Submitted:
30 July 2024
Posted:
31 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3.1. Animals
2.2. Experimental Model
2.3. Drugs and Pharmacological Agents
2.4. Anaesthesia
2.5. Preparation of Biological Material Experimental Model
2.6. Biochemical Assays and Techniques
2.6.1. Determination of Adenyl Nucleotides by Thin Layer Chromatography
2.6.2. Quantitative Determination of Pyruvate Content Using the Zoch-Lamprecht Method
2.6.3. Quantitative Determination of Malate Using the Hohorst Methods
2.6.4. Determination of Succinate Dehydrogenase (SDH) Activity
2.6.5. Determination of lactate content using the Hohorst method
2.6.6. Determination of NAD-Dependent Malate Dehydrogenase Activity
2.6.7. Opening of the Mitochondrial Pore (MP)
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Gaziano, T.A.; Bitton, A.; Anand, S.; Abrahams-Gessel, S.; Murphy, A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol. 2010, 35(2), 72–115. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J Am Coll Cardiol. 2022, 80(25), 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023, 118(17), 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Bragazzi, N.L.; Zhong, W.; Shu, J.; Abu Much, A.; Lotan, D.; Grupper, A.; Younis, A.; Dai, H. Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. Eur J Prev Cardiol. 2021, 28(15), 1682–1690. [Google Scholar] [CrossRef] [PubMed]
- Sapna, F.; Raveena, F.; Chandio, M.; Bai, K.; Sayyar, M.; Varrassi, G.; Khatri, M.; Kumar, S.; Mohamad, T. Advancements in Heart Failure Management: A Comprehensive Narrative Review of Emerging Therapies. Cureus. 2023, 15(10), 46486. [Google Scholar] [CrossRef]
- Ramani, G.V.; Uber, P.A.; Mehra, M.R. Chronic heart failure: contemporary diagnosis and management. Mayo Clin Proc. 2010, 85(2), 180–95. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, M.R.; Tay, W.T.; Teng, T.K.; Anand, I.; Ling, L.H.; Yap, J.; Tromp, J.; Wander, G.S.; Naik, A.; Ngarmukos, T.; Siswanto, B.B.; Hung, C.L.; Richards, A.M.; Lam, C.S.P. Regional Variation of Mortality in Heart Failure With Reduced and Preserved Ejection Fraction Across Asia: Outcomes in the ASIAN-HF Registry. J Am Heart Assoc. 2020, 9(1), 012199. doi: 10.1161/JAHA.119.012199.. Erratum in: J Am Heart Assoc. 2020, 9(5), 014512. [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; Jessup, M.; Linde, C.; Nihoyannopoulos, P.; Parissis, J.T.; Pieske, B.; Riley, J.P.; Rosano, G.M.C.; Ruilope, L.M.; Ruschitzka, F.; Rutten, F.H.; van der Meer, P. ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016, 37(27), 2129-2200. https://doi.org/10.1093/eurheartj/ehw128. Erratum in: Eur Heart J. 2018, 39(10), 860. [CrossRef]
- Writing Committee Members; ACC/AHA Joint Committee Members. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure. J Card Fail. 2022, 28(5), 1-167. [CrossRef]
- Berliner, D.; Hänselmann, A.; Bauersachs, J. The Treatment of Heart Failure with Reduced Ejection Fraction. Dtsch Arztebl Int. 2020, 117(21), 376–386. [Google Scholar] [CrossRef]
- van der Horst, I.C.; Voors, A.A.; van Veldhuisen, D.J. Treatment of heart failure with ACE inhibitors and beta-blockers: what is next? Aldosterone receptor antagonists? Clin Res Cardiol, 2007, 96(4), 193-5. [CrossRef]
- Dézsi, C.A.; Szentes, V. The Real Role of β-Blockers in Daily Cardiovascular Therapy. Am J Cardiovasc Drugs. 2017, 17(5), 361–373. [Google Scholar] [CrossRef] [PubMed]
- Egan, B.M.; Basile, J.; Chilton, R.J.; Cohen, J.D. Cardioprotection: the role of beta-blocker therapy. J Clin Hypertens (Greenwich). 2005, 7(7), 409–16. [Google Scholar] [CrossRef]
