Submitted:
02 June 2024
Posted:
04 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Homogeneous Coordinates on the 2-Sphere
3. Bondi-Sachs Metric in Homogeneous Coordinates
4. Asymptotic Killing Fields
5. Flow of Supertranslation Vector Fields
6. Concluding Remarks and Open Problems
Acknowledgments
Appendix A. The Use of Homogeneous Coordinates
Appendix B. Lie Brackets of Asymptotic Killing Fields
References
- H. Bondi, M.G.J. Van der Burg, A.W.K. Metzner, Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems, Proc. Roy. Soc. London A 269, 21 (1962).
- R.K. Sachs, Gravitational waves in general relativity. VIII. Waves in asymptotically flat space-time, Proc. Roy. Soc. London A 270, 103 (1962).
- R.K. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128, 2851 (1962).
- S.W. Hawking, M.A. Perry, A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116, 231301 (2016). [CrossRef]
- S.W. Hawking, M.A. Perry, A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP 2017 5, 161 (2017). [CrossRef]
- S. Haco, S.W. Hawking, M.A. Perry, A. Strominger, Black hole entropy and soft hair, JHEP 2018 12, 98 (2018).
- P.J. McCarthy, Representations of the Bondi-Metzner-Sachs group I. Determination of the representations, Proc. Roy. Soc. London A 330, 517 (1972).
- P.J. McCarthy, Structure of the Bondi-Metzner-Sachs group, J. Math. Phys. 13, 1837 (1972).
- P.J. McCarthy, Representations of the Bondi-Metzner-Sachs group II. Properties and classification of representations, Proc. Roy. Soc. London A 333, 317 (1973).
- P.J. McCarthy, M. Crampin, Representations of the Bondi-Metzner-Sachs group III. Poincaré spin multiplicities and irreducibility, Proc. Roy. Soc. London A 335, 321 (1973). [CrossRef]
- P.J. McCarthy, M. Crampin, Representations of the Bondi-Metzner-Sachs group IV. Cantoni representations are induced, Proc. Roy. Soc. London A 351, 55 (1976).
- G. Barnich, C. Troessaert, Finite BMS transformations, JHEP 2016 3, 167 (2016).
- F. Alessio, G. Esposito, On the structure and applications of the Bondi-Metzner-Sachs group, Int. J. Geom. Methods Mod. Phys. 15, 1830002 (2018). [CrossRef]
- M. Henneaux, C. Troessaert, BMS group at spatial infinity. The Hamiltonian (ADM) approach, JHEP 2018 3, 147 (2018).
- G. Barnich, K. Nguyen, R. Ruzziconi, Geometric action of extended Bondi-Metzner-Sachs group in four dimensions, JHEP 2022 12, 154 (2022).
- C. Chowdhury, A. Anupam, A. Kundu, Generalized BMS algebra in higher even dimensions, Phys. Rev. D 106, 126025 (2022).
- O. Fuentealba, M. Henneaux, J. Matulich, C. Troessaert, Bondi-Metzner-Sachs group in five spacetime dimensions, Phys. Rev. Lett. 128, 051103 (2022).
- D. Prinz, A. Schmeding, Lie theory for asymptotic symmetries in general relativity: The BMS group, Class. Quantum Grav. 39, 065004 (2022).
- Z. Mirzaiyan, G. Esposito, On the nature of Bondi-Metzner-Sachs transformations, Symmetry 15, 947 (2023). [CrossRef]
- D.A. Weiss, A microscopic analogue of the BMS group, JHEP 2023 4, 136 (2023).
- A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory (Princeton University Press, Princeton, 2018).
- S. Pasterski, Implications of superrotations, Phys. Rep. 829, 1 (2019).
- E. Himwich, Z. Mirzaiyan, S. Pasterski, A note on the subleading soft graviton, JHEP 2021 4, 172 (2021).
- G. Compère, S.E. G. Compère, S.E. Gralla, An asymptotic framework for gravitational scattering, Class. Quantum Grav. 40, 205018 (2023).
- J.M. Stewart, Advanced General Relativity (Cambridge University Press, Cambridge, 1990).
- X. Kervyn, BMS Symmetries of Gravitational Scattering, https://arxiv.org/abs/2308.12979, gr-qc (2023).
- G. Della Sala, A. Saracco, A. Simioniuc, G. Tomassini, Lectures on Complex Analysis and Analytic Geometry (Scuola Normale Superiore, Pisa, 2006).
- R. Penrose, W. Rindler, Spinors and Space-Time. 1: Two-Spinor Calculus and Relativistic fields (Cambridge University Press, Cambridge, 1984).









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).