenkamp, J.; Engelke, M.; Burkhart, N.; Trümper, L.; Wienands, J.; Glass, B. B-lymphoma cells escape rituximab-triggered elimination by NK cells through increased HLA class I expression. Exp Hematol 2010, 38, 213–221. [Google Scholar] [CrossRef]
- Winiarska, M.; Bil, J.; Wilczek, E.; Wilczynski, G.M.; Lekka, M.; Engelberts, P.J.; Mackus, W.J.; Gorska, E.; Bojarski, L.; Stoklosa, T.; Nowis, D.; Kurzaj, Z.; Makowski, M.; Glodkowska, E.; Issat, T.; Mrowka, P.; Lasek, W.; Dabrowska-Iwanicka, A.; Basak, G.W.; Wasik, M.; Warzocha, K.; Sinski, M.; Gaciong, Z.; Jakobisiak, M.; Parren, P.W.; Golab, J. Statins impair antitumor effects of rituximab by inducing conformational changes of CD20. PLoS Med 2008, 5, e64. [Google Scholar] [CrossRef]
- Bittenbring, J.T.; Neumann, F.; Altmann, B.; Achenbach, M.; Reichrath, J.; Ziepert, M.; Geisel, J.; Regitz, E.; Held, G.; Pfreundschuh, M. Vitamin D deficiency impairs rituximab-mediated cellular cytotoxicity and outcome of patients with diffuse large B-cell lymphoma treated with but not without rituximab. J Clin Oncol 2014, 32, 3242–3248. [Google Scholar] [CrossRef]
- Hernandez-Ilizaliturri, F.J.; Jupudy, V.; Reising, S.; Repasky, E.A.; Czuczman, M.S. Concurrent administration of granulocyte colony-stimulating factor or granulocyte-monocyte colony-stimulating factor enhances the biological activity of rituximab in a severe combined immunodeficiency mouse lymphoma model. Leuk Lymphoma 2005, 46, 1775–1784. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.D.; Emmanouilides, C.; Benson, D.M. Jr.; Hurst, D.; Garcia, P.; Michelson, G.; Milan, S.; Ferketich, A.K.; Piro, L.; Leonard, J.P.; Porcu, P.; Eisenbeis, C.F.; Banks, A.L.; Chen, L.; Byrd, J.C.; Caligiuri, M.A. A phase 2 study of rituximab in combination with recombinant interleukin-2 for rituximab-refractory indolent non-Hodgkin’s lymphoma. Clin Cancer Res 2006, 12, 7046–7053. [Google Scholar] [CrossRef]
- Friedberg, J.W.; Kim, H.; McCauley, M.; Hessel, E.M.; Sims, P.; Fisher, D.C.; Nadler, L.M.; Coffman, R.L.; Freedman, A.S. Combination immunotherapy with a CpG oligonucleotide (1018 ISS) and rituximab in patients with non-Hodgkin lymphoma: increased interferon-alpha/beta-inducible gene expression, without significant toxicity. Blood 2005, 105, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Gertner-Dardenne J, Bonnafous C, Bezombes C, et al. Bromohydrin pyrophosphate enhances antibody-dependent cell-mediated cytotoxicity induced by therapeutic antibodies. Blood, 2009; 113, 4875–4884.
- Friedberg, J.W.; Kelly, J.L.; Neuberg, D.; Capietto, A.H.; Scaglione, V.; Ingoure, S.; Cendron, D.; Gross, E.; Lepage, J.F.; Quillet-Mary, A.; Ysebaert, L.; Laurent, G.; Sicard, H.; Fournié, J.J. Phase II study of a TLR-9 agonist (1018 ISS) with rituximab in patients with relapsed or refractory follicular lymphoma. Br J Haematol 2009, 146, 282–291. [Google Scholar] [CrossRef]
- Olejniczak, S.H.; Hernandez-Ilizaliturri, F.J.; Clements, J.L.; Czuczman, M.S. Acquired resistance to rituximab is associated with chemotherapy resistance resulting from decreased Bax and Bak expression. Clin Cancer Res 2008, 14, 1550–1560. [Google Scholar] [CrossRef]
- Pro, B.; Leber, B.; Smith, M.; Fayad, L.; Romaguera, J.; Hagemeister, F.; Rodriguez, A.; McLaughlin, P.; Samaniego, F.; Zwiebel, J.; Lopez, A.; Kwak, L.; Younes, A. Phase II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in combination with rituximab in patients with recurrent B-cell non-Hodgkin lymphoma. Br J Haematol 2008, 143, 355–360. [Google Scholar] [CrossRef]
- Wang, M.; Han, X.H.; Zhang, L.; Yang, J.; Qian, J.F.; Shi, Y.K.; Kwak, L.W.; Romaguera, J.; Yi, Q. Bortezomib is synergistic with rituximab and cyclophosphamide in inducing apoptosis of mantle cell lymphoma cells in vitro and in vivo. Leukemia 2008, 22, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, R.; Kikuchi, J.; Wada, T.; Ozawa, K.; Kano, Y.; Furukawa, Y. HDAC inhibitors augment cytotoxic activity of rituximab by upregulating CD20 expression on lymphoma cells. Leukemia 2010, 24, 1760–1768. [Google Scholar] [CrossRef]