- do Vale, G.T.; Ceron, C.S.; Gonzaga, N.A.; Simplicio, J.A.; Padovan, J.C. Three Generations of β-blockers: History, Class Differences and Clinical Applicability. Curr Hypertens Rev. 2019, 15(1), 22–31. [Google Scholar] [CrossRef] [PubMed]
- Fisker, F.Y.; Grimm, D.; Wehland, M. Third-generation beta-adrenoceptor antagonists in the treatment of hypertension and heart failure. Basic Clin Pharmacol Toxicol. 2015, 117(1), 5–14. [Google Scholar] [CrossRef] [PubMed]
- Oliver, E.; Mayor, F.Jr.; D'Ocon, P. Beta-blockers: Historical Perspective and Mechanisms of Action. Rev Esp Cardiol (Engl Ed), 2019, 72(10), 853-862. [CrossRef]
- Mazur, I.; Belenichev, I.; Kucherenko, L.; Bukhtiyarova, N.; Puzyrenko, A.; Khromylova, O.; Bidnenko, O.; Gorchakova, N. Antihypertensive and cardioprotective effects of new compound 1-(β-phenylethyl)-4-amino-1,2,4-triazolium bromide (Hypertril). Eur J Pharmacol. 2019, 853, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Bak, P.G.; Belenichev, I.F.; Kucherenko, L.I.; Abramov, A.V.; Khromylova, O.V. Morpho-functional indicators changes of rats’ myocardium in experimental doxorubicin-induced chronic heart failure and its pharmacological modulation with new 4-amino-1,2,4-triazole derivative. Pharmacia. 2021, 68(4), 919–925. [Google Scholar] [CrossRef]
- Goncharov, O.; Belenichev, I.; Abramov, A.; Popazova, O.; Kucherenko, L.; Bukhtiyarova, N.; Pavliuk, I. Influence of experimental heart failure therapy with different generations of β-adrenergic blockers on Cardiac Electrical Activity (ECG) and Autonomic Regulation of Heart Rhythm (ARHR). Pharmacia. 2023, 70(4), 1157–1165. [Google Scholar] [CrossRef]
- Liu, M.; Lv, J.; Pan, Z.; Wang, D.; Zhao, L.; Guo, X. Mitochondrial dysfunction in heart failure and its therapeutic implications. Front Cardiovasc Med. 2022, 9, 945142. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Tian, R. Mitochondrial Dysfunction in Heart Failure: Causes, Consequences, and Therapeutic Opportunities. Cell Metab. 2021, 33(1), 231–243. [Google Scholar] [CrossRef]
- Seydi, E.; Tabbati, Y.; Pourahmad, J. Toxicity of Atenolol and Propranolol on Rat Heart Mitochondria. Drug Res (Stuttg). 2020, 70(4), 151–157. [Google Scholar] [CrossRef] [PubMed]
- Brohée, L.; Peulen, O.; Nusgens, B.; Castronovo, V.; Thiry, M.; Colige, A.C.; Deroanne, C.F. Propranolol Sensitizes Prostate Cancer Cells to Glucose Metabolism Inhibition and Prevents Cancer Progression. Sci Rep. 2018, 8(1), 7050. [Google Scholar] [CrossRef] [PubMed]
- Cicek, F.A.; Toy, A.; Tuncay, E.; et al. Beta-Blocker Timolol Alleviates Hyperglycemia-Induced Cardiac Damage via Inhibition of Endoplasmic Reticulum Stress. J Bioenerg Biomembr. 2014, 46, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Cocco, T.; Cutecchia, G.; Montedoro, G.; Lorusso, M. The Antihypertensive Drug Carvedilol Inhibits the Activity of Mitochondrial NADH-Ubiquinone Oxidoreductase. J Bioenerg Biomembr. 2002, 34(4), 251–258. [Google Scholar] [CrossRef] [PubMed]
- Belenichev, I.F.; Bak, P.G.; Popazova, O.O.; Bukhtiyarova, N.; Yadlovsky, O.E. Nitric Oxide-Dependent Mechanism of Endothelial Dysfunction Formation: A Promising Target for Pharmacological Management. Biopolymers and Cell. 2022, 38, 145–157. [Google Scholar] [CrossRef]
- Chekman, I.S.; Belenichev, I.F.; Kucherenko, L.I.; Mazur, I.A.; Nagornaia, E.A.; Bukhtiiarova, N.V.; Parniuk, N.V. NO-Dependent Mechanisms of Cardioprotective Activity of MT Preparation During Course Administration to SHR Rats. Eksperimental’naia i Klinicheskaia Farmakologiia, 2013, 76(8), 24-26.
