Submitted:
29 July 2024
Posted:
31 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. AI in Prenatal Diagnosis
3. AI in Fetal Neurosonography
3.1. AI in GA Prediction
3.2. AI for Augmenting Fetal Pose Estimation and CNS Anomaly Assessment
3.3. Other Current AI Applications Related to Fetal Neurosonography
4. Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morris, J.K.; Wellesley, D.G.; Barisic, I.; Addor, M.-C.; Bergman, J.E.H.; Braz, P.; Cavero-Carbonell, C.; Draper, E.S.; Gatt, M.; Haeusler, M.; et al. Epidemiology of congenital cerebral anomalies in Europe: a multicentre, population-based EUROCAT study. Arch. Dis. Child. 2019, 104, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Tagliabue, G.; Tessandori, R.; Caramaschi, F.; Fabiano, S.; Maghini, A.; Tittarelli, A.; Vergani, D.; Bellotti, M.; Pisani, S.; Gambino, M.L.; et al. Descriptive epidemiology of selected birth defects, areas of Lombardy, Italy, 1999. Popul. Heal. Metrics 2007, 5, 4–4. [Google Scholar] [CrossRef] [PubMed]
- Paladini D, Malinger G, Birnbaum R, et al. ISUOG Practice Guidelines (updated): sonographic examination of the fetal central nervous system. Part 2: performance of targeted neurosonography. Ultrasound Obstet Gynecol. 2021;57(4):661-671.
- Yagel S, Valsky DV. Re: ISUOG Practice Guidelines (updated): sonographic examination of the fetal central nervous system. Part 1: performance of screening examination and indications for targeted neurosonography. Ultrasound Obstet Gynecol. 2021;57(1):173-174.
- Snoek, R.; Albers, M.E.W.A.; Mulder, E.J.H.; Lichtenbelt, K.D.; de Vries, L.S.; Nikkels, P.G.J.; Cuppen, I.; Pistorius, L.R.; Manten, G.T.R.; de Heus, R. Accuracy of diagnosis and counseling of fetal brain anomalies prior to 24 weeks of gestational age. J. Matern. Neonatal Med. 2017, 31, 2188–2194. [Google Scholar] [CrossRef] [PubMed]
- Group, EW. Role of prenatal magnetic resonance imaging in fetuses with isolated mild or moderate ventriculomegaly in the era of neurosonography: international multicenter study. Ultrasound Obstet Gynecol. 2020;56(3):340-347.
- Dall’asta, A.; Paramasivam, G.; Basheer, S.N.; Whitby, E.; Tahir, Z.; Lees, C. How to obtain diagnostic planes of the fetal central nervous system using three-dimensional ultrasound and a context-preserving rendering technology. Am. J. Obstet. Gynecol. 2018, 220, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Di Mascio D, Buca D, Rizzo G, et al. Methodological Quality of Fetal Brain Structure Charts for Screening Examination and Targeted Neurosonography: A Systematic Review. Fetal Diagn Ther. 2022;49(4):145-158.
- Boutet, M.L.; Eixarch, E.; Ahumada-Droguett, P.; Nakaki, A.; Crovetto, F.; Cívico, M.S.; Borrás, A.; Manau, D.; Gratacós, E.; Crispi, F.; et al. Fetal neurosonography and infant neurobehavior following conception by assisted reproductive technology with fresh or frozen embryo transfer. Ultrasound Obstet. Gynecol. 2022, 60, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Bastiaansen, W.A.; Klein, S.; Koning, A.H.; Niessen, W.J.; Steegers-Theunissen, R.P.; Rousian, M. Computational methods for the analysis of early-pregnancy brain ultrasonography: a systematic review. EBioMedicine 2023, 89, 104466. [Google Scholar] [CrossRef]
- Horgan, R.; Nehme, L.; Abuhamad, A. Artificial intelligence in obstetric ultrasound: A scoping review. Prenat. Diagn. 2023, 43, 1176–1219. [Google Scholar] [CrossRef] [PubMed]
- Jost, E.; Kosian, P.; Cruz, J.J.; Albarqouni, S.; Gembruch, U.; Strizek, B.; Recker, F. Evolving the Era of 5D Ultrasound? A Systematic Literature Review on the Applications for Artificial Intelligence Ultrasound Imaging in Obstetrics and Gynecology. J. Clin. Med. 2023, 12, 6833. [Google Scholar] [CrossRef] [PubMed]
- Torres, H.R.; Morais, P.; Oliveira, B.; Birdir, C.; Rüdiger, M.; Fonseca, J.C.; Vilaça, J.L. A review of image processing methods for fetal head and brain analysis in ultrasound images. Comput. Methods Programs Biomed. 2022, 215, 106629. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, J.; Zhu, Y.; Zhang, Z.; Cao, H.; Xie, M.; Zhang, L. Application and Progress of Artificial Intelligence in Fetal Ultrasound. J. Clin. Med. 2023, 12, 3298. [Google Scholar] [CrossRef]
- Dhombres, F.; Bonnard, J.; Bailly, K.; Maurice, P.; Papageorghiou, A.T.; Jouannic, J.-M. Contributions of Artificial Intelligence Reported in Obstetrics and Gynecology Journals: Systematic Review. J. Med Internet Res. 2022, 24, e35465. [Google Scholar] [CrossRef] [PubMed]
- Yousef, R.; Gupta, G.; Yousef, N.; Khari, M. A holistic overview of deep learning approach in medical imaging. Multimedia Syst. 2022, 28, 881–914. [Google Scholar] [CrossRef] [PubMed]
- Drukker, L.; Noble, J.A.; Papageorghiou, A.T. Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound Obstet. Gynecol. 2020, 56, 498–505. [Google Scholar] [CrossRef]
- Fiorentino, M.C.; Villani, F.P.; Di Cosmo, M.; Frontoni, E.; Moccia, S. A review on deep-learning algorithms for fetal ultrasound-image analysis. Med Image Anal. 2023, 83, 102629. [Google Scholar] [CrossRef] [PubMed]
- Ramirez Zegarra R, Ghi T. Use of artificial intelligence and deep learning in fetal ultrasound imaging. Ultrasound Obstet Gynecol. 2023;62(2):185-194.
