Submitted:
13 June 2024
Posted:
18 June 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Postoperative Dialysis as a Clinical Endpoint
Therapeutic Donor Hypothermia
Dopamine
Hypothermic Pulsatile Machine Perfusion
Summary
Funding
Conflicts of Interest
References
- Wekerle, T.; Segev, D.; Lechler, R.; Oberbauer, R. Strategies for long-term preservation of kidney graft function. Lancet. 2017, 389, 2152–2162. [Google Scholar] [CrossRef] [PubMed]
- Tullius, S.G.; Rabb, H. Improving the Supply and Quality of Deceased-Donor Organs for Transplantation. N Engl J Med. 2018, 378, 1920–1929. [Google Scholar] [CrossRef] [PubMed]
- Childress, J.F. Organ Donor Research: Overcoming Challenges, Increasing Opportunities. JAMA. 2017, 318, 2177–2178. [Google Scholar] [CrossRef] [PubMed]
- Kainz, A.; Wilflingseder, J.; Mitterbauer, C.; Haller, M.; Burghuber, C.; Perco, P.; Langer, R.M.; Heinze, G.; Oberbauer, R. Steroid pretreatment of organ donors to prevent postischemic renal allograft failure: a randomized, controlled trial. Ann Intern Med. 2010, 153, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Dhar, R.; Marklin, G.F.; Klinkenberg, W.D.; Wang, J.; Goss, C.W.; Lele, A.V.; Kensinger, C.D.; Lange, P.A.; Lebovitz, D.J. Intravenous Levothyroxine for Unstable Brain-Dead Heart Donors. N Engl J Med. 2023, 389, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Niemann, C.U.; Feiner, J.; Swain, S.; Bunting, S.; Friedman, M.; Crutchfield, M.; Broglio, K.; Hirose, R.; Roberts, J.P.; Malinoski, D. Therapeutic hypothermia in deceased organ donors and kidney-graft function. N Engl J Med. 2015, 373, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Schnuelle, P.; Gottmann, U.; Hoeger, S.; Boesebeck, D.; Lauchart, W.; Weiss, C.; Fischereder, M.; Jauch, K.W.; Heemann, U.; Zeier, M.; et al. Effects of donor pretreatment with dopamine on graft function after kidney transplantation: a randomized controlled trial. JAMA. 2009, 302, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Moers, C.; Smits, J.M.; Maathuis, M.H.; Treckmann, J.; van Gelder, F.; Napieralski, B.P.; van Kasterop-Kutz, M.; van der Heide, J.J.; Squifflet, J.P.; van Heurn, E.; Kirste, G.R.; Rahmel, A.; et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 2009, 360, 7–19. [Google Scholar] [CrossRef]
- Malinoski, D.; Saunders, C.; Swain, S.; Groat, T.; Wood, P.R.; Reese, J.; Nelson, R.; Prinz, J.; Kishish, K.; Van De Walker, C.; et al. Hypothermia or Machine Perfusion in Kidney Donors. N Engl J Med. 2023, 388, 418–426. [Google Scholar] [CrossRef]
- Budhiraja, P.; Reddy, K.S.; Butterfield, R.J.; Jadlowiec, C.C.; Moss, A.A.; Khamash, H.A.; Kodali, L.; Misra, S.S.; Heilman, R.L. Duration of delayed graft function and its impact on graft outcomes in deceased donor kidney transplantation. BMC Nephrol. 2022, 23, 154. [Google Scholar] [CrossRef]
- Schrezenmeier, E.; Müller, M.; Friedersdorff, F.; Khadzhynov, D.; Halleck, F.; Staeck, O.; Dürr, M.; Zhang, K.; Eckardt, K.U.; Budde, K.; et al. Evaluation of severity of delayed graft function in kidney transplant recipients. Nephrol Dial Transplant. 2022, 37, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Nijboer, W.N.; Moers, C.; Leuvenink, H.G.; Ploeg, R.J. How important is the duration of the brain death period for the outcome in kidney transplantation? Transpl Int. 2011, 24, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Schnuelle, P.; Mundt, H.M.; Drüschler, F.; Schmitt, W.H.; Yard, B.A.; Krämer, B.K.; Benck, U. Impact of spontaneous donor hypothermia on graft outcomes after kidney transplantation. Am J Transplant. 2018, 18, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Malinoski, D.; Patel, M.S.; Axelrod, D.A.; Broglio, K.; Lewis, R.J.; Groat, T.; Niemann, C.U. Therapeutic Hypothermia in Organ Donors: Follow-up and Safety Analysis. Transplantation. 2019, 103, e365–e368. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.S.; Salcedo-Betancourt, J.D.; Saunders, C.; Broglio, K.; Malinoski, D.; Niemann, C.U. Therapeutic Hypothermia in Low-Risk Nonpumped Brain-Dead Kidney Donors: A Randomized Clinical Trial. JAMA Netw Open. 2024, 7, e2353785. [Google Scholar] [CrossRef] [PubMed]