- Cosentino, F.; Bonetti, S.; Rudolf, R.; Eto, M.; Werner-Felmayer, G.; Volpe, M.; Lüscher, T.F. Nitric-Oxide-Mediated Relaxations in Salt-Induced Hypertension: Effect of Chronic β1-Selective Receptor Blockade. J Hypertens. 2002, 20(3), 421–428. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hong, X. Effects of Carvedilol Reduce Conjunctivitis Through Changes in Inflammation, NGF, and VEGF Levels in a Rat Model. Exp Ther Med. 2016, 11(5), 1987–1992. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Ohta, Y.; Inoue, M.; Ma, M.; Wahed, M.I.; Nakazawa, M.; Hasegawa, G.; Naito, M.; Fuse, K.; Ito, M.; Kato, K.; Hanawa, H.; Kodama, M.; Aizawa, Y. Bisoprolol Improves Survival in Rats with Heart Failure. J Cardiovasc Pharmacol. 2001, 38(1), S55–S58. [Google Scholar] [CrossRef]
- Xie, S.; Xu, S.C.; Deng, W.; Tang, Q. Metabolic Landscape in Cardiac Aging: Insights into Molecular Biology and Therapeutic Implications. Signal Transduct Target Ther. 2023, 8(1), 114. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.T.; Støttrup, N.B.; Løfgren, B.; Bøtker, H.E. Metabolic Fingerprint of Ischaemic Cardioprotection: Importance of the Malate–Aspartate Shuttle. Cardiovasc Res. 2011, 91(3), 382–391. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhou, L.; Stanley, W.C.; Cabrera, M.E.; Saidel, G.M.; Yu, X. Role of the Malate-Aspartate Shuttle on the Metabolic Response to Myocardial Ischemia. J Theor Biol. 2008, 254(2), 466–475. [Google Scholar] [CrossRef]
- Kiyuna, L.A.; Albuquerque, R.P.E.; Chen, C.H.; Mochly-Rosen, D.; Ferreira, J.C.B. Targeting Mitochondrial Dysfunction and Oxidative Stress in Heart Failure: Challenges and Opportunities. Free Radic Biol Med. 2018, 129, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Rubattu, S.; Volpe, M. Mitochondrial Dysfunction in Heart Failure: From Pathophysiological Mechanisms to Therapeutic Opportunities. Int J Mol Sci. 2024, 25(5), 2667. [Google Scholar] [CrossRef] [PubMed]
- Kamenshchyk, A.; Belenichev, I.; Oksenych, V.; Kamyshnyi, O. Combined Pharmacological Modulation of Translational and Transcriptional Activity Signaling Pathways as a Promising Therapeutic Approach in Children with Myocardial Changes. Biomolecules. 2024, 14, 477. [Google Scholar] [CrossRef]
- Zong, Y.; Li, H.; Liao, P.; et al. Mitochondrial Dysfunction: Mechanisms and Advances in Therapy. Sig Transduct Target Ther. 2024, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.Y.; Ruiz-Velasco, A.; Bui, T.; Collins, L.; Wang, X.; Liu, W. Mitochondrial Function in the Heart: Insight into Mechanisms and Therapeutic Potentials. Br J Pharmacol. 2019, 176(22), 4302–4318. [Google Scholar] [CrossRef] [PubMed]
- Rosca, M.G.; Tandler, B.; Hoppel, C.L. Mitochondria in Cardiac Hypertrophy and Heart Failure. J Mol Cell Cardiol. 2013, 55, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Bedi, K.C. Jr.; Snyder, N.W.; Brandimarto, J.; Aziz, M.; Mesaros, C.; Worth, A.J.; Wang, L.L.; Javaheri, A.; Blair, I.A.; Margulies, K.B.; Rame, J.E. Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure. Circulation. 2016, 133(8), 706–716. [Google Scholar] [CrossRef] [PubMed]