- Ghabri, H.; Alqahtani, M.S.; Ben Othman, S.; Al-Rasheed, A.; Abbas, M.; Almubarak, H.A.; Sakli, H.; Abdelkarim, M.N. Transfer learning for accurate fetal organ classification from ultrasound images: a potential tool for maternal healthcare providers. Sci. Rep. 2023, 13, 1–16. [Google Scholar] [CrossRef]
- Box GEP. Robustness in the Strategy of Scientific Model Building. In: Launer RL, Wilkinson GN, eds. Robustness in Statistics. Academic Press; 1979:201-236.
- Yeo, L.; Romero, R. New and advanced features of fetal intelligent navigation echocardiography (FINE) or 5D heart. J. Matern. Neonatal Med. 2022, 35, 1498–1516. [Google Scholar] [CrossRef] [PubMed]
- Namburete, A.I.L.; Papież, B.W.; Fernandes, M.; Wyburd, M.K.; Hesse, L.S.; Moser, F.A.; Ismail, L.C.; Gunier, R.B.; Squier, W.; Ohuma, E.O.; et al. Normative spatiotemporal fetal brain maturation with satisfactory development at 2 years. Nature 2023, 623, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Moser F, Huang R, Papież BW, Namburete AIL. BEAN: Brain Extraction and Alignment Network for 3D Fetal Neuro sonography. Neuroimage. 2022;258:119341.
- Namburete, A.I.; Xie, W.; Yaqub, M.; Zisserman, A.; Noble, J.A. Fully-automated alignment of 3D fetal brain ultrasound to a canonical reference space using multi-task learning. Med Image Anal. 2018, 46, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Moser F, Huang R, Papageorghiou AT, Papież BW, Namburete A. Automated fetal brain extraction from clinical ultrasound volumes using 3d convolutional neural networks. Cham: Springer International Publishing; 2020.
- Gholipour, A.; Rollins, C.K.; Velasco-Annis, C.; Ouaalam, A.; Akhondi-Asl, A.; Afacan, O.; Ortinau, C.M.; Clancy, S.; Limperopoulos, C.; Yang, E.; et al. A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Gembicki M, Welp A, Scharf JL, Dracopoulos C, Weichert J. A Clinical Approach to Semiautomated Three-Dimensional Fetal Brain Biometry-Comparing the Strengths and Weaknesses of Two Diagnostic Tools: 5DCNS+(TM) and SonoCNS(TM). J Clin Med. 2023;12(16).
- Welp A, Gembicki M, Dracopoulos C, Scharf JL, Rody A, Weichert J. Applicability of a semiautomated volumetric ap proach (5D CNS+™) for detailed antenatal reconstruction of abnormal fetal CNS anatomy. BMC Med Imaging. 2022;22(1):154.
- Welp A, Gembicki M, Rody A, Weichert J. Validation of a semiautomated volumetric approach for fetal neurosonogra phy using 5DCNS+ in clinical data from > 1100 consecutive pregnancies. Childs Nerv Syst. 2020;36(12):2989-2995.
- Lu, J.L.A.; Resta, S.; Marra, M.C.; Patelli, C.; Stefanachi, V.; Rizzo, G. Validation of an automatic software in assessing fetal brain volume from three dimensional ultrasonographic volumes: Comparison with manual analysis. J. Clin. Ultrasound 2023, 51, 1146–1151. [Google Scholar] [CrossRef]
- Alzubaidi M, Agus M, Alyafei K, et al. Toward deep observation: A systematic survey on artificial intelligence tech niques to monitor fetus via ultrasound images. iScience. 2022;25(8):104713.
- Tang, X. The role of artificial intelligence in medical imaging research. BJR|Open 2020, 2, 20190031. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Aiello, E.; Pietrolucci, M.E.; Arduini, D. The feasibility of using 5D CNS software in obtaining standard fetal head measurements from volumes acquired by three-dimensional ultrasonography: comparison with two-dimensional ultrasound. J. Matern. Neonatal Med. 2015, 29, 2217–2222. [Google Scholar] [CrossRef] [PubMed]
- Rizzo G, Capponi A, Persico N, et al. 5D CNS+ Software for Automatically Imaging Axial, Sagittal, and Coronal Planes of Normal and Abnormal Second-Trimester Fetal Brains. J Ultrasound Med. 2016;35(10):2263-2272.
- Grandjean, G.A.; Hossu, G.; Bertholdt, C.; Noble, P.; Morel, O.; Grangé, G. Artificial intelligence assistance for fetal head biometry: Assessment of automated measurement software. Diagn. Interv. Imaging 2018, 99, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Pluym, I.D.; Afshar, Y.; Holliman, K.; Kwan, L.; Bolagani, A.; Mok, T.; Silver, B.; Ramirez, E.; Han, C.S.; Platt, L.D. Accuracy of automated three-dimensional ultrasound imaging technique for fetal head biometry. Ultrasound Obstet. Gynecol. 2020, 57, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yu, J.; Yang, X.; Chen, C.; Zhou, H.; Qiu, C.; Cao, Y.; Zhang, T.; Peng, M.; Zhu, G.; et al. Artificial intelligence assistance for fetal development: evaluation of an automated software for biometry measurements in the mid-trimester. BMC Pregnancy Childbirth 2024, 24, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yaqub, M.; Napolitano, R.; Ioannou, C.; Papageorghiou, A.T.; Noble, J.A. Automatic detection of local fetal brain structures in ultrasound images. Proceedings - International Symposium on Biomedical Imaging. 2012:1555-1558.
