Preprint
Article

This version is not peer-reviewed.

From Chebyshev to Primorials: Establishing the Riemann Hypothesis

Submitted:

08 February 2026

Posted:

10 February 2026

You are already at the latest version

Abstract
The Riemann Hypothesis, one of the most celebrated open problems in mathematics, addresses the location of the non-trivial zeros of the Riemann zeta function and their profound connection to the distribution of prime numbers. Since Riemann’s original formulation in 1859, countless approaches have attempted to establish its truth, often by examining the asymptotic behavior of arithmetic functions such as Chebyshev’s function θ(x). In this work, we introduce a new criterion that links the hypothesis to the comparative growth of θ(x) and primorial numbers. By analyzing this relationship, we demonstrate that the Riemann Hypothesis follows from intrinsic properties of θ(x) when measured against the structure of primorials. This perspective highlights a striking equivalence between the distribution of primes and the analytic behavior of ζ(s), reinforcing the deep interplay between multiplicative number theory and analytic inequalities. Beyond its implications for the hypothesis itself, the result offers a fresh framework for understanding how prime distribution governs the analytic landscape of the zeta function, thereby providing new insight into one of mathematics’ most enduring mysteries.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated