Submitted:
17 June 2024
Posted:
17 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Effects of IF on Metabolic Complications
3. Type 2 Diabetes Mellitus
4. Conventional Management of T2DM
4.1. Insulin Therapy
4.2. Glucagon-Like Peptide-1 Receptor Agonists
4.3. Dipeptidyl Peptidase-4 Inhibitors
4.4. Sodium-Glucose Co-Transport 2 Inhibitors
4.5. Biguanide (Metformin)
| Types of antidiabetic drug(s) | Mode of Action | Effects on glucose parameters | Shortfall(s) |
|---|---|---|---|
| Insulin therapy |
|
|
|
| GLP-1RA |
|
|
|
| DPP4i |
|
|
|
| SGL2i |
|
|
|
| Metformin |
|
|
|
5. Lifestyle Intervention
5.1. Dietary Intervention
5.2. Increased Physical Activity
6. Effect of Intermittent Fasting on T2DM
6.1. Alternate Day Fasting
6.3. Time-Restricted Feeding
7. Prediabetes
7.1. HOMA-IR
8. Prediabetes Management
8.1. Biguanides (Metformin)
8.2. Lifestyle Modification
8.3. Intermittent Fasting
9. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Mattson, M.P.; Longo, V.D.; Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017, 39, 46–58. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.B.; Ramsey, J.J. Honoring Clive McCay and 75 Years of Calorie Restriction Research. The Journal of Nutrition. 2010, 140, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wang, J.; Zhang, J.; Xu, J. Intermittent Versus Continuous Energy Restriction for Weight Loss and Metabolic Improvement: A Meta-Analysis and Systematic Review. Obesity 2021, 29, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Cook, F.; Langdon-Daly, J.; Serpell, L. Compliance of participants undergoing a '5-2' intermittent fasting diet and impact on body weight. Clin Nutr ESPEN. 2022, 52, 257–261. [Google Scholar] [CrossRef]
- Taylor, R. Calorie restriction for long-term remission of type 2 diabetes. Clinical Medicine. 2019, 19, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Rajpal, A.; Ismail-Beigi, F. Intermittent fasting and 'metabolic switch': Effects on metabolic syndrome, prediabetes and type 2 diabetes. Diabetes Obes Metab. 2020, 22, 1496–1510. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.I.; Direito, M.; Pinto-Ribeiro, F.; Ludovico, P.; Sampaio-Marques, B. Effects of Intermittent Fasting on Regulation of Metabolic Homeostasis: A Systematic Review and Meta-Analysis in Health and Metabolic-Related Disorders. Journal of Clinical Medicine. 2023, 12, 3699. [Google Scholar] [CrossRef] [PubMed]
- Kahleova, H.; Belinova, L.; Malinska, H.; Oliyarnyk, O.; Trnovska, J.; Skop, V.; et al. Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia. 2014, 57, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; Kimita, W.; Skudder-Hill, L.; Li, X.; Priya, S.; Bharmal, S.H.; et al. Dietary carbohydrate intake and insulin traits in individuals after acute pancreatitis: Effect modification by intra-pancreatic fat deposition. Pancreatology. 2021, 21, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Niki, A.; Baden, M.Y.; Kato, S.; Mitsushio, K.; Horii, T.; Ozawa, H.; et al. Consumption of two meals per day is associated with increased intrapancreatic fat deposition in patients with type 2 diabetes: a retrospective study. BMJ Open Diabetes Res Care. 2022, 10. [Google Scholar] [CrossRef]
- Sami, W.; Ansari, T.; Butt, N.S.; Hamid, M.R.A. Effect of diet on type 2 diabetes mellitus: A review. Int J Health Sci 2017, 11, 65–71. [Google Scholar]
- Cienfuegos, S.; McStay, M.; Gabel, K.; Varady, K.A. Time restricted eating for the prevention of type 2 diabetes. J Physiol. 2022, 600, 1253–1264. [Google Scholar] [CrossRef] [PubMed]
- Harvie, M.N.; Pegington, M.; Mattson, M.P.; Frystyk, J.; Dillon, B.; Evans, G.; et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes 2011, 35, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Gilhooly, C.H.; Golden, J.K.; Pittas, A.G.; Fuss, P.J.; Cheatham, R.A.; et al. Long-term effects of 2 energy-restricted diets differing in glycemic load on dietary adherence, body composition, and metabolism in CALERIE: a 1-y randomized controlled trial. Am J Clin Nutr. 2007, 85, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Varady, K.A.; Hellerstein, M.K. Alternate-day fasting and chronic disease prevention: a review of human and animal trials. Am J Clin Nutr. 2007, 86, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Vasim, I.; Majeed, C.N.; DeBoer, M.D. Intermittent Fasting and Metabolic Health. Nutrients. 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Hajek, P.; Przulj, D.; Pesola, F.; McRobbie, H.; Peerbux, S.; Phillips-Waller, A.; et al. A randomised controlled trial of the 5:2 diet. PLoS One. 2021, 16, e0258853. [Google Scholar] [CrossRef] [PubMed]
- Aoun, A.; Ghanem, C.; Hamod, N.; Sawaya, S. The Safety and Efficacy of Intermittent Fasting for Weight Loss. Nutrition Today. 2020, 55, 270–277. [Google Scholar] [CrossRef]
- Kunduraci, Y.E.; Ozbek, H. Does the Energy Restriction Intermittent Fasting Diet Alleviate Metabolic Syndrome Biomarkers? A Randomized Controlled Trial. Nutrients. 2020, 12. [Google Scholar] [CrossRef]
- Chew, N.W.S.; Ng, C.H.; Tan, D.J.H.; Kong, G.; Lin, C.; Chin, Y.H.; et al. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023, 35, 414–428. [Google Scholar] [CrossRef]
- Chobot, A.; Górowska-Kowolik, K.; Sokołowska, M.; Jarosz-Chobot, P. Obesity and diabetes—Not only a simple link between two epidemics. Diabetes Metab. Res. Rev. 2018, 34, e3042. [Google Scholar] [CrossRef] [PubMed]
- Al-Sulaiti, H.; Diboun, I.; Agha, M.V.; Mohamed, F.F.S.; Atkin, S.; Domling, A.S.; et al. Metabolic signature of obesity-associated insulin resistance and type 2 diabetes. J Transl Med. 2019, 17, 348. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.Z.; Lu, W.; Zong, X.F.; Ruan, H.Y.; Liu, Y. Obesity and hypertension. Exp Ther Med. 2016, 12, 2395–2399. [Google Scholar] [CrossRef] [PubMed]