- Cuingnet R, Somphone O, Mory B, et al. Where is my baby? A fast fetal head auto-alignment in 3D-ultrasound. Paper presented at: 2013 IEEE 10th International Symposium on Biomedical Imaging; 7-11 April 2013, 2013.
- Sofka, M.; Zhang, J.; Good, S.; Zhou, S.K.; Comaniciu, D. Automatic Detection and Measurement of Structures in Fetal Head Ultrasound Volumes Using Sequential Estimation and Integrated Detection Network (IDN). IEEE Trans. Med Imaging 2014, 33, 1054–1070. [Google Scholar] [CrossRef] [PubMed]
- Namburete, A.I.; Stebbing, R.V.; Kemp, B.; Yaqub, M.; Papageorghiou, A.T.; Noble, J.A. Learning-based prediction of gestational age from ultrasound images of the fetal brain. Med Image Anal. 2015, 21, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Yaqub M, Kelly B, Papageorghiou AT, Noble JA. Guided Random Forests for Identification of Key Fetal Anatomy and Image Categorization in Ultrasound Scans. Paper presented at: Medical Image Computing and Computer-Assisted Interven tion – MICCAI 2015; 2015//, 2015; Cham.
- Baumgartner CF, Kamnitsas K, Matthew J, Smith S, Kainz B, Rueckert D. Real-Time Standard Scan Plane Detection and Localisation in Fetal Ultrasound Using Fully Convolutional Neural Networks. Paper presented at: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016; 2016//, 2016; Cham.
- Sridar, P.; Kumar, A.; Quinton, A.; Nanan, R.; Kim, J.; Krishnakumar, R. Decision Fusion-Based Fetal Ultrasound Image Plane Classification Using Convolutional Neural Networks. Ultrasound Med. Biol. 2019, 45, 1259–1273. [Google Scholar] [CrossRef] [PubMed]
- Yaqub, M.; Kelly, B.; Papageorghiou, A.T.; Noble, J.A. A Deep Learning Solution for Automatic Fetal Neurosonographic Diagnostic Plane Verification Using Clinical Standard Constraints. Ultrasound Med. Biol. 2017, 43, 2925–2933. [Google Scholar] [CrossRef]
- Qu, R.; Xu, G.; Ding, C.; Jia, W.; Sun, M. Deep Learning-Based Methodology for Recognition of Fetal Brain Standard Scan Planes in 2D Ultrasound Images. IEEE Access 2019, 8, 44443–44451. [Google Scholar] [CrossRef]
- Huang R, Xie W, Alison Noble J. VP-Nets : Efficient automatic localization of key brain structures in 3D fetal neuroso nography. Med Image Anal. 2018;47:127-139.
- Huang, R.; Namburete, A.; Noble, A. Learning to segment key clinical anatomical structures in fetal neurosonography informed by a region-based descriptor. J. Med Imaging 2018, 5, 014007. [Google Scholar] [CrossRef]
- van den Heuvel TLA, de Bruijn D, de Korte CL, Ginneken BV. Automated measurement of fetal head circumference using 2D ultrasound images. PLoS One. 2018;13(8):e0200412.
- Dou H, Yang X, Qian J, et al. Agent with Warm Start and Active Termination for Plane Localization in 3D Ultrasound. Paper presented at: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019; 2019//, 2019; Cham.
- Sahli, H.; Mouelhi, A.; Ben Slama, A.; Sayadi, M.; Rachdi, R. Supervised classification approach of biometric measures for automatic fetal defect screening in head ultrasound images. J. Med Eng. Technol. 2019, 43, 279–286. [Google Scholar] [CrossRef]
- Alansary, A.; Oktay, O.; Li, Y.; Le Folgoc, L.; Hou, B.; Vaillant, G.; Kamnitsas, K.; Vlontzos, A.; Glocker, B.; Kainz, B.; et al. Evaluating reinforcement learning agents for anatomical landmark detection. Med Image Anal. 2019, 53, 156–164. [Google Scholar] [CrossRef]
- Lin, Z.; Li, S.; Ni, D.; Liao, Y.; Wen, H.; Du, J.; Chen, S.; Wang, T.; Lei, B. Multi-task learning for quality assessment of fetal head ultrasound images. Med Image Anal. 2019, 58, 101548. [Google Scholar] [CrossRef]
- Bastiaansen WAP, Rousian M, Steegers-Theunissen RPM, Niessen WJ, Koning A, Klein S. Towards Segmentation and Spatial Alignment of the Human Embryonic Brain Using Deep Learning for Atlas-Based Registration. Paper presented at: Biomedical Image Registration; 2020//, 2020; Cham.
- Xu, Y.; Lee, L.H.; Drukker, L.; Yaqub, M.; Papageorghiou, A.T.; Noble, A.J. Simulating realistic fetal neurosonography images with appearance and growth change using cycle-consistent adversarial networks and an evaluation. J. Med Imaging 2020, 7, 057001. [Google Scholar] [CrossRef]
- Ramos, R.; Olveres, J.; Escalante-Ramírez, B.; Arambula, F. Deep learning approach for cerebellum localization in prenatal ultrasound images. Vol 11353: SPIE; 2020.
