Submitted:
15 July 2024
Posted:
16 July 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
- We propose the FFA attack, which uses the high-quality prediction of the ODs as the foreground, extracts shallow features using the ODs’ backbone network, and approximates the features of the input foreground image towards the features of the hybrid foreground image only by changing the pixels in the foreground part of the image, which achieves the targetless attack;
- We replaced the hybrid image with an image of the specific class, constructed the target foreground based on the high-quality prediction of the ODs, extracted the shallow features of the target foreground using the backbone network as well, and later approximated the input foreground features towards the target foreground features to achieve the targeted attack;
- The results of attacks on seven rotating ODs on the RSOD datasets DOTA and UCAS-AOD demonstrate that our method can produce AEs with higher attack capability, higher transferability, and higher imperceptibility.
2. Related Work
2.1. Adversarial Attacks in Image Classification
2.2. Adversarial Attacks in Object Detection
2.3. Adversarial Attacks in Remote Sensing
3. Methodology
3.1. Problem Analysis
3.1.1. Location of the Perturbations
3.1.2. Magnitude of the Perturbations
3.2. Overview of the Methodology
3.3. Foreground Feature Approximation (FFA) Attack
3.3.1. Targetless Attack
| Algorithm 1: Foreground Feature Approximation (FFA). |
|
3.3.2. Targeted Attack
4. Experiments
4.1. Experimental Preparation
4.1.1. Datasets
4.1.2. Detectors
4.1.3. Evaluation Metrics
4.1.4. Parameter Setting
4.2. Targetless Attack
4.3. Targeted Attack
4.3.1. White Box Attack Performance
4.3.2. Transferability Experiments
4.3.3. Imperceptibility and Attack Speed Test
4.4. Effect of Iteration Number
4.5. Ablation Experiment
5. Conclusion and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dou, P.; Huang, C.; Han, W.; Hou, J.; Zhang, Y.; Gu, J. Remote sensing image classification using an ensemble framework without multiple classifiers. ISPRS Journal of Photogrammetry and Remote Sensing 2024, 208, 190–209. [Google Scholar] [CrossRef]
- Zhu, R.; Ma, S.; Lian, J.; He, L.; Mei, S. Generating Adversarial Examples Against Remote Sensing Scene Classification via Feature Approximation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2024, 17, 10174–10187. [Google Scholar] [CrossRef]
- Xu, Y.; Ghamisi, P. Universal adversarial examples in remote sensing: Methodology and benchmark. IEEE Transactions on Geoscience and Remote Sensing 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Gu, H.; Gu, G.; Liu, Y.; Lin, H.; Xu, Y. Multi-Branch Attention Fusion Network for Cloud and Cloud Shadow Segmentation. Remote Sensing 2024, 16, 2308. [Google Scholar] [CrossRef]
- Xiao, T.; Liu, Y.; Huang, Y.; Li, M.; Yang, G. Enhancing multiscale representations with transformer for remote sensing image semantic segmentation. IEEE Transactions on Geoscience and Remote Sensing 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Yi, H.; Liu, B.; Zhao, B.; Liu, E. Small Object Detection Algorithm Based on Improved YOLOv8 for Remote Sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2024, 17, 1734–1747. [Google Scholar] [CrossRef]
- Wang, W.; Cai, Y.; Luo, Z.; Liu, W.; Wang, T.; Li, Z. SA3Det: Detecting Rotated Objects via Pixel-Level Attention and Adaptive Labels Assignment. Remote Sensing 2024, 16, 2496. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition; 2016; pp. 770–778. [Google Scholar]
- Chen, Y.; Tang, Y.; Xiao, Y.; Yuan, Q.; Zhang, Y.; Liu, F.; He, J.; Zhang, L. Satellite video single object tracking: A systematic review and an oriented object tracking benchmark. ISPRS Journal of Photogrammetry and Remote Sensing 2024, 210, 212–240. [Google Scholar] [CrossRef]
- Zhang, Y.; Pu, C.; Qi, Y.; Yang, J.; Wu, X.; Niu, M.; Wei, M. CDTracker: Coarse-to-Fine Feature Matching and Point Densification for 3D Single-Object Tracking. Remote Sensing 2024, 16, 2322. [Google Scholar] [CrossRef]
- Mei, S.; Lian, J.; Wang, X.; Su, Y.; Ma, M.; Chau, L.P. A comprehensive study on the robustness of image classification and object detection in remote sensing: Surveying and benchmarking. arXiv 2023, arXiv:2306.12111. [Google Scholar] [CrossRef]
- Baniecki, H.; Biecek, P. Adversarial attacks and defenses in explainable artificial intelligence: A survey. Information Fusion 2024, 102303. [Google Scholar] [CrossRef]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199. [Google Scholar]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proceedings of the IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Cui, C.; Ma, Y.; Cao, X.; Ye, W.; Zhou, Y.; Liang, K.; Chen, J.; Lu, J.; Yang, Z.; Liao, K.D.; et al. A survey on multimodal large language models for autonomous driving. In Proceedings of the Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision; 2024; pp. 958–979. [Google Scholar]
- Zhao, J.; Zhao, W.; Deng, B.; Wang, Z.; Zhang, F.; Zheng, W.; Cao, W.; Nan, J.; Lian, Y.; Burke, A.F. Autonomous driving system: A comprehensive survey. Expert Systems with Applications 2023, 242, 122836. [Google Scholar] [CrossRef]
- Cai, X.; Tang, X.; Pan, S.; Wang, Y.; Yan, H.; Ren, Y.; Chen, N.; Hou, Y. Intelligent recognition of defects in high-speed railway slab track with limited dataset. Computer-Aided Civil and Infrastructure Engineering 2024, 39, 911–928. [Google Scholar] [CrossRef]
- Niu, H.; Yin, F.; Kim, E.S.; Wang, W.; Yoon, D.Y.; Wang, C.; Liang, J.; Li, Y.; Kim, N.Y. Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. InfoMat 2023, 5, e12412. [Google Scholar] [CrossRef]
- Li, G.; Xu, Y.; Ding, J.; Xia, G.S. Towards generic and controllable attacks against object detection. IEEE Transactions on Geoscience and Remote Sensing 2024, 1–12. [Google Scholar] [CrossRef]
- Lu, J.; Sibai, H.; Fabry, E. Adversarial examples that fool detectors. arXiv 2017, arXiv:1712.02494. [Google Scholar]
- Xie, C.; Wang, J.; Zhang, Z.; Zhou, Y.; Xie, L.; Yuille, A. Adversarial examples for semantic segmentation and object detection. In Proceedings of the Proceedings of the IEEE international conference on computer vision; 2017; pp. 1369–1378. [Google Scholar]
- Kurakin, A.; Goodfellow, I.J.; Bengio, S. Adversarial examples in the physical world. In Artificial intelligence safety and security; Chapman and Hall/CRC, 2018; pp. 99–112. [Google Scholar]
- Thys, S.; Van Ranst, W.; Goedemé, T. Fooling automated surveillance cameras: adversarial patches to attack person detection. In Proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops; 2019; pp. 49–55. [Google Scholar]
- Czaja, W.; Fendley, N.; Pekala, M.; Ratto, C.; Wang, I.J. Adversarial examples in remote sensing. In Proceedings of the Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems; 2018; pp. 408–411. [Google Scholar]
- Lu, M.; Li, Q.; Chen, L.; Li, H. Scale-adaptive adversarial patch attack for remote sensing image aircraft detection. Remote Sensing 2021, 13, 4078. [Google Scholar] [CrossRef]
- Du, A.; Chen, B.; Chin, T.J.; Law, Y.W.; Sasdelli, M.; Rajasegaran, R.; Campbell, D. Physical adversarial attacks on an aerial imagery object detector. In Proceedings of the Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision; 2022; pp. 1796–1806. [Google Scholar]
- Lian, J.; Wang, X.; Su, Y.; Ma, M.; Mei, S. CBA: Contextual background attack against optical aerial detection in the physical world. IEEE Transactions on Geoscience and Remote Sensing 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural computation 2017, 29, 2352–2449. [Google Scholar] [CrossRef]
- Agnihotri, S.; Jung, S.; Keuper, M. Cospgd: a unified white-box adversarial attack for pixel-wise prediction tasks. arXiv 2023, arXiv:2302.02213. [Google Scholar]
- Liu, H.; Ge, Z.; Zhou, Z.; Shang, F.; Liu, Y.; Jiao, L. Gradient correction for white-box adversarial attacks. IEEE Transactions on Neural Networks and Learning Systems 2023, 1–12. [Google Scholar] [CrossRef]
- Lin, G.; Pan, Z.; Zhou, X.; Duan, Y.; Bai, W.; Zhan, D.; Zhu, L.; Zhao, G.; Li, T. Boosting adversarial transferability with shallow-feature attack on SAR images. Remote Sensing 2023, 15, 2699. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. In Proceedings of the International Conference on Learning Representations; 2014. [Google Scholar]
- Shi, Y.; Wang, S.; Han, Y. Curls & whey: Boosting black-box adversarial attacks. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019; pp. 6519–6527. [Google Scholar]
- Chen, P.Y.; Zhang, H.; Sharma, Y.; Yi, J.; Hsieh, C.J. Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In Proceedings of the Proceedings of the 10th ACM workshop on artificial intelligence and security; 2017; pp. 15–26. [Google Scholar]
- Yin, F.; Zhang, Y.; Wu, B.; Feng, Y.; Zhang, J.; Fan, Y.; Yang, Y. Generalizable black-box adversarial attack with meta learning. IEEE transactions on pattern analysis and machine intelligence 2023, 46, 1804–1818. [Google Scholar] [CrossRef]
- Brendel, W.; Rauber, J.; Bethge, M. Decision-based adversarial attacks: Reliable attacks against black-box machine learning models. arXiv 2017, arXiv:1712.04248. [Google Scholar]
- Reza, M.F.; Rahmati, A.; Wu, T.; Dai, H. Cgba: curvature-aware geometric black-box attack. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision; 2023; pp. 124–133. [Google Scholar]
- Boutros, F.; Struc, V.; Fierrez, J.; Damer, N. Synthetic data for face recognition: Current state and future prospects. Image and Vision Computing 2023, 135, 104688. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Wang, H.; Guo, J.; Zheng, J.; Ning, H. SES-YOLOv8n: automatic driving object detection algorithm based on improved YOLOv8. Signal, Image and Video Processing 2024, 18, 3983–3992. [Google Scholar] [CrossRef]
- Wenqi, Y.; Gong, C.; Meijun, W.; Yanqing, Y.; Xingxing, X.; Xiwen, Y.; Junwei, H. MAR20: A benchmark for military aircraft recognition in remote sensing images. National Remote Sensing Bulletin 2024, 27, 2688–2696. [Google Scholar]
- Yang, J.; Xu, J.; Lv, Y.; Zhou, C.; Zhu, Y.; Cheng, W. Deep learning-based automated terrain classification using high-resolution DEM data. International Journal of Applied Earth Observation and Geoinformation 2023, 118, 103249. [Google Scholar] [CrossRef]
- Girshick, R. Fast r-cnn. In Proceedings of the Proceedings of the IEEE international conference on computer vision; 2015; pp. 1440–1448. [Google Scholar]
- Wu, S.; Tan, Y.a.; Wang, Y.; Ma, R.; Ma, W.; Li, Y. Towards transferable adversarial attacks with centralized perturbation. In Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence; 2024; Vol. 38, pp. 6109–6116. [Google Scholar]
- Wang, Z.; Zhang, C. Attacking object detector by simultaneously learning perturbations and locations. Neural Processing Letters 2023, 55, 2761–2776. [Google Scholar] [CrossRef]
- Liu, X.; Yang, H.; Liu, Z.; Song, L.; Li, H.; Chen, Y. Dpatch: An adversarial patch attack on object detectors. arXiv 2018, arXiv:1806.02299. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition; 2016; pp. 779–788. [Google Scholar]
- Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A large-scale dataset for object detection in aerial images. In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition; 2018; pp. 3974–3983. [Google Scholar]