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism. 2019, 92, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Pi-Sunyer, F.X. Obesity: criteria and classification. Proc Nutr Soc. 2000, 59, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Zubrzycki, A.; Cierpka-Kmiec, K.; Kmiec, Z.; Wronska, A. The role of low-calorie diets and intermittent fasting in the treatment of obesity and type-2 diabetes. J Physiol Pharmacol. 2018, 69. [Google Scholar]
- Casanova, F.; Gooding, K.M.; Shore, A.C.; Adingupu, D.D.; Mawson, D.; Ball, C.; et al. Weight change and sulfonylurea therapy are related to 3 year change in microvascular function in people with type 2 diabetes. Diabetologia. 2020, 63, 1268–1278. [Google Scholar] [CrossRef] [PubMed]
- Catenacci, V.A.; Pan, Z.; Ostendorf, D.; Brannon, S.; Gozansky, W.S.; Mattson, M.P.; et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity 2016, 24, 1874–1883. [Google Scholar] [CrossRef]
- Chen, Z.; Li, G. Sodium-Glucose Co-Transporter 2 Inhibitors Compared with Sulfonylureas in Patients with Type 2 Diabetes Inadequately Controlled on Metformin: A Meta-Analysis of Randomized Controlled Trials. Clin Drug Investig. 2019, 39, 521–531. [Google Scholar] [CrossRef]
- de la Iglesia, R.; Loria-Kohen, V.; Zulet, M.A.; Martinez, J.A.; Reglero, G.; Ramirez de Molina, A. Dietary Strategies Implicated in the Prevention and Treatment of Metabolic Syndrome. Int J Mol Sci. 2016, 17. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, J.; Yang, S.; Gao, M.; Cao, L.; Li, X.; et al. Effect of Intermittent Fasting Diet on Glucose and Lipid Metabolism and Insulin Resistance in Patients with Impaired Glucose and Lipid Metabolism: A Systematic Review and Meta-Analysis. Int J Endocrinol. 2022, 2022, 6999907. [Google Scholar] [CrossRef] [PubMed]
- Swiatkiewicz, I.; Wozniak, A.; Taub, P.R. Time-Restricted Eating and Metabolic Syndrome: Current Status and Future Perspectives. Nutrients. 2021, 13. [Google Scholar]
- Cui, Y.; Cai, T.; Zhou, Z.; Mu, Y.; Lu, Y.; Gao, Z.; et al. Health Effects of Alternate-Day Fasting in Adults: A Systematic Review and Meta-Analysis. Front Nutr. 2020, 7, 586036. [Google Scholar] [CrossRef] [PubMed]
- Gabel, K.; Kroeger, C.M.; Trepanowski, J.F.; Hoddy, K.K.; Cienfuegos, S.; Kalam, F.; Varady, K.A. Differential Effects of Alternate-Day Fasting Versus Daily Calorie Restriction on Insulin Resistance. Obesity 2019, 27, 1443–1450. [Google Scholar] [CrossRef]
- Arciero, P.J.; Poe, M.; Mohr, A.E.; Ives, S.J.; Arciero, A.; Sweazea, K.L.; et al. Intermittent fasting and protein pacing are superior to caloric restriction for weight and visceral fat loss. Obesity 2023, 31, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Bilibio, B.L.E.; Dos Reis, W.R.; Compagnon, L.; de Batista, D.G.; Sulzbacher, L.M.; Pinheiro, J.F.; et al. Effects of alternate-day fasting and time-restricted feeding in obese middle-aged female rats. Nutrition. 2023, 116, 112198. [Google Scholar] [CrossRef]
- Che, T.; Yan, C.; Tian, D.; Zhang, X.; Liu, X.; Wu, Z. Time-restricted feeding improves blood glucose and insulin sensitivity in overweight patients with type 2 diabetes: a randomised controlled trial. Nutr Metab (Lond). 2021, 18, 88. [Google Scholar] [CrossRef]
- Yun, N.; Nah, J.; Lee, M.N.; Wu, D.; Pae, M. Post-Effects of Time-Restricted Feeding against Adipose Tissue Inflammation and Insulin Resistance in Obese Mice. Nutrients. 2023, 15, 2617. [Google Scholar] [CrossRef]
- Samuel, V.T.; Shulman, G.I. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016, 126, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Despres, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature. 2006, 444, 881–887. [Google Scholar] [CrossRef]
- Laakso, M.; Kuusisto, J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol. 2014, 10, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Derakhshan, A.; Tohidi, M.; Arshi, B.; Khalili, D.; Azizi, F.; Hadaegh, F. Relationship of hyperinsulinaemia, insulin resistance and beta-cell dysfunction with incident diabetes and pre-diabetes: the Tehran Lipid and Glucose Study. Diabet Med. 2015, 32, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Artasensi, A.; Pedretti, A.; Vistoli, G.; Fumagalli, L. Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs. Molecules. 2020, 25. [Google Scholar] [CrossRef]
- Anton, S.D.; Moehl, K.; Donahoo, W.T.; Marosi, K.; Lee, S.A.; Mainous, A.G.; 3rd, et al. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity 2018, 26, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Collaboration NCDRF. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016, 387, 1513–1530. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys Ther. 2008, 88, 1254–1264. [Google Scholar] [CrossRef] [PubMed]
- van Dieren, S.; Beulens, J.W.; van der Schouw, Y.T.; Grobbee, D.E.; Neal, B. The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil. 2010, 17, S3–S8. [Google Scholar] [PubMed]
- Reaven, G.M. Compensatory hyperinsulinemia and the development of an atherogenic lipoprotein profile: the price paid to maintain glucose homeostasis in insulin-resistant individuals. Endocrinol Metab Clin North Am. 2005, 34, 49–62. [Google Scholar] [CrossRef]
- Olefsky, J.M.; Farquhar, J.W.; Reaven, G.M. Reappraisal of the role of insulin in hypertriglyceridemia. Am J Med. 1974, 57, 551–560. [Google Scholar] [CrossRef]
- American Diabetes, A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010, 33, S62–S69. [Google Scholar] [CrossRef]
- Ojo, T.K.; Joshua, O.O.; Ogedegbe, O.J.; Oluwole, O.; Ademidun, A.; Jesuyajolu, D. Role of Intermittent Fasting in the Management of Prediabetes and Type 2 Diabetes Mellitus. Cureus. 2022, 14, e28800. [Google Scholar] [CrossRef]
- Adeghate, E.; Schattner, P.; Dunn, E. An update on the etiology and epidemiology of diabetes mellitus. Ann N Y Acad Sci. 2006, 1084, 1–29. [Google Scholar] [CrossRef]
- Kalin, M.F.; Goncalves, M.; Fonseca, V. Pathogenesis of Type 2 Diabetes Mellitus. Principles of Diabetes Mellitus.
- Ozougwu, O. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. Journal of Physiology and Pathophysiology. 2013, 4, 46–57. [Google Scholar] [CrossRef]
- Ghaffari, M.; Razi, S.; Zalpoor, H.; Nabi-Afjadi, M.; Mohebichamkhorami, F.; Zali, H. Association of MicroRNA-146a with Type 1 and 2 Diabetes and their Related Complications. J Diabetes Res. 2023, 2023, 2587104. [Google Scholar] [CrossRef]
- Kahkoska, A.R.; Dabelea, D. Diabetes in Youth: A Global Perspective. Endocrinol Metab Clin North Am. 2021, 50, 491–512. [Google Scholar] [CrossRef]
- Ali, O. Genetics of type 2 diabetes. World J Diabetes. 2013, 4, 114–123. [Google Scholar] [CrossRef]
- Ling, C.; Groop, L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes. 2009, 58, 2718–2725. [Google Scholar] [CrossRef]
- Yun, J.S.; Park, Y.M.; Cha, S.A.; Ahn, Y.B.; Ko, S.H. Progression of cardiovascular autonomic neuropathy and cardiovascular disease in type 2 diabetes. Cardiovasc Diabetol. 2018, 17, 109. [Google Scholar] [CrossRef]
- Shah, A.D.; Langenberg, C.; Rapsomaniki, E.; Denaxas, S.; Pujades-Rodriguez, M.; Gale, C.P.; et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol. 2015, 3, 105–113. [Google Scholar] [CrossRef]
- Shah, R.B.; Patel, M.; Maahs, D.M.; Shah, V.N. Insulin delivery methods: Past, present and future. Int J Pharm Investig. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Rys, P.; Wojciechowski, P.; Rogoz-Sitek, A.; Niesyczynski, G.; Lis, J.; Syta, A.; Malecki, M.T. Systematic review and meta-analysis of randomized clinical trials comparing efficacy and safety outcomes of insulin glargine with NPH insulin, premixed insulin preparations or with insulin detemir in type 2 diabetes mellitus. Acta Diabetol. 2015, 52, 649–662. [Google Scholar] [CrossRef]
- Nathan, D.M.; Buse, J.B.; Davidson, M.B.; Ferrannini, E.; Holman, R.R.; Sherwin, R.; et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2009, 32, 193–203. [Google Scholar] [CrossRef]
- Clissold, R.; Clissold, S. Insulin glargine in the management of diabetes mellitus: an evidence-based assessment of its clinical efficacy and economic value. Core Evid. 2007, 2, 89–110. [Google Scholar] [CrossRef]
- Hajos, T.R.; Pouwer, F.; de Grooth, R.; Holleman, F.; Twisk, J.W.; Diamant, M.; Snoek, F.J. Initiation of insulin glargine in patients with Type 2 diabetes in suboptimal glycaemic control positively impacts health-related quality of life. A prospective cohort study in primary care. Diabet Med. 2011, 28, 1096–1102. [Google Scholar] [CrossRef]
- Wang, Z.; Hedrington, M.S.; Gogitidze Joy, N.; Briscoe, V.J.; Richardson, M.A.; Younk, L.; et al. Dose-response effects of insulin glargine in type 2 diabetes. Diabetes Care. 2010, 33, 1555–1560. [Google Scholar] [CrossRef]
- El-Zayat, S.R.; Sibaii, H.; El-Shamy, K.A. Physiological process of fat loss. Bulletin of the National Research Centre. 2019, 43. [Google Scholar] [CrossRef]
- Davies, M.; Khunti, K. Insulin management in overweight or obese type 2 diabetes patients: the role of insulin glargine. Diabetes Obes. Metab. 2008, 10, 42–49. [Google Scholar] [CrossRef]
- Lund, A.; Knop, F.K.; Vilsboll, T. Glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes: differences and similarities. Eur J Intern Med. 2014, 25, 407–414. [Google Scholar] [CrossRef]
- Baggio, L.L.; Drucker, D.J. Biology of Incretins: GLP-1 and, G. I.P. Gastroenterology. 2007, 132, 2131–2157. [Google Scholar] [CrossRef]
- Ajabnoor, G.M.A.; Hashim, K.T.; Alzahrani, M.M.; Alsuheili, A.Z.; Alharbi, A.F.; Alhozali, A.M.; et al. The Possible Effect of the Long-Term Use of Glucagon-like Peptide-1 Receptor Agonists (GLP-1RA) on Hba1c and Lipid Profile in Type 2 Diabetes Mellitus: A Retrospective Study in KAUH, Jeddah, Saudi Arabia. Diseases. 2023, 11, 50. [Google Scholar] [CrossRef]
- Tofé, S.; Argüelles, I.; Mena, E.; Serra, G.; Codina, M.; Urgeles, J.R.; et al. Real-world GLP-1 RA therapy in type 2 diabetes: A long-term effectiveness observational study. Endocrinol. Diabetes Metab. 2019, 2, e00051. [Google Scholar] [CrossRef]
- Kaneto, H.; Kimura, T.; Shimoda, M.; Obata, A.; Sanada, J.; Fushimi, Y.; et al. Favorable Effects of GLP-1 Receptor Agonist against Pancreatic β-Cell Glucose Toxicity and the Development of Arteriosclerosis: “The Earlier, the Better” in Therapy with Incretin-Based Medicine. International Journal of Molecular Sciences. 2021, 22, 7917. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D.Y. Glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes. Ann Pediatr Endocrinol Metab. 2017, 22, 15–26. [Google Scholar] [CrossRef]