- Schnuelle, P.; Lorenz, D.; Mueller, A.; Trede, M.; Van Der Woude, F.J. Donor catecholamine use reduces acute allograft rejection and improves graft survival after cadaveric renal transplantation. Kidney Int. 1999, 56, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Schnuelle, P.; Yard, B.A.; Braun, C.; Dominguez-Fernandez, E.; Schaub, M.; Birck, R.; Sturm, J.; Post, S.; van der Woude, F.J. Impact of donor dopamine on immediate graft function after kidney transplantation. Am J Transplant. 2004, 4, 419–426. [Google Scholar] [CrossRef]
- Bellomo, R.; Chapman, M.; Finfer, S.; Hickling, K.; Myburgh, J. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet. 2000, 356, 2139–2143. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.L.; Walley, K.R. Bad medicine: low-dose dopamine in the ICU. Chest. 2003, 123, 1266–1275. [Google Scholar] [CrossRef]
- Huang, H.; Salahudeen, A.K. Cold induces catalytic iron release of cytochrome P-450 origin: a critical step in cold storage-induced renal injury. Am J Transplant. 2002, 2, 631–639. [Google Scholar] [CrossRef]
- Nakao, A.; Faleo, G.; Shimizu, H.; Nakahira, K.; Kohmoto, J.; Sugimoto, R.; Choi, A.M.; McCurry, K.R.; Takahashi, T.; Murase, N. Ex vivo carbon monoxide prevents cytochrome P450 degradation and ischemia/reperfusion injury of kidney grafts. Kidney Int. 2008, 74, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Munoz, F.M.; Zhang, F.; Islas-Robles, A.; Lau, S.S.; Monks, T.J. From the Cover: ROS-Induced Store-Operated Ca2+ Entry Coupled to PARP-1 Hyperactivation Is Independent of PARG Activity in Necrotic Cell Death. Toxicol Sci. 2017, 158, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Chernorudskiy, A.L.; Zito, E. Regulation of Calcium Homeostasis by ER Redox: A Close-Up of the ER/Mitochondria Connection. J Mol Biol. 2017, 429, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Tajeddine, N. How do reactive oxygen species and calcium trigger mitochondrial membrane permeabilisation? Biochim Biophys Acta. 2016, 1860, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Brinkkoetter, P.T.; Song, H.; Lösel, R.; Schnetzke, U.; Gottmann, U.; Feng, Y.; Hanusch, C.; Beck, G.C.; Schnuelle, P.; Wehling, M.; et al. Hypothermic injury: the mitochondrial calcium, ATP and ROS love-hate triangel out of balance. Cell Physiol Biochem. 2008, 22, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Lösel, R.M.; Schnetzke, U.; Brinkkoetter, P.T.; Song, H.; Beck, G.; Schnuelle, P.; Höger, S.; Wehling, M.; Yard, B.A. N-octanoyl dopamine, a non hemodyamic dopamine derivative, for cell protection during hypothermic organ preservation. PLoS One. 2010, 5, e9713. [Google Scholar] [CrossRef] [PubMed]
- Schnuelle, P.; Schmitt, W.H.; Weiss, C.; Habicht, A.; Renders, L.; Zeier, M.; Drüschler, F.; Heller, K.; Pisarski, P.; Banas, B.; et al. Effects of Dopamine Donor Pretreatment on Graft Survival after Kidney Transplantation: A Randomized Trial. Clin J Am Soc Nephrol. 2017, 12, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Tingle, S.J.; Figueiredo, R.S.; Moir, J.A.; Goodfellow, M.; Talbot, D.; Wilson, CH. Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev. 2019, 3, CD011671. [Google Scholar] [CrossRef] [PubMed]
- Schaapherder, A.F.; Kaisar, M.; Mumford, L.; Robb, M.; Johnson, R.; de Kok, M.J.C.; Bemelman, F.J.; van de Wetering, J.; van Zuilen, A.D.; Christiaans, M.H.L.; et al. Donor characteristics and their impact on kidney transplantation outcomes: Results from two nationwide instrumental variable analyses based on outcomes of donor kidney pairs accepted for transplantation. EClinicalMedicine. 2022, 50, 101516. [Google Scholar] [CrossRef]