- Zhu, H.; Chen, X.; Dai, W.; Fu, K.; Ye, Q.; Jiao, J. Orientation robust object detection in aerial images using deep convolutional neural network. In Proceedings of the 2015 IEEE international conference on image processing (ICIP). IEEE; 2015; pp. 3735–3739. [Google Scholar]
- Xie, X.; Cheng, G.; Wang, J.; Yao, X.; Han, J. Oriented R-CNN for object detection. In Proceedings of the Proceedings of the IEEE/CVF international conference on computer vision; 2021; pp. 3520–3529. [Google Scholar]
- Xu, Y.; Fu, M.; Wang, Q.; Wang, Y.; Chen, K.; Xia, G.S.; Bai, X. Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE transactions on pattern analysis and machine intelligence 2020, 43, 1452–1459. [Google Scholar] [CrossRef]
- Ding, J.; Xue, N.; Long, Y.; Xia, G.S.; Lu, Q. Learning RoI transformer for oriented object detection in aerial images. In Proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2019; pp. 2849–2858. [Google Scholar]
- Han, J.; Ding, J.; Xue, N.; Xia, G.S. Redet: A rotation-equivariant detector for aerial object detection. In Proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2021; pp. 2786–2795. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the Proceedings of the IEEE international conference on computer vision; 2017. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully convolutional one-stage object detection. arXiv 2019. arXiv 2019, arXiv:1904.01355. [Google Scholar]
- Han, J.; Ding, J.; Li, J.; Xia, G.S. Align deep features for oriented object detection. IEEE transactions on geoscience and remote sensing 2021, 60, 1–11. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, X.; Zhang, G.; Wang, J.; Liu, Y.; Hou, L.; Jiang, X.; Liu, X.; Yan, J.; Lyu, C.; et al. Mmrotate: A rotated object detection benchmark using pytorch. In Proceedings of the Proceedings of the 30th ACM International Conference on Multimedia; 2022; pp. 7331–7334. [Google Scholar]
- Wang, Z.; Li, Q. Information content weighting for perceptual image quality assessment. IEEE Transactions on image processing 2010, 20, 1185–1198. [Google Scholar] [CrossRef]
- Chow, K.H.; Liu, L.; Loper, M.; Bae, J.; Gursoy, M.E.; Truex, S.; Wei, W.; Wu, Y. Adversarial objectness gradient attacks in real-time object detection systems. In Proceedings of the 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). IEEE; 2020; pp. 263–272. [Google Scholar]
- Chen, P.C.; Kung, B.H.; Chen, J.C. Class-aware robust adversarial training for object detection. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2021; pp. 10420–10429. [Google Scholar]








| Trained ODs/ Backbone |
Attack Method |
↓ | IW-SSIM↓ | Time↓(s/image) | ||||||
| Attacked ODs | ||||||||||
| OR | GV | RT | RD | S2A | RR | RF | ||||
| Clean | 84.1 | 80.9 | 87.4 | 83.5 | 81.0 | 78.9 | 77.6 | - | - | |
| TOG[58] | 11.8 | 26.8 | 30.7 | 40.9 | 26.7 | 28.5 | 26.3 | 0.49 | 4.05 | |