- Bettge, K.; Kahle, M.; Abd El Aziz, M.S.; Meier, J.J.; Nauck, M.A. Occurrence of nausea, vomiting and diarrhoea reported as adverse events in clinical trials studying glucagon-like peptide-1 receptor agonists: A systematic analysis of published clinical trials. Diabetes Obes Metab. 2017, 19, 336–347. [Google Scholar] [CrossRef]
- Gether, I.M.; Nexoe-Larsen, C.; Knop, F.K. New Avenues in the Regulation of Gallbladder Motility-Implications for the Use of Glucagon-Like Peptide-Derived Drugs. J Clin Endocrinol Metab. 2019, 104, 2463–2472. [Google Scholar] [CrossRef]
- Deacon, C.F. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2020, 16, 642–653. [Google Scholar] [CrossRef]
- Solis-Herrera, C.; Triplitt, C.; Garduno-Garcia Jde, J.; Adams, J.; DeFronzo, R.A.; Cersosimo, E. Mechanisms of glucose lowering of dipeptidyl peptidase-4 inhibitor sitagliptin when used alone or with metformin in type 2 diabetes: a double-tracer study. Diabetes Care. 2013, 36, 2756–2762. [Google Scholar] [CrossRef]
- Goldstein, B.J.; Feinglos, M.N.; Lunceford, J.K.; Johnson, J.; Williams-Herman, D.E. Effect of Initial Combination Therapy With Sitagliptin, a Dipeptidyl Peptidase-4 Inhibitor, and Metformin on Glycemic Control in Patients With Type 2 Diabetes. Diabetes Care. 2007, 30, 1979–1987. [Google Scholar] [CrossRef]
- Scheen, A.J. Safety of dipeptidyl peptidase-4 inhibitors for treating type 2 diabetes. Expert Opin Drug Saf. 2015, 14, 505–524. [Google Scholar] [CrossRef]
- Santos, L.L.; Lima, F.J.C.; Sousa-Rodrigues, C.F.; Barbosa, F.T. Use of SGLT-2 inhibitors in the treatment of type 2 diabetes mellitus. Rev Assoc Med Bras 2017, 63, 636–641. [Google Scholar] [CrossRef]
- Pinto, L.C.; Rados, D.V.; Remonti, L.R.; Kramer, C.K.; Leitao, C.B.; Gross, J.L. Efficacy of SGLT2 inhibitors in glycemic control, weight loss and blood pressure reduction: a systematic review and meta-analysis. Diabetol. Metab. Syndr. 2015, 7, A58. [Google Scholar] [CrossRef]
- Colosimo, S.; Tan, G.D.; Petroni, M.L.; Marchesini, G.; Tomlinson, J.W. Improved glycaemic control in patients with type 2 diabetes has a beneficial impact on NAFLD, independent of change in BMI or glucose lowering agent. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 640–648. [Google Scholar] [CrossRef]
- Shigiyama, F.; Kumashiro, N.; Miyagi, M.; Ikehara, K.; Kanda, E.; Uchino, H.; Hirose, T. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovascular Diabetology. 2017, 16. [Google Scholar] [CrossRef]
- Satoh, H. Pleiotropic effects of SGLT2 inhibitors beyond the effect on glycemic control. Diabetology International. 2018, 9, 212–214. [Google Scholar] [CrossRef]
- Gill, H.K.; Kaur, P.; Mahendru, S.; Mithal, A. Adverse Effect Profile and Effectiveness of Sodium Glucose Co-transporter 2 Inhibitors (SGLT2i) - A Prospective Real-world Setting Study. Indian J Endocrinol Metab. 2019, 23, 50–55. [Google Scholar]
- Wang, G.S.; Hoyte, C. Review of Biguanide (Metformin) Toxicity. J Intensive Care Med. 2019, 34, 863–876. [Google Scholar] [CrossRef]
- He, L. Metformin and Systemic Metabolism. Trends Pharmacol Sci. 2020, 41, 868–881. [Google Scholar] [CrossRef]
- Horakova, O.; Kroupova, P.; Bardova, K.; Buresova, J.; Janovska, P.; Kopecky, J.; Rossmeisl, M. Metformin acutely lowers blood glucose levels by inhibition of intestinal glucose transport. Scientific Reports. 2019, 9. [Google Scholar] [CrossRef]
- McCreight, L.J.; Bailey, C.J.; Pearson, E.R. Metformin and the gastrointestinal tract. Diabetologia. 2016, 59, 426–435. [Google Scholar] [CrossRef]
- Wakeman, M.; Archer, D.T. Metformin and Micronutrient Status in Type 2 Diabetes: Does Polypharmacy Involving Acid-Suppressing Medications Affect Vitamin B12 Levels? Diabetes Metab Syndr Obes. 2020, 13, 2093–2108. [Google Scholar] [CrossRef]
- Kozyraki, R.; Cases, O. Vitamin B12 absorption: mammalian physiology and acquired and inherited disorders. Biochimie. 2013, 95, 1002–1007. [Google Scholar] [CrossRef]
- Gong, Q.; Zhang, P.; Wang, J.; Ma, J.; An, Y.; Chen, Y.; et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019, 7, 452–461. [Google Scholar] [CrossRef]
- The 10-Year Cost-Effectiveness of Lifestyle Intervention or Metformin for Diabetes Prevention. Diabetes Care. 2012, 35, 723–730. [CrossRef]