- Maraci, M.A.; Yaqub, M.; Craik, R.; Beriwal, S.; Self, A.; von Dadelszen, P.; Papageorghiou, A.; Noble, J.A. Toward point-of-care ultrasound estimation of fetal gestational age from the trans-cerebellar diameter using CNN-based ultrasound image analysis. J. Med Imaging 2020, 7, 014501. [Google Scholar] [CrossRef]
- Chen, X.; He, M.; Dan, T.; Wang, N.; Lin, M.; Zhang, L.; Xian, J.; Cai, H.; Xie, H. Automatic Measurements of Fetal Lateral Ventricles in 2D Ultrasound Images Using Deep Learning. Front. Neurol. 2020, 11, 526. [Google Scholar] [CrossRef]
- Xie, B.; Lei, T.; Wang, N.; Cai, H.; Xian, J.; He, M.; Zhang, L.; Xie, H. Computer-aided diagnosis for fetal brain ultrasound images using deep convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1303–1312. [Google Scholar] [CrossRef]
- Xie, H.N.; Wang, N.; He, M.; Zhang, L.H.; Cai, H.M.; Xian, J.B.; Lin, M.F.; Zheng, J.; Yang, Y.Z. Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound Obstet. Gynecol. J. Int. Soc. Ultrasound Obstet. Gynecol. 2020, 56, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Tsui, P.-H.; Wu, W.; Zhou, Z.; Wu, S. Fetal Ultrasound Image Segmentation for Automatic Head Circumference Biometry Using Deeply Supervised Attention-Gated V-Net. J. Digit. Imaging 2021, 34, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Artizzu, X.P.; Coronado-Gutiérrez, D.; Valenzuela-Alcaraz, B.; Vellvé, K.; Eixarch, E.; Crispi, F.; Bonet-Carne, E.; Bennasar, M.; Gratacos, E. Analysis of maturation features in fetal brain ultrasound via artificial intelligence for the estimation of gestational age. Am. J. Obstet. Gynecol. MFM 2021, 3, 100462. [Google Scholar] [CrossRef] [PubMed]
- Gofer, S.; Haik, O.; Bardin, R.; Gilboa, Y.; Perlman, S. Machine Learning Algorithms for Classification of First-Trimester Fetal Brain Ultrasound Images. J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med. 2022, 41, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Skelton, E.; Matthew, J.; Li, Y.; Khanal, B.; Martinez, J.C.; Toussaint, N.; Gupta, C.; Knight, C.; Kainz, B.; Hajnal, J.; et al. Towards automated extraction of 2D standard fetal head planes from 3D ultrasound acquisitions: A clinical evaluation and quality assessment comparison. Radiography 2020, 27, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Yeung, P.-H.; Aliasi, M.; Papageorghiou, A.T.; Haak, M.; Xie, W.; Namburete, A.I. Learning to map 2D ultrasound images into 3D space with minimal human annotation. Med Image Anal. 2021, 70, 101998. [Google Scholar] [CrossRef] [PubMed]
- Montero, A.; Bonet-Carne, E.; Burgos-Artizzu, X.P. Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification. Sensors 2021, 21, 7975. [Google Scholar] [CrossRef] [PubMed]
- Moccia, S.; Fiorentino, M.C.; Frontoni, E. Mask-R$$^{2}$$CNN: a distance-field regression version of Mask-RCNN for fetal-head delineation in ultrasound images. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1711–1718. [Google Scholar] [CrossRef]
- Wyburd MK, Hesse LS, Aliasi M, et al. Assessment of Regional Cortical Development Through Fissure Based Gesta tional Age Estimation in 3D Fetal Ultrasound. Paper presented at: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis; 2021//, 2021; Cham.
- Shu, X.; Chang, F.; Zhang, X.; Shao, C.; Yang, X. ECAU-Net: Efficient channel attention U-Net for fetal ultrasound cerebellum segmentation. Biomed. Signal Process. Control. 2022, 75, 103528. [Google Scholar] [CrossRef]
- Hesse, L.S.; Aliasi, M.; Moser, F.; INTERGROWTH-21(st) Consortium; Haak, M. C.; Xie, W.; Jenkinson, M.; Namburete, A.I. Subcortical segmentation of the fetal brain in 3D ultrasound using deep learning. NeuroImage 2022, 254, 119117. [Google Scholar] [CrossRef]
- Di Vece, C.; Dromey, B.; Vasconcelos, F.; David, A.L.; Peebles, D.; Stoyanov, D. Deep learning-based plane pose regression in obstetric ultrasound. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 833–839. [Google Scholar] [CrossRef]
- Lin, M.; He, X.; Guo, H.; He, M.; Zhang, L.; Xian, J.; Lei, T.; Xu, Q.; Zheng, J.; Feng, J.; et al. Use of real-time artificial intelligence in detection of abnormal image patterns in standard sonographic reference planes in screening for fetal intracranial malformations. Ultrasound Obstet. Gynecol. J. Int. Soc. Ultrasound Obstet. Gynecol. 2022, 59, 304–316. [Google Scholar] [CrossRef]
- Sreelakshmy, R.; Titus, A.; Sasirekha, N.; Logashanmugam, E.; Begam, R.B.; Ramkumar, G.; Raju, R. An Automated Deep Learning Model for the Cerebellum Segmentation from Fetal Brain Images. BioMed Res. Int. 2022, 2022, 8342767. [Google Scholar] [CrossRef]
- Alzubaidi, M.; Agus, M.; Shah, U.; Makhlouf, M.; Alyafei, K.; Househ, M. Ensemble Transfer Learning for Fetal Head Analysis: From Segmentation to Gestational Age and Weight Prediction. Diagnostics 2022, 12, 2229. [Google Scholar] [CrossRef]
- Coronado-Gutiérrez D, Eixarch E, Monterde E, et al. Automatic Deep Learning-Based Pipeline for Automatic Delinea tion and Measurement of Fetal Brain Structures in Routine Mid-Trimester Ultrasound Images. Fetal Diagn Ther. 2023;50(6):480- 490.
