Submitted:
26 July 2024
Posted:
26 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Vehicle Chassis Dynamometer Experiments
2.2. Photochemical Smog Chamber
2.2.1. Facility
2.2.2. Light Source
2.2.3. Instrumentation
2.2.4. Experimental Procedures
2.2.5. Data analysis
3. Results and Discussion
3.1. Primary Gas and Particle Emissions
3.2. Primary and Photochemical Reacted Exhaust
3.3. Effects of Ammonia Mitigation
3.3.1. NH4NO3 Particle Formation
3.3.2. Acidity Formation
3.3.3. SOA Formation
3.3.4. O3 Formation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujitani, Y.; Takahashi, K.; Saitoh, K.; Fushimi, A.; Hasegawa, S.; Kondo, Y.; Tanabe, K.; Takami, A.; Kobayashi, S. Contribution of industrial and traffic emissions to ultrafine, fine, coarse particles in the vicinity of industrial areas in Japan. Environ. Adv. 2021, 5, 100101. [Google Scholar] [CrossRef]
- Achebak, H.; Garatachea, R.; Pay, M.T. Jorba, O.; Guevara, M.; García-Pando, C.P.; Ballester, J. Geographic sources of ozone air pollution and mortality burden in Europe. Nat. Med. 2024, 30, 1732–1738. [Google Scholar] [CrossRef] [PubMed]
- Fujitani, Y.; Furuyama, A.; Tanabe, K.; Hirano, S. Comparison of oxidative abilities of PM2.5 collected at traffic and residential sites in Japan. Contribution of transition metals and primary and secondary aerosols. Aerosol Air Qual. Res. 2017, 17, 574–587. [CrossRef]
- Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G. , Kampf, C.J.; Fushimi, A.; Enami, S.; Arangio, A. M.; Frohlich-Nowoisky, J.; Fujitani, Y.; Furuyama, A.; Lakey, P.S.J.; Lelieveld, J.; Lucas, K.; Morino, Y.; Poschl, U.; Takaharna, S.; Takami, A.; Tong, H.J.; Weber, B.; Yoshino, A.; Sato, K. Aerosol health effects from molecular to global scales, Environ. Sci. Technol., 2017, 51, 13545–13567. [CrossRef]
- Künzi, L.,.; Krapf, M.; Daher, N.; Dommen, J.; Jeannet, N.; Schneider, S.; Platt, S.; Slowik, J. G.; Baumlin, N.; Salathe, M.; Prévôt, A.S.H.; Kalberer, M.; Strähl, C.; Dümbgen, L.; Sioutas, C.; Baltensperger, U.; Geiser. M. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia. Sci Rep. 2015, 5, 11801. [CrossRef]
- Lau, Y.S.; Poon, H.Y.; Organ, B.; Chuang, H.C.; Chan, M.-N.; Guo, H.; Ho, S.S.; Ho, K.-F. Toxicological effects of fresh and aged gasoline exhaust particles in Hong Kong. J. Hazard Mater. 2023, 441, 129846. [Google Scholar] [CrossRef] [PubMed]
- Hayes, P.L.; Carlton, A.G.; Baker, K.R.; Ahmadov, R.; Washenfelder, R.A.; Alvarez, S.; Rappenglück, B.; Gilman, J.B.; Kuster, W.C.; de Gouw, J.A.; Zotter, P.; Prévôt, A.S.H.; Szidat, S.; Kleindienst, T.E.; Offenberg, J.H.; Ma, P.K.; Jimenez, J.L. Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010, Atmos. Chem. Phys. 2015, 15, 5773–5801. [Google Scholar] [CrossRef]
- Jathar, S.H.; Gordon, T.D.; Hennigan, C.J.; Pye, H.O.; Pouliot, G.; Adams, P.J.; Donahue, N.M.; Robinson, A.L. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States. Proc. Natl. Acad. Sci. U.S.A., 2014, 111, 10473–10478. [CrossRef]
- Jathar, S.H.; Woody, M.; Pye, H.O.T.; Baker, K.R.; Robinson, A.L. Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions. Atmos. Chem. Phys., 2017, 17, 4305–4318. [CrossRef]
- Gentner, D.R.; Jathar, S.H.; Gordon, T.D.; Bahreini, R.; Day, D.A.; Haddad, I.E.; Haynes, P.L.; Pieber, S.M.; Platt, S.M.; De Gouw, J.; Goldstein, A.H.; Harley, R.A.; Jimenez, J.L.; Prevot, A.S.H.; Robinson, A.L. Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions. Environ. Sci. Technol., 2017, 51, 1074–1093. [CrossRef]