- Huss, J.M.; Kelly, D.P. Mitochondrial Energy Metabolism in Heart Failure: A Question of Balance. J Clin Invest. 2005, 115(3), 547–555. [Google Scholar] [CrossRef] [PubMed]
- Belenichev, I.; Popazova, O.; Bukhtiyarova, N.; Savchenko, D.; Oksenych, V.; Kamyshnyi, O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants (Basel). 2024, 13(5), 504. [Google Scholar] [CrossRef] [PubMed]
- Belenichev, I.; Aliyeva, O.; Popazova, O.; Bukhtiyarova, N. Molecular and Biochemical Mechanisms of Diabetic Encephalopathy. Acta Biochim Pol. 2023, 70(4), 751–760. [Google Scholar] [CrossRef] [PubMed]
- Rosca, M.G.; Tandler, B.; Hoppel, C.L. Mitochondria in Cardiac Hypertrophy and Heart Failure. J Mol Cell Cardiol. 2013, 55, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Rivera, S.; Monclus, E.A.; Synenki, L.; Zirk, A.; Eisenbart, J.; Feghali-Bostwick, C.; Mutlu, G.M.; Budinger, G.R.; Chandel, N.S. Mitochondrial Reactive Oxygen Species Regulate Transforming Growth Factor-β Signaling. J Biol Chem. 2013, 288(2), 770–777. [Google Scholar] [CrossRef] [PubMed]
- Belenichev, I.; Bak, P.; Popazova, O.; Ryzhenko, V.; Bukhtiyarova, N.; Puzyrenko, A. Integrative and Biochemical Parameters in Rats in the Simulation of Doxorubicin Chronic Heart Failure and During the Use of β-Adrenergic Blockers. J Fac Pharm Ankara Univ. 2023, 47(1), 228–238. [Google Scholar] [CrossRef]
- Almannai, M.; El-Hattab, A.W. Nitric Oxide Deficiency in Mitochondrial Disorders: The Utility of Arginine and Citrulline. Front Mol Neurosci. 2021, 14, 682780. [Google Scholar] [CrossRef] [PubMed]
- Litvinova, L.; Atochin, D.N.; Fattakhov, N.; Vasilenko, M.; Zatolokin, P.; Kirienkova, E. Nitric Oxide and Mitochondria in Metabolic Syndrome. Front Physiol. 2015, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Sgobbo, P.; Pacelli, C.; Grattagliano, I.; Villani, G.; Cocco, T. Carvedilol Inhibits Mitochondrial Complex I and Induces Resistance to H2O2-Mediated Oxidative Insult in H9C2 Myocardial Cells. Biochim Biophys Acta. 2007, 1767(3), 222–232. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.L.; Moreno, A.J.; Leino, R.L.; Froberg, M.K.; Wallace, K.B. Carvedilol Protects Against Doxorubicin-Induced Mitochondrial Cardiomyopathy. Toxicol Appl Pharmacol. 2002, 185(3), 218–227. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.J.; Marques, M.P.; Batista de Carvalho, L.A.; Moreno, A.J. Effects of Carvedilol on Isolated Heart Mitochondria: Evidence for a Protonophoretic Mechanism. Biochem Biophys Res Commun. 2000, 276(1), 82–87. [Google Scholar] [CrossRef] [PubMed]
- Diogo, C.V.; Deus, C.M.; Lebiedzinska-Arciszewska, M.; Wojtala, A.; Wieckowski, M.R.; Oliveira, P.J. Carvedilol and Antioxidant Proteins in a Type I Diabetes Animal Model. Eur J Clin Invest. 2017, 47(1), 19–29. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.Q.; Simonis, U.; Cecchini, G.; Zhou, H.Z.; Li, L.; Teerlink, J.R.; Karliner, J.S. Comparison of Pyrroloquinoline Quinone and/or Metoprolol on Myocardial Infarct Size and Mitochondrial Damage in a Rat Model of Ischemia/Reperfusion Injury. J Cardiovasc Pharmacol Ther. 2006, 11(2), 119–128. [Google Scholar] [CrossRef]