- Lin, M.; Zhou, Q.; Lei, T.; Shang, N.; Zheng, Q.; He, X.; Wang, N.; Xie, H. Deep learning system improved detection efficacy of fetal intracranial malformations in a randomized controlled trial. npj Digit. Med. 2023, 6, 1–10. [Google Scholar] [CrossRef]
- Rauf F, Khan MA, Bashir AK, et al. Automated deep bottleneck residual 82-layered architecture with Bayesian optimi zation for the classification of brain and common maternal fetal ultrasound planes. Front Med (Lausanne). 2023;10:1330218.
- Alzubaidi, M.; Agus, M.; Makhlouf, M.; Anver, F.; Alyafei, K.; Househ, M. Large-scale annotation dataset for fetal head biometry in ultrasound images. Data Brief 2023, 51, 109708. [Google Scholar] [CrossRef]
- Alzubaidi, M.; Shah, U.; Agus, M.; Househ, M. FetSAM: Advanced Segmentation Techniques for Fetal Head Biometrics in Ultrasound Imagery. IEEE Open J. Eng. Med. Biol. 2024, 5, 281–295. [Google Scholar] [CrossRef]
- Di Vece C, Cirigliano A, Le Lous M, et al. Measuring proximity to standard planes during fetal brain ultrasound scanning. ArXiv. 2024;abs/2404.07124.
- Yeung, P.-H.; Hesse, L.S.; Aliasi, M.; Haak, M.C.; Xie, W.; Namburete, A.I. Sensorless volumetric reconstruction of fetal brain freehand ultrasound scans with deep implicit representation. Med Image Anal. 2024, 94, 103147. [Google Scholar] [CrossRef]
- Dubey, G.; Srivastava, S.; Jayswal, A.K.; Saraswat, M.; Singh, P.; Memoria, M. Fetal Ultrasound Segmentation and Measurements Using Appearance and Shape Prior Based Density Regression with Deep CNN and Robust Ellipse Fitting. J. Imaging Informatics Med. 2024, 37, 247–267. [Google Scholar] [CrossRef]
- Pokaprakarn, T.; Prieto, J.C.; Price, J.T.; Kasaro, M.P.; Sindano, N.; Shah, H.R.; Peterson, M.; Akapelwa, M.M.; Kapilya, F.M.; Sebastião, Y.V.; et al. AI Estimation of Gestational Age from Blind Ultrasound Sweeps in Low-Resource Settings. NEJM Évid. 2022, 1. [Google Scholar] [CrossRef]
- Lee, L.H.; Bradburn, E.; Craik, R.; Yaqub, M.; Norris, S.A.; Ismail, L.C.; Ohuma, E.O.; Barros, F.C.; Lambert, A.; Carvalho, M.; et al. Machine learning for accurate estimation of fetal gestational age based on ultrasound images. npj Digit. Med. 2023, 6, 1–11. [Google Scholar] [CrossRef]
- Lee, C.; Willis, A.; Chen, C.; Sieniek, M.; Watters, A.; Stetson, B.; Uddin, A.; Wong, J.; Pilgrim, R.; Chou, K.; et al. Development of a Machine Learning Model for Sonographic Assessment of Gestational Age. JAMA Netw. Open 2023, 6, e2248685–e2248685. [Google Scholar] [CrossRef]
- Chen, C.; Yang, X.; Huang, Y.; Shi, W.; Cao, Y.; Luo, M.; Hu, X.; Zhu, L.; Yu, L.; Yue, K.; et al. FetusMapV2: Enhanced fetal pose estimation in 3D ultrasound. Med Image Anal. 2024, 91. [Google Scholar] [CrossRef]
- Yeung P-H, Aliasi M, Haak M, Xie W, Namburete AIL. Adaptive 3D Localization of 2D Freehand Ultrasound Brain Images. Paper presented at: Medical Image Computing and Computer Assisted Intervention – MICCAI 2022; 2022//, 2022; Cham.
- Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets. Paper presented at: Neural Information Processing Systems2014.
- Wang R, Bashyam V, Yang Z, et al. Applications of generative adversarial networks in neuroimaging and clinical neu roscience. Neuroimage. 2023;269:119898.
- Lasala, A.; Fiorentino, M.C.; Micera, S.; Bandini, A.; Moccia, S. Exploiting class activation mappings as prior to generate fetal brain ultrasound images with GANs. Annu Int Conf IEEE Eng Med Biol Soc. 2023;2023:1-4.
- Wolterink, J.M.; Mukhopadhyay, A.; Leiner, T.; Vogl, T.J.; Bucher, A.M.; Išgum, I. Generative Adversarial Networks: A Primer for Radiologists. RadioGraphics 2021, 41, 840–857. [Google Scholar] [CrossRef] [PubMed]
- Lasala, A.; Fiorentino, M.C.; Bandini, A.; Moccia, S. FetalBrainAwareNet: Bridging GANs with anatomical insight for fetal ultrasound brain plane synthesis. Comput. Med Imaging Graph. 2024, 116, 102405. [Google Scholar] [CrossRef] [PubMed]
- Iskandar M, Mannering H, Sun Z, et al. Towards Realistic Ultrasound Fetal Brain Imaging Synthesis. ArXiv. 2023;abs/2304.03941.
