Submitted:
30 May 2024
Posted:
31 May 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. State of the Art
2. Materials and Methods
| Yintercept | w1 | w2 | w3 | w4 | w5 | w6 | |
|---|---|---|---|---|---|---|---|
| Mean | 539.344995 | 37.1976496 | -8.204927 | 0.98199403 | -0.0470851 | 0.00102944 | -0.00000831 |
| St. Dev. | 0.32182335 | 0.0275649 | 0.130811 | 0.01723356 | 0.00095285 | 0.00002321 | 0.000000205 |
2.1. Multi-Objective Optimization Problem (MOOP) Formulation
| Indices and sets | Units | |
|---|---|---|
| t | index for the planning time step | — |
| c | index for crop products | — |
| A | index for animals | — |
| I | index for environmental impact categories | — |
| C | set of crops | — |
| NC | size of current crop plantation | — |
| NLnewborn | number of newborns | — |
| NLcull | number of livestock to be culled | — |
| Decision variables | ||
| UAAc,t | Utilized agricultural area (UAA) with crop plantation c for a given time t. | ha |
| NL | number of livestock | — |
| Parameters | ||
| T | simulation time horizon. | years |
| hc | harvesting month of crop c. | — |
| sc | seeding month of crop c. | — |
| Af | total acreage available in farm f. | ha |
| wi | weight of the EF impact category i | — |
| ni | normalization factor of the EF impact category i | — |
| impc,i | environmental impact of crop c in impact category i | — |
| impmilk,i | environmental impact of milk in impact category i | — |
| impmeat,i | environmental impact of meat in impact category i | — |
| Continuous variables | ||
| fc,t | profit from crop production at time t. | € |
| fa,t | profit from animal production at time t. | € |
| fs,t | revenue from subsidies at time t. | € |
| fp,t | total profit of a farm at time t. | € |
| fi,t | impact of farming activities for impact category i at time t. | — |
| fEF,t | EF single score impact of farming activities at time t. | — |
| pc,t | price of crop c sold at time t. | €/ha |
| vcc,t | variable cost of production of crop c sold at time t. | €/ha |
| Ac,t | area of crop c at time t. | ha |
| Apasture,t | area occupied by pastureland at time t. | ha |
| pmilk,t | price of milk sold at time t. | €/kg |
| ymilk,t | total yield of milk at time t. | kg |
| pmeat,t | price of meat sold at time t. | €/kg |
| ymeat,t | total yield of meat at time t. | kg |
| vcfeed,t | variable cost of feeding at time t. | € |
| vcvet,t | variable cost of veterinary at time t. | € |
| Pmilk,t | total milk production in the farm at time t. | kg |
| Pmilk,a,t | total milk production of animal a at time t. | kg |
| Pmeat,t | total meat production in the farm at time t. | kg |
| Pmeat,a,t | total meat production from animal a at time t. | kg |
| m | the current month of the simulation | — |
| mp | the number of months to be considered for rolling sum profit | — |
| fp,roll | mp-month rolling sum of farm profit. | € |
| NEroll | 12-month rolling sum of nitrogen excretion. | kg |
| NEt | nitrogen excretion at the current time t. | kg |
| subt | total subsidies received by the farmer at time t. | € |
| Mt | transition matrix for fields at time t. | — |
| Farm class | Culling condition | Culling decision |
|---|---|---|
| (15) | ||
| A,B,C,D | (16) | |
| (17) | ||
| (18) | ||
| E,F,G,H | (19) | |
| (20) |
| Farm Area | Crop Diversity | Number of Crops on the Plantation |
|---|---|---|
| — | — | |
| (22) | (23) | |
| (24) | ||
| (25) | (26) | |
| (27) | ||
| (28) | ||
| (29) |
| Corresponding stocking rate (LSU/ha) | ) | Subsidy (€ / ha) |
|---|---|---|
| 1.2 | (30) | 150 |
| 0.8 | (31) | 200 |
3. Results and Discussion
3.1. Country-Level Results



3.2. Farm-Level Results
| Attribute | Value | |
|---|---|---|
| Farm class | G | |
| Degree centrality | 2 | |
| Green Consciousness (GC) | Initial: | 0.44 |
| Min: | 0.44 | |
| Mean: | 0.47 | |
| Max: | 0.51 | |
| Number of fields | 36 | |
| Number of arable fields | 10 | |
| Size of pastureland (ha) | 22.00 | |
| Size of arable land (ha) | 69.50 | |
| Total size of UAA (ha) | 91.51 | |
| Number of Livestock | Initial: | 122 |
| Min: | 105 | |
| Mean: | 114 | |
| Max: | 125 | |
| Organic | No | |
| Rotation Scheme | MLC |










5. Conclusions
- A unique multi-stage optimization model for efficient farm management that takes crop and livestock operations into account.
