Submitted:
03 June 2024
Posted:
04 June 2024
You are already at the latest version
Abstract
Keywords:
MSC: Primary 05A30; 30C45; Secondary 11B65; 47B38
1. Preliminaries and Basic Notations
2. Set of Lemmas:
3. Main Results
4. Conclusion
Acknowledgments
Competing interests
Funding
Availability of data and materials
References
- P.L. Duren, Univalent Functions, Grundehren der Math. Wiss., Vol. 259, Springer-Verlag, New York, 1983.
- A. W. Goodman, Univalent Functions, Vol. I, II, Mariner, Tampa, FL, 1983.
- W. K. Hayman, Multivalent functions, Cambridge University Press, U.K. 1967.
- W. Kaplan, Close-to-convex schlicht functions. Mich. Math. J., 1952, 1: 169-185. [CrossRef]
- K. I. Noor, On quasi-convex functions and related topics, Inter. J. Math. & Math. Sci., I0(2) (1987), 241-258. [CrossRef]
- M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, (1967), 63-68. [CrossRef]
- D.A. Brannan, J. Cluni, Aspects of contemporary complex analysis, in proceedings of the NATO Advanced Study Institute Held at University of Durham, Academic Press, New York, 1979.
- E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |μ|. Arch. Ration. March. Anal., 32, (1967), 100-112. [CrossRef]
- D.A. Brannan, T.S. Taha, On some classes of bi-univalent function, Study. Univ. Babes Bolyai Math., 31(2), (1986), 70-77. [CrossRef]
- T. Hayami, S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J. 22(4), (2012), 15–26.
- Q.H. Xu, H.G. Xiao, H.M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218, (2012), 11461–11465. [CrossRef]
- G. Faber, Uber polynomische Entwickelungen, Math. Ann, 57(3), (1903), 1569-1573. [CrossRef]
- S. Gong, The Bieberbach conjecture,translated from the 1989 Chinese original and revised by the author, AMS/IP Studies in Advanced Mathematics, 12, Amer. Math. Soc., Providence, RI, 1999. MR1699322 (2000, 30029).
- S.G. Hamidi, J.M. Jahangiri, Faber polynomials coefficient estimates for analytic bi-close-to-convex functions, C. R. Aced. Sci, paris. Ser.I, 352(1), (2014), 17-20. [CrossRef]
- S.G Hamidi, J.M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iranian Math. Soc., 41(5), (2015), 1103-1119.
- S. Khan, S. Altınkaya, Q. Xin, F. Tchier, S.N. Malik, N. Khan, Faber Polynomial Coefficient Estimates for Janowski Type bi-Close-to-Convex and bi-Quasi-Convex Functions, Symmetry, 15, (2023), 604. https://doi.org/10.3390/sym15030604. [CrossRef]
- N. Khan, Q. Z. Ahmad, S. Khan and B. Khan, The Faber Polynomial Expansion Method for a Subclass of Analytic and Bi-Univalent Functions Associated with the Janowski Functions, Montes Taurus J. Pure Appl. Math. 3 (3), (2021), 17–24. [CrossRef]
- H. Airault, Remarks on Faber polynomials, Int. Math. Forum, 3(9), (2008), 449-456.
- H. Airault, H. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130(3), (2006), 179-222.
- S. Bulut, Faber polynomial coefficients estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, 352, (2014), 479–484. [CrossRef]
- S.G. Hamidi, J.M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C.R. Acad. Sci. Paris Ser. I, 354, (2016), 365-370. [CrossRef]
- M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator, Stud. Univ. Babes-Bolyai Math. 63(4) (2018), 419-436.
- I. Al-shbeil, N. Khan, F. Tchier, Q. Xin, S. N. Malik, S. Khan, Coefficient bounds for a family of s-fold symmetric bi-univalent functions, Axioms, 2023, 12, 317.
- H.M. Srivastava, S.S. Eker, R.M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29(8), (2015), 1839–1845.
- S.G. Hamidi and J.M. Jahangiri, Faber polynomial coe cient estimates for analytic bi-close-toconvex functions, C. R. Acad. Sci. Paris, Ser. I 352 (2014), 17-20.
- S. Bulut, A new comprehensive subclass of analytic bi-close-to-convex functions, Turk. J. Math. 43 (3) (2019), 1414-1424.
- S. Bulut, Coefficient estimates for functions associated with vertical strip domain, Commun. Korean Math. Soc. 37 (2) (2022), 537-549. [CrossRef]
- H. O. Guney, G. Murugusundaramoorthy and H.M. Srivastava, The second Hankel determinant for a certain class of bi-close-to-convex functions, Result. Math. 74 (3) (2019), Paper No. 93.
- H. Airault, Symmetric sums associated to the factorizations of Grunsky coefficients, in Conference, Groups and Symmetries. Montreal. Canada, April 2007.
- F.H. Jackson, On q-functions and a certain difference operator, Earth Env. Sci. Tran. Royal Soc. Edinburgh, 46(2), (1909), 253–281.
- M.E.H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Com. Vari. Theo. Appl. 14, (1990), 77–84.
- H. Aldweby, M. Darus, Some subordination results on q-analogue of Ruscheweyh differential operator, Abst. Appl. Anal., 2014 (2014), Article ID 958563.
- S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64(5), (2014), 1183–1196. [CrossRef]
- S. Mahmood, J. Sokol, New subclass of analytic functions in conical domain associated with ruscheweyh q-differential operator, Results Math., 71, (2017), 1–13. [CrossRef]
- H.M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent Functions; Fractional Calculus; and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), pp. 329-354, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
- H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient Inequalities for q-Starlike Functions Associated with the Janowski Functions, Hokkaido Mathematical Journal,48, (2019), 407-425. [CrossRef]
- N. Khan, M. Shafiq, M. Darus, B. Khan and Q. Z. Ahmad, Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with Lemniscate of Bernoulli, J. Math. Inequl,14(1), (2020), 51-63.
- H.M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Tech. Tran. A: Sci.,2020, 44 (1), 327-344.
- G.Gasper, M.Rahman: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge, 1990.
- F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41(15), 1910, 193–203.
- S.D. Purohit, R.K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand., 109, (2011), 55–70. [CrossRef]
- S.Abelman, K.A. Selvakumaran, M.M.Rashidi, S.D.Purohit: Subordination conditions for a class of non-Bazilevic type defined by using fractional q-calculus operators. Facta Univ., Ser. Math. Inf. 32 (2017), 255–267. [CrossRef]
- H.M. Srivastava, J. Choi, Zeta and q-Zeta functions and associated series and integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
- K.A. Selvakumaran, J. Choi, S.D. Purohit, Certain subclasses of analytic functions defined by fractional q-calculus operators, Appl. Math. E-Notes, 21, (2021), 72-80.
- S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of m-fold symmetric analytic bi-univalent functions, J. Frac. Cal. Appli., 8(1), (2017), 108-117.
- Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Gottingen, 1975.
- S. Bulut, Coefficient estimates for Libera type bi-close-to-convex functions, Mathematica Slovaca, 71 (6) (2021), 1401-1410. [CrossRef]
- Z. G. Wang and S. Bulut, A note on the coefficient estimates of bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I 355 (2017), 876-880. [CrossRef]
- Sümer Eker, S.; Şeker, B.; Çekiç, B.; Acu, M. Sharp Bounds for the Second Hankel Determinant of Logarithmic Coefficients for Strongly Starlike and Strongly Convex Functions. Axioms 2022, 11, 369.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