- Dunmore, R.E.; Hopkins, J.R.; Lidster, R.T.; Lee, J.D.; Evans, M.J.; Rickard, A.R.; Lewis, A.C.; Hamilton, J.F. ; Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities, Atmos. Chem. Phys., 2015, 15, 9983–9996. [CrossRef]
- Platt, S.M.; El Haddad, I.; Pieber, M.; Zardini, A.A.; Suarez-Bertoa, R.; Clairotte, M.; Daellenbach, K.R.; Huang, R.J.; Slowwik, J.G.; Hellebust, S.; et al. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Sci. Rep. 2017, 7, 4926. [Google Scholar] [CrossRef] [PubMed]
- Nordin, E.Z.; Eriksson, A. C.; Roldin, P.; Nilsson, P.T.; Carlsson, J.E.; Kajos, M.K.; Hellén, H.; Wittbom, C.; Rissler, J.; Löndahl, J.; Swietlicki, E.; Svenningsson, B.; Bohgard, M.; Kulmala, M.; Hallquist, M.; Pagels, J.H. Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber, Atmos. Chem. Phys., 2013, 13, 6101–6116. [CrossRef]
- Platt, S.M.; El Haddad, I.; Zardini, A.A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J.G.; Temime-Roussel, B.; Marchand, N.; Ježek, I.; Drinovec, L.; Močnik, G.; Möhler, O.; Richter, R.; Barmet, P.; Bianchi, F.; Baltensperger, U.; Prévôt, A.S.H. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber, Atmos. Chem. Phys. 2013, 13, 9141–9158. [Google Scholar] [CrossRef]
- Gordon, T.D.; Presto, A.A.; May, A.A.; Nguyen, N.T.; Lipsky, E.M.; Donahue, N.M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M.M.; Robinson, A.L. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles, Atmos. Chem. Phys., 2014, 14, 4661–4678. [CrossRef]
- Vu, D.; Roth, P.; Berte, T.; Yang, J.; Cocker, D.; Durbin, T.D.; Karavalakis, G.; Asa-Awuku, A. Using a new Mobile Atmospheric Chamber (MACh) to investigate the formation of secondary aerosols from mobile sources: The case of gasoline direct injection vehicles. J. Aerosol Sci. 2019, 133, 1–11. [Google Scholar] [CrossRef]
- Zhao, Y.; Saleh, R.; Saliba, G.; Presto, A.A.; Gordon, T.D.; Drozd, G.T.; Goldstein, A.H.; Donahue, N.M.; Robinson, A.L. Reducing secondary organic aerosol formation from gasoline vehicle exhaust. Proc. Natl. Acad. Sci. U.S.A., 2017, 114, 6984–6989. [CrossRef]
- Morino, Y.; Li, Y.; Fujitani, Y.; Sato, K.; Inomata, S.; Tanabe, K.; Jathar, S.H.; Kondo, Y.; Nakayama, T.; Fushimi, A.; Takami, A.; Kobayashi, S. Secondary organic aerosol formation from gasoline and diesel vehicle exhaust under light and dark conditions. Environ. Sci. Atmos. 2022, 46–64. [CrossRef]
- Liu, T., Wang, X., Deng, W., Hu, Q., Ding, X., Zhang, Y., He, Q., Zhang, Z., Lü, S., Bi, X., Chen, J., and Yu, J.: Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber. Atmos. Chem. Phys., 2015, 15, 9049–9062. [CrossRef]
- Pieber, S.M.; Kumar, N.K.; Klein, F.; Comte, P.; Bhattu, D.; Dommen, J.; Bruns, E.A.; Kılıç, D.; El Haddad, I.; Keller, A.; Czerwinski, J.; Heeb, N.; Baltensperger, U.; Slowik, J.G.; Prévôt, A.S.H. Gas-phase composition and secondary organic aerosol formation from standard and particle filter-retrofitted gasoline direct injection vehicles investigated in a batch and flow reactor, Atmos. Chem. Phys., 2018, 18, 9929–9954. [CrossRef]
- Roth, P.; Yang, J.; Fofie, E.; Cocker, D.R.; Durbin, T.D.; Brezny, R.; Geller, M.; Asa-Awuku, A.; Karavalakis, G. Catalyzed gasoline particulate filters reduce secondary organic aerosol production from gasoline direct injection vehicles. Environ. Sci. Technol. 2019, 53, 3037–3047. [Google Scholar] [CrossRef] [PubMed]