- An agricultural management system that optimizes decision-making based on subsidies to minimize environmental impacts.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 8 February 2022).
- Twine, R. Emissions from Animal Agriculture—16.5% Is the New Minimum Figure. Sustainability 2021, 13, 6276. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Berger, T. An Agent-Based Simulation Model of Human–Environment Interactions in Agricultural Systems. Environmental Modelling & Software 2011, 26, 845–859. [Google Scholar] [CrossRef]
- Ferber, J.; Weiss, G. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence; Addison-wesley Reading, 1999; Vol. 1;
- An, L. Modeling Human Decisions in Coupled Human and Natural Systems: Review of Agent-Based Models. Ecological Modelling 2012, 229, 25–36. [Google Scholar] [CrossRef]
- Hare, M.; Deadman, P. Further towards a Taxonomy of Agent-Based Simulation Models in Environmental Management. Mathematics and Computers in Simulation 2004, 64, 25–40. [Google Scholar] [CrossRef]
- Baustert, P.; Navarrete Gutiérrez, T.; Gibon, T.; Chion, L.; Ma, T.-Y.; Mariante, G.L.; Klein, S.; Gerber, P.; Benetto, E. Coupling Activity-Based Modeling and Life Cycle Assessment—A Proof-of-Concept Study on Cross-Border Commuting in Luxembourg. Sustainability 2019, 11, 4067. [Google Scholar] [CrossRef]
- Gaud, N.; Galland, S.; Gechter, F.; Hilaire, V.; Koukam, A. Holonic Multilevel Simulation of Complex Systems: Application to Real-Time Pedestrians Simulation in Virtual Urban Environment. Simulation Modelling Practice and Theory 2008, 16, 1659–1676. [Google Scholar] [CrossRef]
- Gilbert, N. Agent-Based Models; Sage Publications, 2019; Vol. 153;
- Grimm, V.; Railsback, S.F. Individual-Based Modeling and Ecology; Princeton University Press, 2013; ISBN 978-1-4008-5062-4.
- Heath, B.; Hill, R.; Ciarallo, F. A Survey of Agent-Based Modeling Practices (January 1998 to July 2008). Journal of Artificial Societies and Social Simulation 2009, 12, 9. [Google Scholar]
- Heckbert, S.; Baynes, T.; Reeson, A. Agent-Based Modeling in Ecological Economics. Annals of the New York Academy of Sciences 2010, 1185, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Micolier, A.; Taillandier, F.; Taillandier, P.; Bos, F. Li-BIM, an Agent-Based Approach to Simulate Occupant-Building Interaction from the Building-Information Modelling. Engineering Applications of Artificial Intelligence 2019, 82, 44–59. [Google Scholar] [CrossRef]
- Teglio, A. From Agent-Based Models to Artificial Economies. Ph.D. Thesis, Universitat Jaume I, 2011.
- Wu, S.R.; Li, X.; Apul, D.; Breeze, V.; Tang, Y.; Fan, Y.; Chen, J. Agent-Based Modeling of Temporal and Spatial Dynamics in Life Cycle Sustainability Assessment. Journal of Industrial Ecology 2017, 21, 1507–1521. [Google Scholar] [CrossRef]
- Marvuglia, A.; Bayram, A.; Baustert, P.; Gutiérrez, T.N.; Igos, E. Agent-Based Modelling to Simulate Farmers’ Sustainable Decisions: Farmers’ Interaction and Resulting Green Consciousness Evolution. Journal of Cleaner Production 2022, 332, 129847. [Google Scholar] [CrossRef]
- Life Cycle Assessment: Theory and Practice; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer International Publishing, 2017; ISBN 978-3-319-56475-3.