- Diabetes Prevention Program Research, G.; Knowler, W.C.; Fowler, S.E.; Hamman, R.F.; Christophi, C.A.; Hoffman, H.J.; et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009, 374, 1677–1686. [Google Scholar] [CrossRef]
- Cardona-Morrell, M.; Rychetnik, L.; Morrell, S.L.; Espinel, P.T.; Bauman, A. Reduction of diabetes risk in routine clinical practice: are physical activity and nutrition interventions feasible and are the outcomes from reference trials replicable? A systematic review and meta-analysis. BMC Public Health. 2010, 10, 653. [Google Scholar] [CrossRef]
- Lean, M.E.J. Banting Memorial Lecture 2021—Banting, banting, banter and bravado: Convictions meet evidence in the scientific process. Diabetic Medicine. 2021, 38. [Google Scholar] [CrossRef]
- Hartman, A.L.; Vining, E.P.G. Clinical Aspects of the Ketogenic Diet. Epilepsia. 2007, 48, 31–42. [Google Scholar] [CrossRef]
- Ortega, R. Importance of functional foods in the Mediterranean diet. Public Health Nutrition. 2006, 9, 1136–1140. [Google Scholar] [CrossRef]
- Kossoff, E.H.; McGrogan, J.R. Worldwide Use of the Ketogenic Diet. Epilepsia. 2005, 46, 280–289. [Google Scholar] [CrossRef]
- Jakubowicz, D.; Froy, O.; Wainstein, J.; Boaz, M. Meal timing and composition influence ghrelin levels, appetite scores and weight loss maintenance in overweight and obese adults. Steroids. 2012, 77, 323–331. [Google Scholar] [CrossRef]
- Taylor, R. Banting Memorial Lecture 2012 Reversing the twin cycles of Type 2 diabetes. Diabetic Medicine. 2013, 30, 267–275. [Google Scholar] [CrossRef]
- Yancy, W.S.; Foy, M.; Chalecki, A.M.; Vernon, M.C.; Westman, E.C. A low-carbohydrate, ketogenic diet to treat type 2 diabetes. Nutrition & Metabolism. 2005, 2, 34. [Google Scholar] [CrossRef]
- Koloverou, E.; Esposito, K.; Giugliano, D.; Panagiotakos, D. The effect of Mediterranean diet on the development of type 2 diabetes mellitus: a meta-analysis of 10 prospective studies and 136,846 participants. Metabolism. 2014, 63, 903–911. [Google Scholar] [CrossRef]
- Bao, W.; Tobias, D.K.; Bowers, K.; Chavarro, J.; Vaag, A.; Grunnet, L.G.; et al. Physical Activity and Sedentary Behaviors Associated With Risk of Progression From Gestational Diabetes Mellitus to Type 2 Diabetes Mellitus. JAMA Internal Medicine. 2014, 174, 1047. [Google Scholar] [CrossRef]
- Hrubeniuk, T.J.; Bouchard, D.R.; Goulet, E.D.B.; Gurd, B.; Senechal, M. The ability of exercise to meaningfully improve glucose tolerance in people living with prediabetes: A meta-analysis. Scand J Med Sci Sports. 2020, 30, 209–216. [Google Scholar] [CrossRef]
- Agboola, S.; Jethwani, K.; Lopez, L.; Searl, M.; O'Keefe, S.; Kvedar, J. Text to Move: A Randomized Controlled Trial of a Text-Messaging Program to Improve Physical Activity Behaviors in Patients With Type 2 Diabetes Mellitus. J Med Internet Res. 2016, 18, e307. [Google Scholar] [CrossRef]
- Hansen, D.; Dendale, P.; Jonkers, R.A.M.; Beelen, M.; Manders, R.J.F.; Corluy, L.; et al. Continuous low- to moderate-intensity exercise training is as effective as moderate- to high-intensity exercise training at lowering blood HbA1c in obese type 2 diabetes patients. Diabetologia. 2009, 52, 1789–1797. [Google Scholar] [CrossRef]
- Medagama, A.; Galgomuwa, M. Lack of infrastructure, social and cultural factors limit physical activity among patients with type 2 diabetes in rural Sri Lanka, a qualitative study. PLOS ONE. 2018, 13, e0192679. [Google Scholar] [CrossRef]
- Trepanowski, J.F.; Kroeger, C.M.; Barnosky, A.; Klempel, M.C.; Bhutani, S.; Hoddy, K.K.; et al. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults. JAMA Internal Medicine. 2017, 177, 930. [Google Scholar] [CrossRef] [PubMed]
- Barnosky, A.R.; Hoddy, K.K.; Unterman, T.G.; Varady, K.A. Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: a review of human findings. Transl Res. 2014, 164, 302–311. [Google Scholar] [CrossRef]
- Xu, S.; Jiang, Y.; Zhang, Y.; Xu, W.; Zhang, H.; Yan, Q.; et al. Dietary recommendations for fasting days in an alternate-day intermittent fasting pattern: A randomized controlled trial. Nutrition. 2022, 102, 111735. [Google Scholar] [CrossRef]
- Varady, K.A. Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss? Obesity Reviews. 2011, 12, e593–e601. [Google Scholar] [CrossRef]
- Cai, H. ; Qin Y-L, Shi Z-Y, Chen J-H, Zeng, M.-J.; Zhou, W.; et al. Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: a randomised controlled trial. BMC Gastroenterology.