- Drozd, G.T.; Zhao, Y.; Saliba, G.; Frodin, B.; Maddox, C.; Oliver Chang, M.C.; Maldonado, H.; Sardar, S.; Weber, R.J.; Robinson, A.L.; et al. Detailed speciation of intermediate volatility and semivolatile organic compound emissions from gasoline vehicles: effects of cold-starts and implications for secondary organic aerosol formation. Environ. Sci. Technol., 2019, 53, 1706–1714. [CrossRef]
- Karjalainen, P.; Timonen, H.; Saukko, E.; Kuuluvainen, H.; Saarikoski, S.; Aakko-Saksa, P.; Murtonen, T.; Bloss, M.; Dal Maso, M.; Simonen, P.; Ahlberg, E.; Svenningsson, B.; Brune, W.H.; Hillamo, R.; Keskinen, J.; Rönkkö, T. Time-resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car, Atmos. Chem. Phys., 2016, 16, 8559–8570.
- Suarez-Bertoa, R.; Zardini, A. A.; Platt, S. M.; Hellebust, S.; Pieber, S. M.; El Haddad, I.; Temime-Roussel, B.; Baltensperger, U.; Marchand, N.; Prévôt, A. S. H.; Astorga, C. Primary Emissions and Secondary Organic Aerosol Formation from the Exhaust of a Flex-Fuel (Ethanol) Vehicle. Atmos. Environ. 2015, 117, 200– 211. [CrossRef]
- Roth, P.; Yang, J.; Peng, W.; Cocker III, D.R.; Durbin, T.D.; Asa-Awuku, A.; Karavalakis, G. Intermediate and high ethanol blends reduce secondary organic aerosol formation from gasoline direct injection vehicles. Atmos. Environ. 2020, 220, 117064. [Google Scholar] [CrossRef]
- Hui Wang, Song Guo, Ying Yu, Ruizhe Shen, Wenfei Zhu, Rongzhi Tang, Rui Tan, Kefan Liu, Kai Song, Wenbin Zhang, Zhou Zhang, Shijin Shuai, Hongming Xu, Jing Zheng, Shiyi Chen, Shaomeng Li, Limin Zeng, Zhijun Wu. Secondary aerosol formation from a Chinese gasoline vehicle: Impacts of fuel (E10, gasoline) and driving conditions (idling, cruising). Science of The Total Environment 2021, 795, 148809. [CrossRef]
- Hartikainen, A. , Ihalainen, M. , Yli-Pirila, P., Hao, L., Kortelainen, M., Pieber, S., and Sippula, O.: Photochemical Transformation and Secondary Aerosol Formation Potential of Euro6 Gasoline and Diesel Passenger Car Exhaust Emissions, J. Aerosol Sci. 2023, 171, 106159. [Google Scholar] [CrossRef]
- Naomi J. Farren, Jack Davison, Rebecca A. Rose, Rebecca L. Wagner, and David C. Carslaw. Underestimated ammonia emissions from road vehicles. Environ. Sci. Technol., 2020, 54 (24), 15689-15697. [CrossRef]
- Suarez-Bertoa, R.; Zardini, A.A.; Astorga, C. Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle. Atmos. Environ., 2014, 97, 43–53. [CrossRef]
- Bajwa, A.; Shankar, V.; Leach, F. Ammonia emissions from combustion in gasoline engines, SAE Technical Paper 2023-01-1655, 2023. [CrossRef]
- Kaltsonoudis, C.; Jorga, S.D.; Louvaris, E.; Florou, K.; Pandis, S.N. A portable dual-smog-chamber system for atmospheric aerosol field studies. Atmos. Meas. Tech. 2019, 12, 2733–2743. [Google Scholar] [CrossRef]
- Kelly, N.A. Characterization of Fluorocarbon-Film Bags as Smog Chambers. Environ. Sci. Technol., 1982, 16, 11, 763–770. [CrossRef]
- Paulsen, D., Dommen, J., Kalberer, M., Prevot, A. S. H., Richter, R., Sax, M., Steinbacher, M.,Weingartner, E., and Baltensperger, U.: Secondary organic aerosol formation by irradiation of 1,3,5- trimethylbenzene-NOx-H2O in a new reaction chamber for atmospheric chemistry and physics, Environ. Sci. Technol., 2005, 39, 2668–2678. https://pubs.acs.org/doi/10.1021/es0489137.