- Zhang, L.; Zhang, J. Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss. PeerJ Comput. Sci. 2022, 8, e873. [Google Scholar] [CrossRef] [PubMed]
- Eid MC, Yeung P-H, Wyburd MK, Henriques JF, Namburete AIL. RapidVol: Rapid Reconstruction of 3D Ultrasound Volumes from Sensorless 2D Scans. ArXiv. 2024;abs/2404.10766.
- Altmäe S, Sola-Leyva A, Salumets A. Artificial intelligence in scientific writing: a friend or a foe? Reprod Biomed Online. 2023;47(1):3-9.
- Bhayana, R. Chatbots and Large Language Models in Radiology: A Practical Primer for Clinical and Research Applica tions. Radiology. 2024;310(1):e232756.
- Grünebaum, A.; Chervenak, J.; Pollet, S.L.; Katz, A.; Chervenak, F.A. The exciting potential for ChatGPT in obstetrics and gynecology. Am. J. Obstet. Gynecol. 2023, 228, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, S.Y. Potential applications of ChatGPT in obstetrics and gynecology in Korea: a review article. Obstet. Gynecol. Sci. 2024, 67, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A. Unleashing the AI revolution: exploring the capabilities and challenges of large language models and text-to-image AI programs. Ultrasound Obstet. Gynecol. 2023, 62, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Titus, L.M. Does ChatGPT have semantic understanding? A problem with the statistics-of-occurrence strategy. Cogn. Syst. Res. 2024, 83. [Google Scholar] [CrossRef]
- Kopylov, L.G.; Goldrat, I.; Maymon, R.; Svirsky, R.; Wiener, Y.; Klang, E. Utilizing ChatGPT to facilitate referrals for fetal echocardiography. Fetal Diagn. Ther. 2024, 1–1. [Google Scholar] [CrossRef]
- Braun, E.-M.; Juhasz-Böss, I.; Solomayer, E.-F.; Truhn, D.; Keller, C.; Heinrich, V.; Braun, B.J. Will I soon be out of my job? Quality and guideline conformity of ChatGPT therapy suggestions to patient inquiries with gynecologic symptoms in a palliative setting. Arch. Gynecol. Obstet. 2023, 309, 1543–1549. [Google Scholar] [CrossRef]
- Haverkamp, W.; Tennenbaum, J.; Strodthoff, N. ChatGPT fails the test of evidence-based medicine. Eur. Hear. J. - Digit. Heal. 2023, 4, 366–367. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Rietveld, A.; Teunissen, P.; Hoogendoorn, M.; Bakker, P. What is the future of artificial intelligence in obstetrics? A qualitative study among healthcare professionals. BMJ Open 2023, 13, e076017. [Google Scholar] [CrossRef] [PubMed]
- Rahman R, Alam MGR, Reza MT, et al. Demystifying evidential Dempster Shafer-based CNN architecture for fetal plane detection from 2D ultrasound images leveraging fuzzy-contrast enhancement and explainable AI. Ultrasonics. 2023;132:107017.
- Harikumar, A.; Surendran, S.; Gargi, S. Explainable AI in Deep Learning Based Classification of Fetal Ultrasound Image Planes. Procedia Comput. Sci. 2024, 233, 1023–1033. [Google Scholar] [CrossRef]
- Pegios P, Lin M, Weng N, et al. Diffusion-based Iterative Counterfactual Explanations for Fetal Ultrasound Image Qual ity Assessment. ArXiv. 2024;abs/2403.08700.
- Chen, H.; Gomez, C.; Huang, C.-M.; Unberath, M. Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review. npj Digit. Med. 2022, 5, 1–15. [Google Scholar] [CrossRef]
- Jin, W.; Li, X.; Fatehi, M.; Hamarneh, G. Guidelines and evaluation of clinical explainable AI in medical image analysis. Med Image Anal. 2023, 84, 102684. [Google Scholar] [CrossRef]
- Sendra-Balcells C, Campello VM, Torrents-Barrena J, et al. Generalisability of fetal ultrasound deep learning models to low-resource imaging settings in five African countries. Sci Rep. 2023;13(1):2728.
- Tonni G, Grisolia G. Simulator, machine learning, and artificial intelligence: Time has come to assist prenatal ultrasound diagnosis. J Clin Ultrasound. 2023;51(7):1164-1165.