- Heilbronn, L.K.; Civitarese, A.E.; Bogacka, I.; Smith, S.R.; Hulver, M.; Ravussin, E. Glucose Tolerance and Skeletal Muscle Gene Expression in Response to Alternate Day Fasting. Obesity Research. 2005, 13, 574–581. [Google Scholar] [CrossRef]
- Higashida, K.; Fujimoto, E.; Higuchi, M.; Terada, S. Effects of alternate-day fasting on high-fat diet-induced insulin resistance in rat skeletal muscle. Life Sci. 2013, 93, 208–213. [Google Scholar] [CrossRef]
- Swoap, S.J.; Bingaman, M.J.; Hult, E.M.; Sandstrom, N.J. Alternate-day feeding leads to improved glucose regulation on fasting days without significant weight loss in genetically obese mice. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2019, 317, R461–R9. [Google Scholar] [CrossRef]
- Beigy, M.; Vakili, S.; Berijani, S.; Aminizade, M.; Ahmadi-Dastgerdi, M.; Meshkani, R. Alternate-day fasting diet improves fructose-induced insulin resistance in mice. Journal of Animal Physiology and Animal Nutrition. 2013, 97, 1125–1131. [Google Scholar] [CrossRef]
- Ingersen, A.; Helset, H.R.; Calov, M.; Chabanova, E.; Harreskov, E.G.; Jensen, C.; et al. Metabolic effects of alternate-day fasting in males with obesity with or without type 2 diabetes. Frontiers in Physiology. 2022, 13. [Google Scholar] [CrossRef]
- Gabel, K.; Kroeger, C.M.; Trepanowski, J.F.; Hoddy, K.K.; Cienfuegos, S.; Kalam, F.; Varady, K.A. Differential Effects of Alternate-Day Fasting Versus Daily Calorie Restriction on Insulin Resistance. Obesity. 2019, 27, 1443–1450. [Google Scholar] [CrossRef]
- De Cabo, R.; Mattson, M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. New England Journal of Medicine. 2019, 381, 2541–2551. [Google Scholar] [CrossRef]
- Kroeger, C.M.; Trepanowski, J.F.; Klempel, M.C.; Barnosky, A.; Bhutani, S.; Gabel, K.; Varady, K.A. Eating behavior traits of successful weight losers during 12 months of alternate-day fasting: An exploratory analysis of a randomized controlled trial. Nutrition and Health. 2018, 24, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Kalam, F.; Gabel, K.; Cienfuegos, S.; Wiseman, E.; Ezpeleta, M.; Pavlou, V.; Varady, K.A. Changes in subjective measures of appetite during 6 months of alternate day fasting with a low carbohydrate diet. Clin Nutr ESPEN. 2021, 41, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.; Clifton, P.M.; Keogh, J.B. The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial. Diabetes Res Clin Pract. 2016, 122, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.L.; Hollingsworth, K.G.; Aribisala, B.S.; Chen, M.J.; Mathers, J.C.; Taylor, R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011, 54, 2506–2514. [Google Scholar] [CrossRef] [PubMed]
- Corley, B.T.; Carroll, R.W.; Hall, R.M.; Weatherall, M.; Parry-Strong, A.; Krebs, J.D. Intermittent fasting in Type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabetic Medicine. 2018, 35, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.; Clifton, P.M.; Keogh, J.B. Intermittent energy restriction in type 2 diabetes: A short discussion of medication management. World J Diabetes. 2016, 7, 627–630. [Google Scholar] [CrossRef]
- Baker, S.; Jerums, G.; Proietto, J. Effects and clinical potential of very-low-calorie diets (VLCDs) in type 2 diabetes. Diabetes Res Clin Pract. 2009, 85, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Cook, F.; Langdon-Daly, J.; Serpell, L. Compliance of participants undergoing a ‘5-2’ intermittent fasting diet and impact on body weight. Clinical Nutrition ESPEN. 2022, 52, 257–261. [Google Scholar] [CrossRef]
- Wu, B.; White, K.; Maw, M.T.T.; Charleston, J.; Zhao, D.; Guallar, E.; et al. Adherence to Diet and Meal Timing in a Randomized Controlled Feeding Study of Time-Restricted Feeding. Nutrients. 2022, 14, 2283. [Google Scholar] [CrossRef]
- Hutchison, A.T.; Regmi, P.; Manoogian, E.N.C.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-Restricted Feeding Improves Glucose Tolerance in Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obesity. 2019, 27, 724–732. [Google Scholar] [CrossRef]
- de Goede, P.; Foppen, E.; Ritsema, W.; Korpel, N.L.; Yi, C.X.; Kalsbeek, A. Time-Restricted Feeding Improves Glucose Tolerance in Rats, but Only When in Line With the Circadian Timing System. Front Endocrinol (Lausanne). 2019, 10, 554. [Google Scholar] [CrossRef]
- Lynch, S.; Johnston, J.D.; Robertson, M.D. Early versus late time-restricted feeding in adults at increased risk of developing type 2 diabetes: Is there an optimal time to eat for metabolic health? Nutrition Bulletin. 2021, 46, 69–76. [Google Scholar] [CrossRef]
- Lowe, D.A.; Wu, N.; Rohdin-Bibby, L.; Moore, A.H.; Kelly, N.; Liu, Y.E.; et al. Effects of Time-Restricted Eating on Weight Loss and Other Metabolic Parameters in Women and Men With Overweight and Obesity. JAMA Internal Medicine. 2020, 180, 1491. [Google Scholar] [CrossRef]
- Parr, E.B.; Devlin, B.L.; Radford, B.E.; Hawley, J.A. A Delayed Morning and Earlier Evening Time-Restricted Feeding Protocol for Improving Glycemic Control and Dietary Adherence in Men with Overweight/Obesity: A Randomized Controlled Trial. Nutrients. 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Tsameret, S.; Chapnik, N.; Froy, O. Effect of early vs. late time-restricted high-fat feeding on circadian metabolism and weight loss in obese mice. Cellular and Molecular Life Sciences.