- Wang, X., Liu, T., Bernard, F., Ding, X., Wen, S., Zhang, Y., Zhang, Z., He, Q., Lü, S., Chen, J., Saunders, S., and Yu, J.: Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation, Atmos. Meas. Tech., 2014, 7, 301–313. [CrossRef]
- Peng, J., Hu, M., Du, Z., Wang, Y., Zheng, J., Zhang, W., Yang, Y., Qin, Y., Zheng, R., Xiao, Y., Wu, Y., Lu, S., Wu, Z., Guo, S., Mao, H., and Shuai, S.: Gasoline aromatics: a critical determinant of urban secondary organic aerosol formation, Atmos. Chem. Phys. 2017, 17, 10743–10752, https://doi.org/10.5194/acp-17-10743-2017. [CrossRef]
- Carter, W.P.; Cockeriii, D.R., III; Fitz, D.R.; Malkina, I.L.; Bumiller, K.; Sauer, C.G.; Pisano, J.; Bufalino, C.; Song, C. A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation. Atmos. Environ., 2005, 39, 7768–7788. [CrossRef]
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 2004, 4, 1461–1738. [CrossRef]
- Atkinson, R. Arey, J. atmospheric degradation of volatile organic compounds, Chem. Rev. 2003, 4605–4638. [CrossRef]
- William P.L. Carter. Development of the SAPRC-07 chemical mechanism. Atmos. Environ., 2010, 44, 5324–5335. [CrossRef]
- Nenes, A.; Pandis S.N.; Pilinis, C. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geoch., 1998, 4, 123-152. [CrossRef]
- Xing, J., Shao, L., Zhang, W., Peng, J., Wang, W., Shuai, S., Hu, M., and Zhang, D.: Morphology and size of the particles emitted from a gasoline-direct-injection-engine vehicle and their ageing in an environmental chamber, Atmos. Chem. Phys. 2020, 20, 2781–2794. [CrossRef]
- McMurry, P.H.; Grosjean, D. Gas and Aerosol Wall Losses in Teflon Film Smog Chambers, Environ. Sci. Technol. 1985, 1985. 19, 1176–1182. [Google Scholar] [CrossRef]
- Mendoza, D.L.; Hill, L.D.; Blair, J.; Crosman, E.T. A Long-Term Comparison between the AethLabs MA350 and Aerosol Magee Scientific AE33 Black Carbon Monitors in the Greater Salt Lake City Metropolitan Area. Sensors 2024, 24, 965. [Google Scholar] [CrossRef] [PubMed]
- Cocker, D; Flagan, R; Seinfeld, J. State-of-the-art chamber facility for studying atmospheric aerosol chemistry. Environ. Sci. Technol., 2001, 35, 2594–2601. [CrossRef]
- Gordon, T.D.; Presto, A.A.; Nguyen, N.T.; Robertson, W.H.; Na, K.; Sahay, K.N.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; et al. Secondary Organic Aerosol Production from Diesel Vehicle Exhaust: Impact of Aftertreatment, Fuel Chemistry and Driving Cycle. Atmos. Meas. Tech. 2014, 14, 4643–4659. [Google Scholar] [CrossRef]
- Pang, Y.; Turpin, B. J.; Gundel, L. A. On the Importance of Organic Oxygen for Understanding Organic Aerosol Particles. Aerosol Sci. Technol. 2006, 40, 128–133. [Google Scholar] [CrossRef]
- Aiken, A.C.; DeCarlo, P.F.; Jimenez, J.L. Elemental Analysis of Organic Species with Electron Ionization High-Resolution Mass Spectrometry. Anal. Chem. 2007, 79, 8350–8358. [Google Scholar] [CrossRef]