| OR[49] | CWA[59] | 9.2 | 25.7 | 28.5 | 38.5 | 25.6 | 26.3 | 25.5 | 1.31 | 4.23 |
| R50 | LGP[19] | 4.1 | 19.3 | 21.6 | 35.3 | 22.0 | 20.4 | 20.7 | 0.22 | 6.12 |
| FFA(ours) | 3.3 | 14.2 | 19.0 | 30.2 | 20.5 | 19.1 | 19.8 | 0.85 | 6.68 | |
| TOG[58] | 40.5 | 29.4 | 28.1 | 60.7 | 34.7 | 36.7 | 37.1 | 0.74 | 6.73 | |
| GV[50] | CWA[59] | 38.1 | 27.6 | 35.9 | 59.4 | 35.4 | 34.2 | 35.3 | 0.86 | 5.81 |
| R50 | LGP[19] | 32.7 | 23.1 | 33.7 | 56.3 | 32.0 | 30.6 | 32.2 | 0.38 | 7.85 |
| FFA(ours) | 27.2 | 21.6 | 30.5 | 52.8 | 29.5 | 25.7 | 30.6 | 0.61 | 9.03 | |
| TOG[58] | 40.8 | 36.3 | 30.4 | 62.7 | 37.1 | 35.4 | 37.2 | 0.66 | 7.71 | |
| RT [51] | CWA[59] | 39.3 | 35.1 | 28.6 | 63.1 | 35.8 | 33.6 | 36.4 | 1.07 | 8.34 |
| R50 | LGP[19] | 35.4 | 29.8 | 20.8 | 60.2 | 32.3 | 30.1 | 32.4 | 0.52 | 10.37 |
| FFA(ours) | 31.9 | 26.2 | 18.0 | 55.0 | 28.6 | 27.5 | 29.6 | 0.62 | 8.47 | |
| TOG[58] | 58.3 | 61.2 | 68.4 | 27.9 | 62.8 | 64.7 | 60.3 | 0.51 | 6.74 | |
| RD [52] | CWA[59] | 55.7 | 60.1 | 65.5 | 25.1 | 60.6 | 65.4 | 59.5 | 0.87 | 8.80 |
| R50 | LGP[19] | 53.6 | 55.8 | 60.3 | 22.0 | 58.2 | 61.1 | 57.9 | 0.18 | 9.65 |
| FFA(ours) | 50.2 | 50.6 | 53.0 | 19.6 | 53.4 | 59.7 | 56.2 | 0.36 | 10.35 | |
| TOG[58] | 47.5 | 49.8 | 54.1 | 62.7 | 20.6 | 53.1 | 57.4 | 0.98 | 14.26 | |
| S2A [55] | CWA[59] | 45.1 | 45.6 | 52.4 | 60.3 | 11.9 | 50.4 | 55.3 | 1.25 | 19.54 |
| R50 | LGP [19] | 42.8 | 43.3 | 49.6 | 57.0 | 5.2 | 47.4 | 51.7 | 0.64 | 25.32 |
| FFA(ours) | 39.3 | 38.9 | 47.8 | 55.4 | 4.5 | 43.6 | 48.2 | 0.74 | 26.47 | |
| TOG[58] | 55.7 | 56.4 | 52.1 | 52.8 | 60.3 | 17.3 | 50.1 | 0.83 | 13.67 | |
| RR[53] | CWA[59] | 56.9 | 55.3 | 50.7 | 50.9 | 58.4 | 14.6 | 48.6 | 1.07 | 15.82 |
| R50 | LGP[19] | 52.6 | 50.8 | 47.2 | 48.0 | 54.6 | 10.2 | 46.4 | 0.67 | 27.62 |
| FFA(ours) | 49.3 | 47.1 | 45.8 | 44.9 | 51.0 | 8.5 | 41.5 | 0.75 | 28.46 | |
| TOG[58] | 46.5 | 47.9 | 47.4 | 50.5 | 50.4 | 55.7 | 18.3 | 0.71 | 15.65 | |
| RF[54] | CWA[59] | 45.8 | 45.3 | 45.6 | 47.3 | 47.6 | 53.4 | 15.7 | 0.93 | 19.54 |
| R50 | LGP[19] | 40.6 | 43.7 | 42.1 | 44.7 | 42.1 | 49.8 | 10.3 | 0.55 | 28.31 |
| FFA(ours) | 35.1 | 40.5 | 38.6 | 41.7 | 38.2 | 46.3 | 9.2 | 0.69 | 30.66 | |
| ↓ | ↑ | |||||||||||||||
| Origin | Target | Attack Method |
OR | GV | RT | RD | S2A | RF | RR | OR | GV | RT | RD | S2A | RF | RR |
| Plane | Clean | 90.1 | 90.5 | 89.7 | 91 | 89.3 | 90.2 | 89.1 | 3505 | 3241 | 3359 | 3418 | 3525 | 3684 | 3457 | |
| Ground track field |
TOG[58] | 25.7 | 22.3 | 21.2 | 25.5 | 17.1 | 15.7 | 10.3 | 2215 | 2339 | 2237 | 2189 | 2681 | 2706 | 2892 | |
| CWA[59] | 23.4 | 19.6 | 20.1 | 25.2 | 15.3 | 14.2 | 9.8 | 2367 | 2551 | 2342 | 2135 | 2764 | 2833 | 3085 | ||
| LGP[19] | 20.2 | 16.7 | 16.1 | 23.1 | 11.9 | 10.2 | 3.7 | 2553 | 2780 | 2718 | 2554 | 2937 | 2823 | 3142 | ||