- Power, A.S.; Norman, R.; Jones, T.L.M.; Hickey, A.J.; Ward, M.L. Mitochondrial Function Remains Impaired in the Hypertrophied Right Ventricle of Pulmonary Hypertensive Rats Following Short Duration Metoprolol Treatment. PLoS One. 2019, 14(4), 0214740. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zaragoza, C.; Holman, W. Sodium-Hydrogen Exchange Inhibition and Beta-Blockade Additively Decrease Infarct Size. Ann Thorac Surg. 2007, 83(3), 1121–1127. [Google Scholar] [CrossRef]
- Omerovic, E.; Bollano, E.; Soussi, B.; Waagstein, F. Selective Beta1-Blockade Attenuates Post-Infarct Remodelling Without Improvement in Myocardial Energy Metabolism and Function in Rats with Heart Failure. Eur J Heart Fail. 2003, 5(6), 725–32. [Google Scholar] [CrossRef] [PubMed]
- Metra, M.; Nodari, S.; Bordonali, T.; Milani, P.; Lombardi, C.; Bugatti, S.; Fontanella, B.; Verzura, G.; Danesi, R.; Dei Cas, L. Bisoprolol in the Treatment of Chronic Heart Failure: From Pathophysiology to Clinical Pharmacology and Trial Results. Ther Clin Risk Manag. 2007, 3(4), 569–578. [Google Scholar] [PubMed]
- Laser, A.; Neubauer, S.; Tian, R.; Hu, K.; Gaudron, P.; Ingwall, J.S.; Ertl, G. Long-Term Beta-Blocker Treatment Prevents Chronic Creatine Kinase and Lactate Dehydrogenase System Changes in Rat Hearts After Myocardial Infarction. J Am Coll Cardiol. 1996, 27(2), 487–493. [Google Scholar] [CrossRef] [PubMed]
- Ichihara, S.; Yamada, Y.; Ichihara, G.; Kanazawa, H.; Hashimoto, K.; Kato, Y.; Matsushita, A.; Oikawa, S.; Yokota, M.; Iwase, M. Attenuation of Oxidative Stress and Cardiac Dysfunction by Bisoprolol in an Animal Model of Dilated Cardiomyopathy. Biochem Biophys Res Commun. 2006, 350(1), 105–113. [Google Scholar] [CrossRef]
- Nuevo-Tapioles, C.; Santacatterina, F.; Stamatakis, K.; et al. Coordinate β-Adrenergic Inhibition of Mitochondrial Activity and Angiogenesis Arrest Tumor Growth. Nat Commun. 2020, 11, 3606. [Google Scholar] [CrossRef] [PubMed]
- Seleme, V.B.; Marques, G.L.; Mendes, A.E.M.; Rotta, I.; Pereira, M.; Júnior, E.L.; da Cunha, C.L.P. Nebivolol for the Treatment of Essential Systemic Arterial Hypertension: A Systematic Review and Meta-Analysis. Am J Cardiovasc Drugs. 2021, 21(2), 165–180. [Google Scholar] [CrossRef] [PubMed]
- Bhadri, N.; Razdan, R.; Goswami, S.K. Nebivolol, a β-Blocker Abrogates Streptozotocin-Induced Behavioral, Biochemical, and Neurophysiological Deficit by Attenuating Oxidative-Nitrosative Stress: A Possible Target for the Prevention of Diabetic Neuropathy. Naunyn Schmiedebergs Arch Pharmacol. 2018, 391(2), 207–217. [Google Scholar] [CrossRef] [PubMed]
- Gul, R.; Alsalman, N.; Bazighifan, A.; Alfadda, A.A. Comparative Beneficial Effects of Nebivolol and Nebivolol/Valsartan Combination Against Mitochondrial Dysfunction in Angiotensin II-Induced Pathology in H9c2 Cardiomyoblasts. J Pharm Pharmacol. 2021, 73(11), 1520–1529. [Google Scholar] [CrossRef]