- Li, Y.; Williams, M.E.; Cousar, J.B.; Pawluczkowycz, A.W.; Lindorfer, M.A.; Taylor, R.P. Rituximab-CD20 complexes are shaved from Z138 mantle cell lymphoma cells in intravenous and subcutaneous SCID mouse models. J Immunol 2007, 179, 4263–4271. [Google Scholar] [CrossRef] [PubMed]
- Khouri, I.F.; Saliba, R.M.; Hosing, C.; Okoroji, G.J.; Acholonu, S.; Anderlini, P.; Couriel, D.; De Lima, M.; Donato, M.L.; Fayad, L.; Giralt, S.; Jones, R.; Korbling, M.; Maadani, F.; Manning, J.T.; Pro, B.; Shpall, E.; Younes, A.; McLaughlin, P.; Champlin, R.E. Concurrent administration of high-dose rituximab before and after autologous stem-cell transplantation for relapsed aggressive B-cell non-Hodgkin’s lymphomas. J Clin Oncol 2005, 23, 2240–2247. [Google Scholar] [CrossRef] [PubMed]
- Vinay, K.; Kanwar, A.J.; Mittal, A.; Dogra, S.; Minz, R.W.; Hashimoto, T. Intralesional Rituximab in the Treatment of Refractory Oral Pemphigus Vulgaris. JAMA Dermatol 2015, 151, 878–882. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Zhou, S.; Liu, Z.; Cong, W.; Fei, X.; Zeng, W.; Zhu, H.; Xu, R.; Wang, Y.; Zheng, J.; Pan, M. Pivotal Role of Lesional and Perilesional T/B Lymphocytes in Pemphigus Pathogenesis. J Invest Dermatol 2017, 137, 2362–2370. [Google Scholar] [CrossRef] [PubMed]
- Mössner, E.; Brünker, P.; Moser, S.; Püntener, U.; Schmidt, C.; Herter, S.; Grau, R.; Gerdes, C.; Nopora, A.; van Puijenbroek, E.; Ferrara, C.; Sondermann, P.; Jäger, C.; Strein, P.; Fertig, G.; Friess, T.; Schüll, C.; Bauer, S.; Dal Porto, J.; Del Nagro, C.; Dabbagh, K.; Dyer, M.J.; Poppema, S.; Klein, C.; Umaña, P. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 2010, 115, 4393–4402. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, D.M.; Rossi, E.A.; Stein, R.; Cardillo, T.M.; Czuczman, M.S.; Hernandez-Ilizaliturri, F.J.; Hansen, H.J.; Chang, C.H. Properties and structure-function relationships of veltuzumab (hA20), a humanized anti-CD20 monoclonal antibody. Blood 2009, 113, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Shi, S.; Qian, W.; Zhao, L.; Zhang, D.; Hou, S.; Zheng, L.; Dai, J.; Zhao, J.; Wang, H.; Guo, Y. Development of novel tetravalent anti-CD20 antibodies with potent antitumor activity. Cancer Res 2008, 68, 2400–2408. [Google Scholar] [CrossRef] [PubMed]
- Didona, D.; Maglie, R.; Eming, R.; Hertl, M. Pemphigus: Current and Future Therapeutic Strategies. Front Immunol 2019, 10, 1418. [Google Scholar] [CrossRef] [PubMed]
- Crofford, L.J.; Nyhoff, L.E.; Sheehan, J.H.; Kendall, P.L. The role of Bruton’s tyrosine kinase in autoimmunity and implications for therapy. Expert Rev Clin Immunol 2016, 12, 763–773. [Google Scholar] [CrossRef]
- Corneth, O.B.J.; Klein Wolterink, R.G.J.; Hendriks, R.W. BTK Signaling in B Cell Differentiation and Autoimmunity. Curr Top Microbiol Immunol 2016, 393, 67–105. [Google Scholar]
- Tavakolpour, S. Tofacitinib as the potent treatment for refractory pemphigus: a possible alternative treatment for pemphigus. Dermatol Ther 2018, 31, e12696. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Cho, M.J.T.; Ellebrecht, C.T.; Mukherjee, E.M.; Payne, A.S. Stat3 regulates desmoglein 3 transcription in epithelial keratinocytes. JCI Insight 2017, 2, e92253. [Google Scholar] [CrossRef] [PubMed]
- Grando, S.A.; Laquer, V.T.; Le, H.M. Sirolimus for acute pemphigus vulgaris: a case report and discussion of dualistic action providing for both immunosuppression and keratinocyte protection. J Am Acad Dermatol 2011, 65, 684–686. [Google Scholar] [CrossRef]
- Ellebrecht, C.T.; Bhoj, V.G.; Nace, A.; Choi, E.J.; Mao, X.; Cho. M.J.; Di Zenzo, G.; Lanzavecchia, A.; Seykora, J.T.; Cotsarelis, G.; Milone, M.C.; Payne, A.S. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 2016, 353, 179–184. [Google Scholar] [CrossRef]
- Chatenoud, L. Precision medicine for autoimmune disease. Nat Biotechnol 2016, 34, 930–932. [Google Scholar] [CrossRef]
- Amber, K.T.; Maglie, R.; Solimani, F.; Eming, R.; Hertl, M. Targeted Therapies for Autoimmune Bullous Diseases: Current Status. Drugs 2018, 78, 1527–1548. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