| FFA(ours) | 18.7 | 13.1 | 12.5 | 19.0 | 7.8 | 6.3 | 1.2 | 2876 | 3108 | 3005 | 2735 | 3121 | 3027 | 3331 | ||
| Basket- ball court |
TOG[58] | 24.7 | 19.4 | 22.3 | 25.7 | 16.7 | 17.3 | 8.4 | 2147 | 2371 | 2287 | 2108 | 2576 | 2478 | 3059 | |
| CWA[59] | 21.3 | 17.3 | 20.5 | 24.4 | 15.2 | 15.2 | 8.9 | 2213 | 2564 | 2349 | 2235 | 2635 | 2593 | 2974 | ||
| LGP[19] | 19.2 | 14.6 | 17.8 | 21.2 | 10.4 | 10.7 | 4.1 | 2632 | 2744 | 2605 | 2573 | 2854 | 2849 | 3213 | ||
| FFA(ours) | 17.5 | 12.1 | 15.6 | 17.3 | 6.9 | 7.3 | 2.2 | 2719 | 2893 | 2819 | 2746 | 3122 | 3085 | 3397 | ||
| Round- about |
TOG[58] | 20.6 | 20.1 | 22.3 | 25.3 | 12.4 | 13.5 | 8.5 | 2368 | 2271 | 2263 | 2182 | 2403 | 2513 | 2889 | |
| CWA[59] | 19.4 | 18.7 | 20.5 | 22.7 | 10.9 | 11.6 | 5.2 | 2507 | 2584 | 2416 | 2237 | 2648 | 2678 | 3011 | ||
| LGP[19] | 17.3 | 16.1 | 17.1 | 20.6 | 9.6 | 9.2 | 2.6 | 2640 | 2747 | 2661 | 2519 | 2931 | 2832 | 3234 | ||
| FFA(ours) | 15.8 | 12.7 | 17.8 | 18.1 | 7.7 | 6.1 | 0.9 | 2841 | 2908 | 2773 | 2795 | 3086 | 3225 | 3411 | ||
| Vehicle | Clean | 81.5 | 82.3 | 79.8 | 85.2 | 83.1 | 81.6 | 82.7 | 3565 | 3483 | 3217 | 3238 | 3804 | 3561 | 3615 | |
| Ground track field |
TOG[58] | 27.1 | 30.3 | 24.6 | 25.8 | 14.2 | 9.6 | 15.2 | 2306 | 2241 | 2048 | 2246 | 2763 | 3047 | 2971 | |
| CWA[59] | 25.3 | 26.7 | 22.3 | 22.6 | 12.4 | 8.3 | 12.5 | 2253 | 2437 | 2369 | 2517 | 2845 | 3112 | 3102 | ||
| LGP[19] | 22.7 | 21.6 | 19.1 | 20.3 | 9.2 | 4.9 | 6.7 | 2537 | 2614 | 2715 | 2658 | 3183 | 3474 | 3368 | ||
| FFA(ours) | 20.2 | 18.3 | 16.5 | 19.7 | 8.6 | 3.7 | 5.1 | 2618 | 2736 | 2823 | 2709 | 3341 | 3507 | 3472 | ||
| Basket- ball court |
TOG[58] | 25.5 | 27.6 | 27.0 | 28.9 | 12.4 | 9.8 | 10.7 | 2201 | 2356 | 2207 | 2087 | 2655 | 2736 | 2867 | |
| CWA[59] | 22.4 | 25.4 | 25.8 | 26.3 | 10.7 | 10.5 | 9.8 | 2351 | 2409 | 2365 | 2139 | 2813 | 2912 | 2983 | ||
| LGP[19] | 19.8 | 20.5 | 19.3 | 22.5 | 8.4 | 7.6 | 5.8 | 2689 | 2654 | 2677 | 2483 | 3017 | 3202 | 3391 | ||
| FFA(ours) | 19.6 | 18.7 | 17.9 | 20.7 | 8.0 | 7.6 | 4.4 | 2605 | 2736 | 2782 | 2625 | 3224 | 3285 | 3457 | ||
| Round- about |
TOG[58] | 28.9 | 29.1 | 22.2 | 26.7 | 16.4 | 12.6 | 11.3 | 2168 | 2145 | 2516 | 2253 | 2806 | 3013 | 2975 | |
| CWA[59] | 25.7 | 27.7 | 20.3 | 25.4 | 15.7 | 10.4 | 9.2 | 2253 | 2208 | 2453 | 2310 | 2849 | 3121 | 3010 | ||
| LGP[19] | 22.4 | 22.3 | 17.8 | 21.6 | 9.6 | 5.8 | 7.1 | 2537 | 2580 | 2769 | 2544 | 3142 | 3348 | 3249 | ||
| FFA(ours) | 21.3 | 19.6 | 16.1 | 21.3 | 10.1 | 5.1 | 6.5 | 2591 | 2674 | 2848 | 2569 | 3077 | 3403 | 3386 | ||
| Origin | Target | Attack Method |
Trained OD | ↓ | ↑ | ||||||||
| Attacked ODs | |||||||||||||
| GV | RT | RD | RF | RR | GV | RT | RD | RF | RR | ||||
| Plane | Basketball court |
TOG[58] | OR[49] | 58.6 | 54.5 | 53.5 | 49.1 | 48.5 | 953 | 1024 | 986 | 1055 | 1284 |