- Aiken, A.C; DeCarlo, P.F.; Kroll, J.H.; Worsnop, D.R.; Huffman, J.A; Docherty, K.S.; Ulbrich, I.M.; Mohr, C.; Kimmel, J.R.; Sueper, D.; Sun, Y.; Zhang, Q.; Trimborn, A.; Northway, M.; Ziemann, P.J.; Canagaratna, M.R.; Onasch, T.B.; Alfarra, M.R.; Prevot, A.S.H.; Dommen, J.; Duplissy, J.; Metzger, A.; Baltensperger, U.; Jimenez, J.L. O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environ. Sci. Technol. 2008, 42, 4478–4485. [Google Scholar] [CrossRef] [PubMed]
- Hayes P.L.; Ortega, A.M.; Cubison, M.J.; Froyd, K.D.; Zhao, Y.; Cliff, S.S.; Hu, W.W.; Toohey, D.W.; Flynn, J.H.; Lefer, B.L.; et al. Organic Aerosol Composition and Sources in Pasadena, California, during the 2010 CalNex Campaign. J. Geophys. Res. Atmos. 2013, 118:9233–9257. [CrossRef]
- Park G, Kim K, Park T, Kang S, Ban J, Choi S, et al. Primary and Secondary Aerosols in Small Passenger Vehicle Emissions: Evaluation of Engine Technology, Driving Conditions, and Regulatory Standards. Environ. Pollut. 2021, 286, 117195. [CrossRef]
- Nakamura, K.; Dardiotis, C.; Kandlhofer, C.; Arndt, M. Challenges related to the measurement of particle emissions of gasoline direct injection engines under cold-start and low-temperature conditions. Int. J. Auto. Eng., 2019, 10, 332–339. [CrossRef]
- Yang, J.; Roth, P.; Durbin, T. D.; Johnson, K. C.; Cocker, D. R., III; Asa-Awuku, A.; Brezny, R.; Geller, M.; Karavalakis, G. Gasoline particulate filters as an effective tool to reduce particulate and PAH emissions from GDI vehicles: A case study with two GDI vehicles. Environ. Sci. Technol. 2018, 52, 3275−3284. https://pubs.acs.org/doi/abs/10.1021/acs.est.7b05641.
- Calvert, J.G.; Stockwell, W.R. Acid generation in the troposphere by gas-phase chemistry. Environ. Sci. Technol., 1983, 17, pp. 428A–443A. https://pubs.acs.org/doi/10.1021/es00115a002.
- Stockwell, W.R.; Kirchner, F.; Kuhn, M.; Seefeld, S. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res.-Atmos., 1997, 102, 25847–25879. [CrossRef]
- Geyer, A.; Alicke, B.; Ackermann, R.; Martinez, M.; Harder, H.; Brune, W.; Carlo, P. di; Williams, E.; Jobson, T.; Hall, S.; Shetter, R.; Stutz, J. Direct observations of daytime NO3. Implications for urban boundary layer chemistry, J. Geophys. Res.-Atmos.,2003, 108, 4368. [CrossRef]
- Brown, S.S.; Osthoff, H.D.; Stark, H.; Dubé, W.P.; Ryerson, T.B.; Warneke, C.; de Gouw, J.A.; Wollny, A.G.; Parrish, D.D.; Fehsenfeld, F.C.; Ravishankara. A.R. Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry. J. Photochem. Photobiol. A Chem., 2005, 176, 270–278. [CrossRef]
- Osthoff, H.D.; Sommariva, R.; Baynard, T.; Pettersson, A.; Williams, E.J.; Lerner, B.M.; Roberts, J.M.; Stark, H.; Goldan, P.D.; Kuster, W.C.; Bates, T.S.; Coffman, D.; Ravishankara, A.R.; Brown, S.S. Observation of daytime N2O5 in the marine boundary layer during New England Air Quality Study–Intercontinental Transport and Chemical Transformation 2004, J. Geophys. Res.-Atmos., 2006, 111, D23S14. [CrossRef]
- Meng, Z.; Dabdub, D.; Seinfeld, J.H. Chemical coupling between atmospheric ozone and particulate matter. Science, 1997, 277, 116–119. [CrossRef]
- Stelson, A.W.; Seinfeld. J.H.; Thermodynamic prediction of the water activity, NH4HO3 dissociation constant, density and refractive index for the NH4NO3–(NH4)2SO4H2O system at 25°C. Atmos. Environ., 1982, 16, 2507–2514. [CrossRef]