- Chen, Q.; Jiang, H.; Wang, Z.; Cai, L.Y.; Jiang, Y.C.; Xie, L.; Zhou, Y.; Zeng, X.; Ji, N.; Shen, Y.Q.; Chen, Q.M. Adrenergic Blockade by Nebivolol to Suppress Oral Squamous Cell Carcinoma Growth via Endoplasmic Reticulum Stress and Mitochondria Dysfunction. Front Pharmacol. 2021, 12, 691998. [Google Scholar] [CrossRef]
- Bețiu, A.M.; Noveanu, L.; Hâncu, I.M.; Lascu, A.; Petrescu, L.; Maack, C.; Elmér, E.; Muntean, D.M. Mitochondrial Effects of Common Cardiovascular Medications: The Good, the Bad, and the Mixed. Int J Mol Sci. 2022, 23(21), 13653. [Google Scholar] [CrossRef] [PubMed]
| Group of animals | ATP, µmol/g tissue | ADP, µmol/g tissue | AMP, µmol/g tissue |
|---|---|---|---|
| Intact (n=10) | 3.8 ± 0.21 | 0.57 ± 0.02 | 0.154 ± 0.007 |
| CHF (control) (n=6) | 1.9 ± 0.121 | 0.33 ± 0.0171 | 0.27 ± 0.0141 |
| CHF+ Hypertril, 3.5 mg/kg (n=19) | 2.7 ± 0.12*1 | 0.41 ± 0.010*1 | 0.169 ± 0.011*1 |
| CHF+Carvedilol 50 mg/kg (n=10) | 2.2 ± 0.091 | 0.36 ± 0.0171 | 0.25 ± 0.0171 |
| CHF+Nebivalol, 10 mg/kg (n=16) | 2.3 ± 0.07*1 | 0.36 ± 0.0211 | 0.23 ± 0.011*1 |
| CHF + Bisoprolol, 10 mg/kg (n=16) | 1.85 ± 0.141 | 0.35 ± 0.0331 | 0.26 ± 0.0341 |
| CHF + Metoprolol, 15 mg/kg | 1.9 ± 0.111 | 0.34 ± 0.0541 | 0.25 ± 0.0171 |
| Group of animals | Lactate, µmol/g tissue | Malate, µmol/g tissue | Pyruvate, µmol/g tissue |
|---|---|---|---|
| Intact (n=10) | 5.2 ± 0.31 | 0.36± 0.02 | 0.15± 0.01 |
| CHF (control) (n=6) | 12.1 ± 0.871 | 0.11± 0.011 | 0.071± 0.0011 |
| CHF+ Hypertril, 3.5 mg/kg (n=19) | 7.4 ± 0.44*1 | 0.21± 0.01*1 | 0.088± 0.001*1 |
| CHF+Carvedilol 50 mg/kg (n=10) | 10.2 ± 0.921 | 0.12± 0.02 | 0.072± 0.0011 |
| CHF+Nebivalol, 10 mg/kg (n=16) | 8.10± 0.54*1 | 0.14± 0.01*1 | 0.080± 0.001*1 |
| CHF + Bisoprolol, 10 mg/kg(n=16) | 11.5 ± 0.421 | 0.12± 0.011 | 0.072± 0.0031 |
| CHF + Metoprolol, 15 mg/kg | 11.1 ± 1.2 | 0.12± 0.011 | 0.065± 0.002 |
| Group of animals | Lactate, µmol/g tissue | NAD-MDH, μmol/mg protein/min | SDH, nmol/mg protein/min | IP opening, ∆ E 540 nm | mitochondrial membrane potential,(Ψ) | ATP, µmol/g tissue |
|---|---|---|---|---|---|---|
| Intact (n=10) | 1.5 ±0.08 | 1.71± 0.08 | 5.5± 0.28 | 0.052±0.002 | 52.1±3.2 | 2.7 ± 0.12 |
| CHF (control) (n=6) | 2.7 ±0.141 | 0.65± 0.041 | 1.8± 0.101 | 0.63± 0.0221 | 18.2±1.01 | 1.2 ± 0.031 |
| CHF+ Hypertril, 3.5 mg/kg (n=19) | 1.7 ±0.15* | 1.14± 0.08*1 | 3.1±0.17*1 | 0.31±0.005*1 | 33.2±2.4*1 | 1.60 ± 0.15*1 |
| CHF+Carvedilol 50 mg/kg (n=10) | 2.5±0.191 | 0.67± 0.011 | 2.2± 0.14*1 | 0.44±0.011*1 | 25.4±1.2*1 | 1.3 ± 0.111 |
| CHF+Nebivalol, 10 mg/kg (n=16) | 2.2 ±0.10*1 | 0.79± 0.04*1 | 2.6±0.11*1 | 0.47±0.007*1 | 25.7±1.8*1 | 1.42 ± 0.07*1 |
| CHF + Bisoprolol, 10 mg/kg (n=16) | 2.3±0.18*1 | 0.67± 0.021 | 2.0± 0.221 | 0.63±0.0151 | 18.8±2.71 | 1.2 ± 0.251 |
| CHF + Metoprolol, 15 mg/kg | 2.5±0.211 | 0.68± 0.031 | 2.1± 0.191 | 0.65±0.0111 | 19.3±3.01 | 1.2 ± 0.101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