| CWA[59] | 55.1 | 52.7 | 47.9 | 45.4 | 42.3 | 899 | 980 | 1443 | 1274 | 1596 | |||
| LGP[19] | 48.7 | 46.8 | 44.6 | 39.6 | 35.9 | 1258 | 1386 | 1549 | 1595 | 1876 | |||
| FFA(ours) | 45.8 | 43.2 | 42.6 | 37.1 | 34.3 | 1431 | 1503 | 1661 | 1752 | 1919 | |||
| TOG[58] | S2A[55] | 73.8 | 70.6 | 61.5 | 62.2 | 50.5 | 536 | 683 | 974 | 961 | 1017 | ||
| CWA[59] | 69.1 | 63.2 | 58.7 | 60.1 | 49.8 | 848 | 871 | 1037 | 1083 | 1385 | |||
| LGP[19] | 58.5 | 62.7 | 58.3 | 54.4 | 46.1 | 1032 | 896 | 1096 | 1264 | 1568 | |||
| FFA(ours) | 59.1 | 60.1 | 57.6 | 53.8 | 44.7 | 1075 | 935 | 1209 | 1348 | 1792 | |||
| Vehicle | Ground track field |
TOG[58] | OR[49] | 70.2 | 69.8 | 69.5 | 65.5 | 68.1 | 753 | 726 | 774 | 873 | 754 |
| CWA[59] | 68.5 | 70.4 | 68.7 | 65.2 | 66.3 | 796 | 698 | 886 | 912 | 817 | |||
| LGP[19] | 65.7 | 67.5 | 65.8 | 63.1 | 64.0 | 905 | 903 | 1027 | 1108 | 1283 | |||
| FFA(ours) | 65.1 | 66.3 | 64.4 | 60.9 | 61.7 | 937 | 971 | 1136 | 1395 | 1407 | |||
| TOG[58] | S2A[55] | 73.2 | 70.7 | 72.3 | 67.3 | 65.1 | 685 | 751 | 634 | 890 | 1018 | ||
| CWA[59] | 70.3 | 68.8 | 70.9 | 65.5 | 63.4 | 758 | 891 | 776 | 1068 | 1039 | |||
| LGP[19] | 67.7 | 63.4 | 68.2 | 60.3 | 59.6 | 979 | 1008 | 872 | 1321 | 1237 | |||
| FFA(ours) | 67.1 | 62.8 | 65.4 | 59.1 | 57.8 | 1021 | 1085 | 958 | 1377 | 1414 | |||
| Attack Method |
IW-SSIM↓ | ||||||
| OR | GV | RT | RD | S2A | RF | RR | |
| TOG[58] | 1.96 | 2.09 | 1.77 | 2.41 | 2.56 | 1.94 | 2.09 |
| CWA[59] | 2.53 | 2.74 | 1.98 | 2.37 | 2.91 | 2.04 | 3.62 |
| LGP[19] | 1.56 | 1.47 | 1.53 | 1.94 | 2.13 | 1.06 | 2.76 |
| FFA(ours) | 1.78 | 1.95 | 1.72 | 2.01 | 2.35 | 1.25 | 3.12 |
| Attack Method |
Time(s/image)↓ | ||||||
| OR | GV | RT | RD | S2A | RF | RR | |
| TOG[58] | 4.49 | 5.58 | 6.53 | 7.43 | 6.14 | 7.07 | 5.86 |
| CWA[59] | 5.36 | 4.07 | 7.74 | 8.65 | 13.55 | 11.68 | 11.23 |
| LGP[19] | 6.83 | 6.15 | 10.62 | 10.31 | 17.54 | 15.47 | 16.21 |
| FFA(ours) | 6.95 | 7.81 | 11.83 | 10.47 | 18.75 | 16.29 | 18.58 |
| Attack Method |
OD/Backbone | I | 1 | 10 | 20 | 50 | 100 |
| Targetless FFA |
OR/R50 | ↓ | 34.2 | 6.7 | 4.1 | 3.3 | 6.8 |
| IW-SSIM↓ | 0.21 | 0.20 | 0.32 | 0.85 | 0.12 | ||
| Time↓ | 0.85 | 2.41 | 4.36 | 6.68 | 13.75 | ||
| Targeted FFA |
OR/R50 | ↓ | 55.6 | 39.6 | 25.4 | 18.7 | 22.1 |
| ↑ | 1283 | 1583 | 2283 | 2876 | 2679 | ||
| IW-SSIM↓ | 0.51 | 0.67 | 1.05 | 1.78 | 1.03 | ||
| Time↓ | 1.03 | 2.29 | 4.71 | 6.95 | 15.33 |
| Targetless FFA |
OR | IW-SSIM↓ | ↓ | Time↓ | |||
| Clean | - | - | - | - | 83.3 | - | |
| 1 | √ | 3.81 | 11.2 | 5.38 | |||
| 2 | √ | √ | 2.51 | 8.9 | 7.45 | ||
| 3 | √ | √ | √ | 0.85 | 3.3 | 9.51 | |
| Targeted FFA |
OR/Plane | IW-SSIM↓ | ↓ | Time↓ | |||
| Clean | - | - | - | - | 90.1 | - | |
| 1 | √ | 5.85 | 25.7 | 2.32 | |||
| 2 | √ | √ | 3.64 | 23.9 | 2.96 | ||
| 3 | √ | √ | √ | 1.50 | 18.7 | 3.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