- Bayram, A.; Marvuglia, A.; Gutierrez, T.N.; Weis, J.-P.; Conter, G.; Zimmer, S. Sustainable Farming Strategies for Mixed Crop-Livestock Farms in Luxembourg Simulated with a Hybrid Agent-Based and Life-Cycle Assessment Model. Journal of Cleaner Production 2023, 386, 135759. [Google Scholar] [CrossRef]
- Repar, N.; Jan, P.; Dux, D.; Nemecek, T.; Doluschitz, R. Implementing Farm-Level Environmental Sustainability in Environmental Performance Indicators: A Combined Global-Local Approach. Journal of Cleaner Production 2017, 140, 692–704. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Ranganathan, R. Modelling and Optimisation of Indian Traditional Agriculture Supply Chain to Reduce Post-Harvest Loss and CO2 Emission. Industrial Management & Data Systems 2017, 117, 1817–1841. [Google Scholar] [CrossRef]
- He, P.; Li, J.; Wang, X. Wheat Harvest Schedule Model for Agricultural Machinery Cooperatives Considering Fragmental Farmlands. Computers and Electronics in Agriculture 2018, 145, 226–234. [Google Scholar] [CrossRef]
- Carravilla, M.A.; Oliveira, J.F. Operations Research in Agriculture: Better Decisions for a Scarce and Uncertain World. 2013.
- Xie, Y.L.; Xia, D.X.; Ji, L.; Huang, G.H. An Inexact Stochastic-Fuzzy Optimization Model for Agricultural Water Allocation and Land Resources Utilization Management under Considering Effective Rainfall. Ecological Indicators 2018, 92, 301–311. [Google Scholar] [CrossRef]
- Yuanyuan, Z. Research on multi-objective planning model for agricultural pollution, environmental regulation and economic development. Arch. Latinoam. Nutr. 2020, 70, 423–433. [Google Scholar]
- Huber, R.; Bakker, M.; Balmann, A.; Berger, T.; Bithell, M.; Brown, C.; Grêt-Regamey, A.; Xiong, H.; Le, Q.B.; Mack, G.; et al. Representation of Decision-Making in European Agricultural Agent-Based Models. Agricultural Systems 2018, 167, 143–160. [Google Scholar] [CrossRef]
- Kremmydas, D.; Athanasiadis, I.N.; Rozakis, S. A Review of Agent Based Modeling for Agricultural Policy Evaluation. Agricultural Systems 2018, 164, 95–106. [Google Scholar] [CrossRef]
- Grimm, V.; Railsback, S.F.; Vincenot, C.E.; Berger, U.; Gallagher, C.; DeAngelis, D.L.; Edmonds, B.; Ge, J.; Giske, J.; Groeneveld, J.; et al. The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism. Journal of Artificial Societies and Social Simulation 2020, 23, 7. [Google Scholar] [CrossRef]
- Davoud Heidari, M.; Turner, I.; Ardestani-Jaafari, A.; Pelletier, N. Operations Research for Environmental Assessment of Crop-Livestock Production Systems. Agricultural Systems 2021, 193, 103208. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; Clark, J.; et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Medicine 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Systematic Reviews 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Galán-Martín, Á.; Vaskan, P.; Antón, A.; Esteller, L.J.; Guillén-Gosálbez, G. Multi-Objective Optimization of Rainfed and Irrigated Agricultural Areas Considering Production and Environmental Criteria: A Case Study of Wheat Production in Spain. Journal of Cleaner Production 2017, 140, 816–830. [Google Scholar] [CrossRef]
- Gebrezgabher, S.A.; Meuwissen, M.P.M.; Oude Lansink, A.G.J.M. A Multiple Criteria Decision Making Approach to Manure Management Systems in the Netherlands. European Journal of Operational Research 2014, 232, 643–653. [Google Scholar] [CrossRef]
- Udias, A.; Pastori, M.; Dondeynaz, C.; Carmona Moreno, C.; Ali, A.; Cattaneo, L.; Cano, J. A Decision Support Tool to Enhance Agricultural Growth in the Mékrou River Basin (West Africa). Computers and Electronics in Agriculture 2018, 154, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press, 1992; ISBN 978-0-262-58111-0.