- Moers, C.; Pirenne, J.; Paul, A.; Ploeg, R.J.; Machine Preservation Trial Study Group. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 2012, 366, 770–771. [Google Scholar] [CrossRef]
- Peng, P.; Ding, Z.; He, Y.; Zhang, J.; Wang, X.; Yang, Z. Hypothermic Machine Perfusion Versus Static Cold Storage in Deceased Donor Kidney Transplantation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Artif Organs. 2019, 43, 478–489. [Google Scholar] [CrossRef] [PubMed]
- Ghoneima, A.S.; Sousa Da Silva, R.X.; Gosteli, M.A.; Barlow, A.D.; Kron, P. Outcomes of Kidney Perfusion Techniques in Transplantation from Deceased Donors: A Systematic Review and Meta-Analysis. J Clin Med. 2023, 12, 3871. [Google Scholar] [CrossRef] [PubMed]
- Treckmann, J.; Moers, C.; Smits, J.M.; Gallinat, A.; Maathuis, M.H.; van Kasterop-Kutz, M.; Jochmans, I.; Homan van der Heide, J.J.; Squifflet, J.P.; van Heurn, E.; et al. Machine perfusion versus cold storage for preservation of kidneys from expanded criteria donors after brain death. Transpl Int. 2011, 24, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Schnuelle, P.; Krämer, B.K. Does the Expanded Controlled Evidence Now Mandate the Routine Use of Machine Perfusion in Kidney Transplantation? Mayo Clin Proc. 2024, 99, 22–25. [Google Scholar] [CrossRef]
- Ciancio, G.; Gaynor, J.J.; Sageshima, J.; Chen, L.; Roth, D.; Kupin, W.; Guerra, G.; Tueros, L.; Zarak, A.; Hanson, L.; et al. Favorable outcomes with machine perfusion and longer pump times in kidney transplantation: A single-center, observational study. Transplantation. 2010, 90, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Guy, A.; McGrogan, D.; Inston, N.; Ready, A. Hypothermic machine perfusion permits extended cold ischemia times with improved early graft function. Exp Clin Transplant. 2015, 13, 130–137. [Google Scholar] [PubMed]
- de Sandes-Freitas, T.V.; Costa, S.D.; de Andrade, L.G.M.; Girão, C.M.; Fernandes, P.F.C.B.C.; de Oliveira, C.M.C.; Esmeraldo, R.M. The Impact of Hypothermic Pulsatile Machine Perfusion Versus Static Cold Storage: A Donor-Matched Paired Analysis in a Scenario of High Incidence of Delayed Kidney Graft Function. Ann Transplant. 2020, 25, e927010. [Google Scholar] [PubMed]
- Adani, G.L.; Pravisani, R.; Tulissi, P.; Isola, M.; Calini, G.; Terrosu, G.; Boscutti, G.; Avital, I.; Ekser, B.; Baccarani, U. Hypothermic machine perfusion can safely prolong cold ischemia time in deceased donor kidney transplantation. A retrospective analysis on postoperative morbidity and graft function. Artif Organs. 2021, 45, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Kox, J.; Moers, C.; Monbaliu, D.; Strelniece, A.; Treckmann, J.; Jochmans, I.; Leuvenink, H.; Van Heurn, E.; Pirenne, J.; Paul, A.; et al. The Benefits of Hypothermic Machine Preservation and Short Cold Ischemia Times in Deceased Donor Kidneys. Transplantation. 2018, 102, 1344–1350. [Google Scholar] [CrossRef]
- Vettel, C.; Hottenrott, M.C.; Spindler, R.; Benck, U.; Schnuelle, P.; Tsagogiorgas, C.; Krämer, B.K.; Hoeger, S.; El-Armouche, A.; Wieland, T.; et al. Dopamine and lipophilic derivates protect cardiomyocytes against cold preservation injury. J Pharmacol Exp Ther. 2014, 348, 77–85. [Google Scholar] [CrossRef]
- Hanusch, C.; Nowak, K.; Törlitz, P.; Gill, I.S.; Song, H.; Rafat, N.; Brinkkoetter, P.T.; Leuvenink, H.G.; Van Ackern, K.C.; Yard, B.A.; et al. Donor dopamine treatment limits pulmonary oedema and inflammation in lung allografts subjected to prolonged hypothermia. Transplantation. 2008, 85, 1449–1455. [Google Scholar] [CrossRef]
- Benck, U.; Hoeger, S.; Brinkkoetter, P.T.; Gottmann, U.; Doenmez, D.; Boesebeck, D.; Lauchart, W.; Gummert, J.; Karck, M.; Lehmkuhl, H.B.; et al. Effects of donor pre-treatment with dopamine on survival after heart transplantation: a cohort study of heart transplant recipients nested in a randomized controlled multicenter trial. J Am Coll Cardiol. 2011, 58, 1768–1777. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