- Stelson, A.W.; Seinfeld, J.H. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmos. Environ., 1982, 16, 983–992. [CrossRef]
- Stelson, A.W.; Seinfeld, J.H. Relative humidity and pH dependence of the vapor pressure of ammonium nitrate–nitric acid solutions at 25 degrees C. Atmos. Environ., 1982, 16, 993–1000. [Google Scholar] [CrossRef]
- Gong, J.; Rutland, C. Three way catalyst modeling with ammonia and nitrous oxide kinetics for a lean burn spark ignition direct injection (SIDI) gasoline engine. SAE Tech. Pap. Ser., 2013, 2013−01−1572. [CrossRef]
- Heeb, N.V.; Forss, A.M.; Bruhlmann, S.; Luscher, R.; Saxer, C. J.; Hug, P. Three-way catalyst-induced formation of ammonia-velocity and acceleration-dependent emission factors. Atmos. Environ., 2006, 40, 5986−5997. [CrossRef]
- Gandhi, H.S.; Graham, G.W.; McCabe, R.W. Automotive exhaust catalysis. J. Catal., 2003, 216, 433−442. [CrossRef]
- Schlatter, J.C.; Taylor, K.C. Platinum and palladium addition to supported rhodium catalysts for automotive emission control. J. Catal., 1977, 49, 42–50. [CrossRef]
- Kobylinski, T.P., Taylor, B.W. The catalytic chemistry of nitric oxide: II. Reduction of nitric oxide over noble metal catalysts. J. Catal., 1974, 33 (1974), 376–384. [CrossRef]
- Renème, Y.; Dhainaut, F.; Granger, P. Kinetics of the NO/H2/O2 reactions on natural gas vehicle catalysts—Influence of Rh addition to Pd. Appl. Catal. B Environ., 2012, 111–112, pp. 424−432. [CrossRef]
- Na, K.; Song, C.; Switzer, C.; Cocker, D.R. Effect of ammonia on secondary organic aerosol formation from α-pinene ozonolysis in dry and humid conditions. Environ. Sci. Technol., 2007, 41, 6096–6102. [CrossRef]
- Na, K.; Song, C.; Cocker, D.R. Formation of secondary organic aerosol from the reaction of styrene with ozone in the presence and absence of ammonia and water. Atmos. Environ., 2006, 40, 1889–1900. [CrossRef]
- Qiao, M.; Xiaoxiao, L.; Chengqiang, Y.; Bo, L.; Yanbo, G.; Weijun, Z. The influences of ammonia on aerosol formation in the ozonolysis of styrene: roles of Criegee intermediate reactions. R. Soc. Open Sci., 2018, 5172171. [CrossRef]
- McDonald, B.C.; de Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; Cui, Y.Y.; Kim, S.-W.; Gentner, D.R.; Isaacman-Vanwertz, G.; Goldstein, A.H.; Harley, R.A.; Frost, G.J.; Roberts, J.M. Ryerson, T.B.; Trainer, M. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science, 2018, 359760−764. [CrossRef]
- Srivastava, D.; Vu, T.V.; Tong, S.; Shi, Z.; Harrison, R.M. Formation of secondary organic aerosols from anthropogenic precursors in laboratory studies. npj Clim. Atmos. Sci., 2022, 5, 22. [CrossRef]
- Pankow, J.F. : An absorption-model of gas-particle partitioning of organic compounds in the atmosphere, Atmos. Environ., 1994, 28, 185–188. [CrossRef]
- Pankow, J.F. : An absorption-model of the gas aerosol partitioning involved in the formation of secondary organic aerosol, Atmos. Environ., 1994, 28, 189–193. [CrossRef]