| Reference, year | country | GA (wks) | study size (n)* | data source |
type of method |
purpose /target |
task | Description of AI | clinical value*** |
|---|---|---|---|---|---|---|---|---|---|
| Rizzo et al., 2016 [34] | I | 21 (mean) | 120 | 3D | n. s. | SFHP (axial) biometry |
automated recognition of axial planes from 3D volumes | 5D CNS software | ++ |
| Rizzo et al., 2016 [35]** | I | 18-24 | 183 | 3D | n. s. | SFHP (axial/ sagittal/coronal) biometry |
evaluation of efficacy in recon- structing CNS planes in healthy and abnormal fetuses | 5D CNS+ software | +++ |
| Ambroise-Grandjean et al., 2018 [36] |
F | 17-30 | 30 | 3D | n. s. | SFHP (axial) biometry (TT, TC) |
automated identification of axial from 3DUS and to measurement BPD and HC | SmartPlanes CNS | ++ |
| Welp et al., 2020 [30]** | D | 15-36 | 1.110 | 3D | n. s. | SFHP (axial/ sagittal/coronal) biometry |
validating of a volumetric approach for the detailed assessment of the fetal brain | 5D CNS+ software | +++ |
| Pluym et al., 2021 [37] | USA | 18-22 | 143 | 3D | n. s. | SFHP (axial) biometry |
evaluation of accuracy of automated 3DUS for fetal intracranial measurements | SonoCNS software | ++ |
| Welp et al., 2022 [29]** | D | 16-35 | 91 | 3D | n. s. | SFHP/anomalies biometry |
evaluation of accuracy and reliability of a volumetric approach in abnormal CNS | 5D CNS+ software | +++ |
| Gembicki et al., 2023 [28]** | D | 18-36 | 129 | 3D | n. s. | SFHP (axial/ sagittal/coronal) biometry |
evaluation of accuracy and efficacy of AI-assisted biometric measurements of the fetal CNS | 5D CNS+ software, SonoCNS software |
++ |
| Han et al., 2024 [38] | CHN | 18-42 | 642 | 2D | DL | Biometry (incl. HC, BPD, FOD, CER, CM, Vp) |
automated measurement and quality assessment of nine biometric parameters | CUPID software | ++ |
| Yaqub et al., 2012 [39] | UK | 19-24 | 30 | 3D | ML | multi-structure detection | localization of four local brain structures in 3D US images | Random Forest Classifier | ++ |
| Cuingnet et al., 2013 [40] | UK | 19-24 | 78 volumes | 3D | ML | SFHP | fully automatic method to de- tect & align fetal heads in 3DUS | Random Forest Classifier, Template deformation |
++ |
| Sofka et al., 2014 [41] | CZ | 16-35 | 2089 volumes | 3D | ML | SFHP | automatic detection and measurement of structures in CNS volumes | Integrated Detection Network (IDN)/FNN | + |
| Namburete et al., 2015 [42] | UK | 18-34 | 187 | 3D | ML | sulcation/gyration | GA prediction | Regression Forest Classifier | ++ |
| Yaqub et al., 2015 [43] | UK | 19-24 | 40 | 3D | ML | SFHP | extraction & categorization unlabeled fetal US images | Random Forest Classifier | + |
| Baumgartner et al., 2016 [44] | UK | 18-22 | 201 | 2D | DL | SFHP (TT, TC) | retrieval of standard planes, saliency maps to extract bounding boxes of CNS anatomy | CNN | +++ |
| Sridar et al., 2016 [45] | IND | 18-20 | 85 | 2D | DL | structure detection | image classification & structure localization in US images | CNN | + |
| Yaqub et al., 2017 [46] | UK | 19-24 | 40 | 3D | DL | SFHP, CNS anomalies |
localization of CNS, structure detection, pattern learning | Random Forest Classifier | + |
| Qu et al., 2017 [47] | CHN | 16-34 | 155 | 2D | DL | SFHP | automated recognition of six standard CNS planes | CNN, Domain Transfer Learning |
++ |
| Namburete et al., 2018 [25] | UK | 18-34 | 739 images | 2D/3D | DL | structure detection | 3D brain localization, structural segmentation and alignment | multi-task CNN | ++ |
| Huang et al., 2018 [48] | CHN | 20-29 | 285 | 3D | DL | multi-structure detection | detection of CNS structures in 3DUS & measurement CER/CM | VP-Net | ++ |
| Huang et al., 2018 [49] | UK | 20-30 | 339 images | 2D | DL | structure detection (CC/CP) | to standardize intracranial anatomy & measurements | Region descriptor, Boosting classifier |
++ |
| van den Heuvel et al., 2018 [50] | NL | 10-40 | 1.334 images | 2D | ML | biometry (HC) | automated measurement of fetal head circumference | Random Forest Classifier Hough transform |
+ |
| Dou et al., 2019 [51] | CHN | 19-31 | 430 volumes | 3D | ML | SFHP/structure detection | automated localization of fetal brain standard planes in 3DUS | Reinforcement learning | ++ |
| Sahli et al., 2019 [52] | TUN | n/a | 86 | 2D | ML | SFHP | automated extraction of biometric measurements and classification normal/abnormal | SVM Classifier | ++ |
| Alansary et al., 2019 [53] | UK | n/a | 72 | 3D | ML/DL | SFHP/structure detection | localization of target landmarks in medical scans | Reinforcement learning deep Q-Net |
+ |
| Lin et al., 2019 [54] | CHN | 14-28 | 1.771 images | 2D | DL | SFHP/structure detection | automated localization of six landmarks & quality assessment | MF R-CNN | + |
| Bastiaansen et al., 2020 [55] | NL | 1st trimester | 30 | 2D/3D | DL | SFHP (TT) | fully automated spatial alignment and segmentation of embryonic brains in 3D US | CNN | + |
| Xu et al., 2020 [56] | CHN | 2nd/3rd trimester |
3.000 images | 2D | DL | SFHP |
simulation of realistic 3rd- from 2nd-trimester images | Cycle-GAN | ++ |
| Ramos et al., 2020 [57] | MEX | n/a | 78 images | 2D | DL | SFHP biometry (TC) GA prediction |
detection and localization of cerebellum in US images, biometry for GA prediction | YOLO | + |