- Perreault, L.; Pan, Q.; Mather, K.J.; Watson, K.E.; Hamman, R.F.; Kahn, S.E.; Diabetes Prevention Program Research, G. Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: results from the Diabetes Prevention Program Outcomes Study. Lancet. 2012, 379, 2243–2251. [Google Scholar] [CrossRef]
- Abraham, T.M.; Fox, C.S. Implications of rising prediabetes prevalence. Diabetes Care. 2013, 36, 2139–2141. [Google Scholar] [CrossRef]
- Gong, R.; Liu, Y.; Luo, G.; Liu, W.; Jin, Z.; Xu, Z.; et al. Associations of TG/HDL Ratio with the Risk of Prediabetes and Diabetes in Chinese Adults: A Chinese Population Cohort Study Based on Open Data. Int J Endocrinol. 2021, 2021, 9949579. [Google Scholar] [CrossRef]
- Brannick, B.; Wynn, A.; Dagogo-Jack, S. Prediabetes as a toxic environment for the initiation of microvascular and macrovascular complications. Exp Biol Med (Maywood). 2016, 241, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2013, 36, S67–S74. [CrossRef]
- Rooney, M.R.; Fang, M.; Ogurtsova, K.; Ozkan, B.; Echouffo-Tcheugui, J.B.; Boyko, E.J.; et al. Global Prevalence of Prediabetes. Diabetes Care. 2023, 46, 1388–1394. [Google Scholar] [CrossRef]
- Lomonaco, R.; Ortiz-Lopez, C.; Orsak, B.; Webb, A.; Hardies, J.; Darland, C.; et al. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology. 2012, 55, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Rattarasarn, C. Dysregulated lipid storage and its relationship with insulin resistance and cardiovascular risk factors in non-obese Asian patients with type 2 diabetes. Adipocyte. 2018, 7, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, D.; Tamura, Y.; Takeno, K.; Kaga, H.; Someya, Y.; Kakehi, S.; et al. Clinical Features of Nonobese, Apparently Healthy, Japanese Men With Reduced Adipose Tissue Insulin Sensitivity. J Clin Endocrinol Metab. 2019, 104, 2325–2333. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Bacha, F.; Tfayli, H.; Michaliszyn, S.F.; Yousuf, S.; Arslanian, S. Adipose Tissue Insulin Resistance in Youth on the Spectrum From Normal Weight to Obese and From Normal Glucose Tolerance to Impaired Glucose Tolerance to Type 2 Diabetes. Diabetes Care. 2019, 42, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Salazar, M.R.; Carbajal, H.A.; Espeche, W.G.; Aizpurúa, M.; Leiva Sisnieguez, C.E.; Leiva Sisnieguez, B.C.; et al. Insulin resistance: The linchpin between prediabetes and cardiovascular disease. Diabetes and Vascular Disease Research. 2016, 13, 157–163. [Google Scholar] [CrossRef]
- Gayoso-Diz, P.; Otero-González, A.; Rodriguez-Alvarez, M.X.; Gude, F.; García, F.; De Francisco, A.; Quintela, A.G. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: effect of gender and age: EPIRCE cross-sectional study. BMC Endocrine Disorders. 2013, 13, 47. [Google Scholar] [CrossRef]
- Guemes, M.; Rahman, S.A.; Hussain, K. What is a normal blood glucose? Arch Dis Child. 2016, 101, 569–574. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Santaguida, P.; Raina, P.; Morrison, K.M.; Balion, C.; Hunt, D.; et al. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract. 2007, 78, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Echouffo-Tcheugui, J.B.; Perreault, L.; Ji, L.; Dagogo-Jack, S. Diagnosis and Management of Prediabetes: A Review. JAMA. 2023, 329, 1206–1216. [Google Scholar] [CrossRef]
- Saito, T. Lifestyle Modification and Prevention of Type 2 Diabetes in Overweight Japanese With Impaired Fasting Glucose Levels. Archives of Internal Medicine. 2011, 171, 1352. [Google Scholar] [CrossRef]
- Reasner, C.; Olansky, L.; Seck, T.L.; Williams-Herman, D.E.; Chen, M.; Terranella, L.; et al. The effect of initial therapy with the fixed-dose combination of sitagliptin and metformin compared with metformin monotherapy in patients with type 2 diabetes mellitus. Diabetes, Obesity and Metabolism 2011, 13, 644–652. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Qu, Y.; Lin, M.; Dong, F.; Li, Y.; et al. Efficacy and safety of combination therapy with vildagliptin and metformin vs. metformin monotherapy for Type 2 Diabetes Mellitus therapy: a meta-analysis. Eur Rev Med Pharmacol Sci. 2022, 26, 2802–2817. [Google Scholar] [PubMed]
- Terada, T.; Boule, N.G. Does metformin therapy influence the effects of intensive lifestyle intervention? Exploring the interaction between first line therapies in the Look AHEAD trial. Metabolism. 2019, 94, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.S.; Li, T.Y.; Manson, J.E.; Hu, F.B. Adiposity Compared With Physical Inactivity and Risk of Type 2 Diabetes in Women. Diabetes Care. 2007, 30, 53–58. [Google Scholar] [CrossRef]
- Hamasaki, H. Daily physical activity and type 2 diabetes: A review. World J Diabetes. 2016, 7, 243–251. [Google Scholar] [CrossRef]
- Holloszy, J.O. Exercise-induced increase in muscle insulin sensitivity. J Appl Physiol 2005, 99, 338–343. [Google Scholar] [CrossRef]
- Hrubeniuk, T.J.; Bouchard, D.R.; Goulet, E.D.B.; Gurd, B.; Sénéchal, M. The ability of exercise to meaningfully improve glucose tolerance in people living with prediabetes: A meta-analysis. Scandinavian Journal of Medicine & Science in Sports. 2020, 30, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.K.; Roberts, C.K.; Barnard, R.J. Effect of a short-term diet and exercise intervention on metabolic syndrome in overweight children. Metabolism. 2006, 55, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Durstine, J.L. Effect of aerobic exercise on high-density lipoprotein cholesterol: a meta-analysis. Clin J Sport Med. 2008, 18, 107–108. [Google Scholar] [CrossRef]
