Submitted:
31 July 2024
Posted:
31 July 2024
You are already at the latest version
Abstract
Keywords:
MSC: 33E12; 33B15; 33C20; 33C60; 33C90; 33C99
1. Introduction and Preliminaries
2. Results
3. Conclusion
Funding
Data Availability Statement
Conflicts of Interest
References
- Mittag-Leffler, G.M. Sur la nouvelle fonction Eα (x). CR Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K.; et al. Mittag-Leffler functions and their applications. Journal of applied mathematics 2011, 2011. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of fractional calculus in physics; World scientific, 2000.
- Shukla, A.; Prajapati, J. On a generalization of Mittag-Leffler function and its properties. Journal of mathematical analysis and applications 2007, 336, 797–811. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Fernandez, A.; Baleanu, D. Some new fractional-calculus connections between Mittag–Leffler functions. Mathematics 2019, 7, 485. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F. An analytical study on Mittag-Leffler–confluent hypergeometric functions with fractional integral operator. Mathematical Methods in the Applied Sciences 2021, 44, 3605–3614. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Some new extensions on fractional differential and integral properties for Mittag-Leffler confluent hypergeometric function. Fractal and Fractional 2021, 5, 143. [Google Scholar] [CrossRef]
- Kilbas, A.; Koroleva, A.; Rogosin, S. Multi-parametric Mittag-Leffler functions and their extension. Fractional Calculus and Applied Analysis 2013, 16, 378–404. [Google Scholar] [CrossRef]
- Pal, A. Some finite integrals involving Mittag-Leffler confluent hypergeometric function. Analysis 2023. [Google Scholar] [CrossRef]
- Wiman, A. Über die Nullstellen der FunktionenE a (x). Acta Mathematica 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F. A practical guide to Prabhakar fractional calculus. Fractional Calculus and Applied Analysis 2020, 23, 9–54. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F.; Srivastava, H.M. Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. Proceedings of the Eighth International Colloquium on Differential Equations, Plovdiv, Bulgaria, 18–23 August, 1997. De Gruyter, 1998, pp. 195–202.
- Prabhakar, T.R.; et al. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama math. J 1971, 19, 7–15. [Google Scholar]
- Erd<i>e</i>´lyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. Higher transcendental functions. vol. II. Melbourne, FL, 1981.
- Khan, M.A.; Ahmed, S. On some properties of the generalized Mittag-Leffler function. SpringerPlus 2013, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mathai, A.M.; Haubold, H.J. Special functions for applied scientists; Vol. 4, Springer, 2008.
- Srivastava, H.M. A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Prudnikov, A. Integrals and series; Routledge, 2018.
- Lavoie, J.; Trottier, G. On the sum of certain Appell’s series. Ganita 1969, 20, 31–32. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).