- Odum, J.R.; Jungkamp, T.P.W.; Griffin, R.J.; Forstner, H.J.L.; Flagan, R.C.; Seinfeld, J.H. Aromatics, reformulated gasoline, and atmospheric organic aerosol formation. Environ. Sci. Technol., 1997, 31, 1890–1897. [CrossRef]
- Takekawa, H., Minoura, H., and Yamazaki, S. Temperature Dependence of Secondary Organic Aerosol Formation by Photo-Oxidation of Hydrocarbons. Atmos Environ., 2003, 37, 3413–3424. [CrossRef]
- Svendby, T.M., Lazaridis, M., Tørseth, K. Temperature dependent secondary organic aerosol formation from terpenes and aromatics. J. Atmos. Chem., 2008, 59, 25-46. [CrossRef]
- Bao, Z.E.; Xu, H.F.; Li, K.W.; Chen, L.H.; Zhang, X.; Wu, X.C.; Gao, X.; Azzi, M.; Cen, K.F. Effects of NH3 on secondary aerosol formation from toluene/NOx photo-oxidation in different O3 formation regimes. Atmos. Environ., 2021, 261, 11. [CrossRef]
- Carter, W.P.L.; Atkinson, R. Computer modeling study of incremental hydrocarbon reactivity, Environ. Sci. Technol., 1989, 23, 864–880. [CrossRef]
- Chang, T.Y.; Rudy, S.J. Ozone-forming potential of organic emissions from alternative-fueled vehicles. Atmos. Environ., 1990, 24, 2421–2430. [CrossRef]
- Carter, W.P.L. Development of ozone reactivity scales for volatile organic compounds, J. Air Waste Manage., 1994, 44, 881–899. [CrossRef]
- Venecek, M.A.; Carter, W.P.L.; Kleeman, M.J. Updating the SAPRC maximum incremental reactivity (MIR) scale for the United States from 1988 to 2010. J. Air Waste Manage., 2018, 68, 1301–1316. [CrossRef]
- Zhang, Y.; Xue, L.; Carter, W.P.L.; Pei, C.; Chen, T.; Mu, J.; Wang, Y.; Zhang, Q.; Wang, W. Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity. Atmos. Chem. Phys., 2021, 21, 11053–11068. [CrossRef]
- Yamada, H.; Inomata, S.; Tanimoto, H. Refueling emissions from cars in Japan: Compositions, temperature dependence and effect of vapor liquefied collection system. Atmos. Environ. 2015, 120, 455– 462. [CrossRef]
- Yamada, H.; Inomata, S.; Tanimoto, H.; Hata, H.; Tonokura, K. Estimation of refueling emissions based on theoretical model and effects of E10 fuel on refueling and evaporative emissions from gasoline cars. Sci. Total Environ. 2018, 622, 467–473. [Google Scholar] [CrossRef]
- Black, F.; Tejada, S.; Gurevich, M. Alternative fuel motor vehicle tailpipe and evaporative emissions composition and ozone potential. J. Air & Waste Manag. Assoc., 1998, 48, 578–591. [CrossRef]
- Kajima, K.; Hirota, T.; Yakushiji, K.; Iwakiri, Y.; Oda, K.; Akutsu, Y. Effect of reformulated gasoline and methanol on exhaust emissions. SAE Technical Paper 912431, 1991. [Google Scholar] [CrossRef]
- Hata, H.; Okada, M.; Funakubo, C.; Hoshi, J. Tailpipe VOC Emissions from late model gasoline passenger vehicles in the Japanese market. Atmosphere 2019, 10, 621. [Google Scholar] [CrossRef]
- Carter, W.P.L.; Heo, G. Development of revised SAPRC aromatics mechanisms. Report to the California Air Resources Board Contracts No. 07-730 and 08-326, April 12, 2012. Available at https://intra.engr.ucr.edu/~carter/SAPRC/scales11.xls.
- Carter, W.P.L.; Heo, G. Development of revised SAPRC aromatic mechanisms. Atmos. Environ., 2013, 77, 404–414. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