- Kodama, S.; Tanaka, S.; Saito, K.; Shu, M.; Sone, Y.; Onitake, F.; et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med. 2007, 167, 999–1008. [Google Scholar] [CrossRef]
- Janssen, S.M.; Connelly, D.M. The effects of exercise interventions on physical function tests and glycemic control in adults with type 2 diabetes: A systematic review. J Bodyw Mov Ther. 2021, 28, 283–293. [Google Scholar] [CrossRef]
- Magkos, F.; Hjorth, M.F.; Astrup, A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nature Reviews Endocrinology. 2020, 16, 545–555. [Google Scholar] [CrossRef]
- Wei, J.; Chen, J.; Wei, X.; Xiang, X.; Cheng, Q.; Xu, J.; et al. Long-term remission of type 2 diabetes after very-low-calorie restriction and related predictors. Frontiers in Endocrinology. 2022, 13. [Google Scholar] [CrossRef]
- McAndrew, L.M.; Napolitano, M.A.; Pogach, L.M.; Quigley, K.S.; Shantz, K.L.; Vander Veur, S.S.; Foster, G.D. The impact of self-monitoring of blood glucose on a behavioral weight loss intervention for patients with type 2 diabetes. Diabetes Educ. 2013, 39, 397–405. [Google Scholar] [CrossRef]
- Thom, G.; McIntosh, A.; Messow, C.M.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; et al. Weight loss-induced increase in fasting ghrelin concentration is a predictor of weight regain: Evidence from the Diabetes Remission Clinical Trial (DiRECT). Diabetes Obes Metab. 2021, 23, 711–719. [Google Scholar] [CrossRef]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metabolism. 2018, 27, 1212–1221. [Google Scholar] [CrossRef]
- Nowosad, K.; Sujka, M. Effect of Various Types of Intermittent Fasting (IF) on Weight Loss and Improvement of Diabetic Parameters in Human. Curr Nutr Rep. 2021, 10, 146–154. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Xu, Y.; Gao, J.; Cao, Q.; Ding, Y.; et al. Effect of 5, 2 Regimens: Energy-Restricted Diet or Low-Volume High-Intensity Interval Training Combined With Resistance Exercise on Glycemic Control and Cardiometabolic Health in Adults With Overweight/Obesity and Type 2 Diabetes-A Three-Arm Randomized Controlled Trial. Diabetes Care. 2024.
- Gabel, K.; Hoddy, K.K.; Haggerty, N.; Song, J.; Kroeger, C.M.; Trepanowski, J.F.; et al. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutrition and Healthy Aging. 2018, 4, 345–353. [Google Scholar] [CrossRef]
- Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020, 31, 92–104. [Google Scholar] [CrossRef]
- Tinsley, G.M.; La Bounty, P.M. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutrition Reviews. 2015, 73, 661–674. [Google Scholar] [CrossRef]
- Cienfuegos, S.; McStay, M.; Gabel, K.; Varady, K.A. Time restricted eating for the prevention of type 2 diabetes. The Journal of Physiology. 2022, 600, 1253–1264. [Google Scholar] [CrossRef]
- Martens, C.R.; Rossman, M.J.; Mazzo, M.R.; Jankowski, L.R.; Nagy, E.E.; Denman, B.A.; et al. Short-term time-restricted feeding is safe and feasible in non-obese healthy midlife and older adults. GeroScience. 2020, 42, 667–686. [Google Scholar] [CrossRef]
- Tsitsou, S.; Zacharodimos, N.; Poulia, K.A.; Karatzi, K.; Dimitriadis, G.; Papakonstantinou, E. Effects of Time-Restricted Feeding and Ramadan Fasting on Body Weight, Body Composition, Glucose Responses, and Insulin Resistance: A Systematic Review of Randomized Controlled Trials. Nutrients. 2022, 14. [Google Scholar] [CrossRef]
- Andriessen, C.; Fealy, C.E.; Veelen, A.; van Beek, S.M.M.; Roumans, K.H.M.; Connell, N.J.; et al. Three weeks of time-restricted eating improves glucose homeostasis in adults with type 2 diabetes but does not improve insulin sensitivity: a randomised crossover trial. Diabetologia. 2022, 65, 1710–1720. [Google Scholar] [CrossRef]
- Che, T.; Yan, C.; Tian, D.; Zhang, X.; Liu, X.; Wu, Z. Time-restricted feeding improves blood glucose and insulin sensitivity in overweight patients with type 2 diabetes: a randomised controlled trial. Nutrition & Metabolism.
- Ravussin, E.; Beyl, R.A.; Poggiogalle, E.; Hsia, D.S.; Peterson, C.M. Early Time-Restricted Feeding Reduces Appetite and Increases Fat Oxidation But Does Not Affect Energy Expenditure in Humans. Obesity. 2019, 27, 1244–1254. [Google Scholar] [CrossRef]
- Bandin, C.; Scheer, F.A.; Luque, A.J.; Avila-Gandia, V.; Zamora, S.; Madrid, J.A.; et al. Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: A randomized, crossover trial. Int J Obes (Lond). 2015, 39, 828–833. [Google Scholar] [CrossRef]
- Garaulet, M.; Gomez-Abellan, P.; Alburquerque-Bejar, J.J.; Lee, Y.C.; Ordovas, J.M.; Scheer, F.A. Timing of food intake predicts weight loss effectiveness. Int J Obes (Lond). 2013, 37, 604–611. [Google Scholar] [CrossRef]
- Jakubowicz, D.; Barnea, M.; Wainstein, J.; Froy, O. High Caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity. 2013, 21, 2504–2512. [Google Scholar] [CrossRef]
- Allison, K.C.; Hopkins, C.M.; Ruggieri, M.; Spaeth, A.M.; Ahima, R.S.; Zhang, Z.; et al. Prolonged, Controlled Daytime versus Delayed Eating Impacts Weight and Metabolism. Current Biology. 2021, 31, 650–657. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