| Maraci et al., 2020 [58] | UK | 2nd trim | 8.736 images | 2D | DL | biometry (TC) GA prediction |
estimation of GA through automatic detection and measurement of the TCD | CNN | + |
| Chen et al., 2020 [59] | CHN | n/a | 2.900 images | 2D | DL | SFHP biometry (TV) |
to demonstrate the superior performance of DL pipeline over manual measurement | Mask R-CNN ResNet50 |
+ |
| Xie et al., 2020 [60] | CHN | 18-32 | 92.748 | 2D | DL | SFHP (TV, TC) CNS anomalies |
image classification as normal or abnormal, segmentation of craniocerebral regions | U-Net VGG-Net |
++ |
| Xie et al., 2020 [61] | CHN | 22-26 | 12.780 | 2D | DL | SFHP, CNS anomalies |
binary image classification as normal or abnormal in standard axial planes | CNN | ++ |
| Zeng et al., 2021 [62] | CHN | n/a | 1.354 images | 2D | DL | biometry | image segmentation for automatic HC biometry | DAG V-Net | + |
| Burgos Artizzu et al., 2021 [63] | ESP | 16-42 | 12.400 images (6.041 CNS) |
2D | DL/ML | SFHP | evaluation of the maturity of current DL classification tested in a real clinical environment | 19 different CNNs MC Boosting algorithm HOG classifier |
++ |
| Gofer et al., 2021 [64] | IL | 12-14 | 80 images | 2D | ML | SFHP/structure detection (CP) | classification 1st trimester CNS US images and earlier diagnosis of fetal brain abnormalities | Statistical Region Merging Trainable Weka Segmentation |
+ |
| Skelton et al., 2021 [65] | UK | 20-32 | 48 | 2D/3D | DL | SFHP | assessment of image quality of CNS planes automatically extracted from 3D volumes | Iterative Transformation Network (ITN) | ++ |
| Fiorentino et al., 2021 [] | I | 10-40 | 1.334 images | 2D | DL | biometry (HC) | head localization and centering | multi-task CNN | ++ |
| Yeung et al., 2021 [66] | UK | 18-22 | 65 volumes | 2D/3D | DL | SFHP/structure detection | mapping 2D US images into 3D space with minimal annotation | CNN | |
| Montero et al., 2021 [67] | ESP | 18-40 | 8.747 images | 2D | DL | SFHP | generation of synthetic US images via GANs and to improve SFHP classification | Style-GAN | ++ |
| Moccia et al., 2021 [68] | I | 10-40 | 1.334 images | 2D | DL | biometry (HC) | fully automated method to HC delineation | Mask-R2CNN | + |
| Wyburd et al., 2021 [69] | UK | 19-30 | 811 images | 3D | DL | structure detection/ GA prediction |
automated method to predict GA by cortical development | VGG-Net ResNet-18 ResNet-10 |
++ |
| Shu et al., 2022 [70] | CHN | 18-26 | 959 images | 2D | DL | SFHP (TC) | automated segmentation of the cerebellum, comparison with other algorithms | ECAU-Net | + |
| Hesse et al., 2022 [71] | UK | 18-26 | 278 images | 3D | DL | structure detection | automated segmentation of four CNS landmarks | CNN | +++ |
| Di Vece et al., 2022 [72] | UK | 20-25 | 6 volumes | 2D | DL | SFHP/structure detection | estimation of the 6D pose of arbitrarily oriented US planes | ResNet-18 | ++ |
| Lin et al., 2022 [73] | CHN | 18-40 | 16.297/166 | 2D | DL | structure detection | detection of different patterns of CNS anomalies in standard planes | PAICS YOLOv3 |
+++ |
| Sreelakshmy et al., 2022 [74]‡ | IND | 18-20 | 740 images | 2D | DL | biometry (TC) | segmentation the cerebellum from fetal brain images | ResU-Net | - |
| Yu et al., 2022 [56] | CHN | n/a | 3.200 images | 2D/3D | DL | SFHP | automated generation of coronal and sagittal SPs from axial planes derived from 3DVol | RL-Net | ++ |
| Alzubaidi et al., 2022 [75] | QTAR | 18-40 | 551 | 2D | DL | biometry (HC) | GA and EFW prediction based on fetal head images | CNN, Ensemble Transfer Learning | ++ |
| Coronado-Gutiérrez et al., 2023 [76] |
ESP | 18-24 | 12.400 images | 2D | DL | SFHP, multi-structure delineation | automated measurement of brain structures | DeepLab CNNs | ++ |
| Ghabri et al., 2023 [20] | TN | n/a | 896 | 2D | DL | SFHP | to classify fetal planes/Accurate fetal organ classification | CNN: DenseNet169 | ++ |
| Lin et al., 2023 [77] | CHN | n/a | 558 (709 (images/videos) | 2D | DL | SFHP | improved detection efficacy of fetal intracranial malformations | PAICS YOLO |
+++ |
| Rauf et al., 2023 [78] | PK | n.s. | n.s. | 2D | DL | SFHP | Bayesian optimization for the classification of brain and common maternal fetal ultrasound planes | Bottleneck residual CNN | + |
| Alzubaidi et al., 2023 [79] | QTAR | 18-40 | 3.832 images | 2D | DL | SFHP | Evaluation of a Large-scale annotation dataset for head biometry in US images | Multi-task CNN | + |
| Alzubaidi et al., 2024 [80] | QTAR | 18-40 | 3.832 images (20,692 images) |
2D | DL | biometry | advanced segmentation techniques for head biometrics in US imagery |
FetSAM Prompt-based Learning |
+ |
| Di Vece et al., 2024 [81] | UK | 20-25 | 6 volumes | 2D/3D | DL | SFHP (TV) | detection & segmentation of the brain; plane pose regression; measurement of proximity to target SP | ResNet-18 | ++ |
| Yeung et al., 2024 [82] | UK | 19-21 | 128.256 images | 2D | DL | SFHP | reconstruction of brain volumes from freehand 2D US sequences | PlaneInVol ImplicitVol |
++ |
| Dubey et al., 2024 [83] | IND | 10-40 | 1.334 images | 2D | DL | biometry (HC) | Automated head segmentation and HC measurement | DR-ASPnet, Robust Ellipse Fitting |
++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