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Computat. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Yusoff, Y.; Ngadiman, M.S.; Zain, A.M. Overview of NSGA-II for Optimizing Machining Process Parameters. Procedia Engineering 2011, 15, 3978–3983. [Google Scholar] [CrossRef]
- Maiyar, L.M.; Thakkar, J.J. Environmentally Conscious Logistics Planning for Food Grain Industry Considering Wastages Employing Multi Objective Hybrid Particle Swarm Optimization. Transportation Research Part E: Logistics and Transportation Review 2019, 127, 220–248. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Akram, A.; Keyhani, A.; Sefeedpari, P.; Shine, P.; Brandao, M. Integration of Life Cycle Assessment, Artificial Neural Networks, and Metaheuristic Optimization Algorithms for Optimization of Tomato-Based Cropping Systems in Iran. Int J Life Cycle Assess 2020, 25, 620–632. [Google Scholar] [CrossRef]
- Pastori, M.; Udías, A.; Bouraoui, F.; Bidoglio, G. Multi-Objective Approach to Evaluate the Economic and Environmental Impacts of Alternative Water and Nutrient Management Strategies in Africa. Journal of Environmental Informatics 2017, 29, 16–28. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Saouter, E.; Biganzoli, F.; Ceriani, L.; Versteeg, D.; Crenna, E.; Zampori, L.; Sala, S.; Pant, R. Environmental Footprint: Update of Life Cycle Impact Assessment Methods – Ecotoxicity Freshwater, Human Toxicity Cancer, and Non-Cancer. Available online: https://publicationstest.jrc.cec.eu.int/repository/handle/JRC114227 (accessed on 7 March 2023).
- Tedde, A.; Grelet, C.; Ho, P.N.; Pryce, J.E.; Hailemariam, D.; Wang, Z.; Plastow, G.; Gengler, N.; Brostaux, Y.; Froidmont, E.; et al. Validation of Dairy Cow Bodyweight Prediction Using Traits Easily Recorded by Dairy Herd Improvement Organizations and Its Potential Improvement Using Feature Selection Algorithms. Animals 2021, 11, 1288. [Google Scholar] [CrossRef] [PubMed]
- Hadka, D. MOEA Framework-a Free and Open Source Java Framework for Multiobjective Optimization 2012.
- Arnold, K.; Gosling, J.; Holmes, D. The Java Programming Language; Addison Wesley Professional, 2005.
- Deb, K.; Agrawal, R.B.; et al. Simulated Binary Crossover for Continuous Search Space. Complex systems 1995, 9, 115–148. [Google Scholar]
- Kita, H.; Ono, I.; Kobayashi, S. Multi-Parental Extension of the Unimodal Normal Distribution Crossover for Real-Coded Genetic Algorithms. In Proceedings of the Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406); July 1999; Vol. 2, pp. 1581-1588 Vol. 2.
- Gouvernement du Luxembourg Règlement Grand-Ducal Du 24 Novembre 2000 Concernant l’utilisation de Fertilisants Azotés Dans l’agriculture. J. Off. Grand-Duché Luxembourg <bold>2000</bold>, A n.124.
- SER Durchführung in Luxemburg der Cross Compliance im Rahmen der gemeinsamen Agrarpolitik. Available online: http://agriculture.public.lu/de/publications/weinbau/prime/crosscompliance.html (accessed on 15 February 2022).
- Barreiro-Hurle, J.; Dessart, F.J.; Rommel, J.; Czajkowski, M.; Espinosa-Goded, M.; Rodriguez-Entrena, M.; Thomas, F.; Zagorska, K. Willing or Complying? The Delicate Interplay between Voluntary and Mandatory Interventions to Promote Farmers’ Environmental Behavior. Food Policy 2023, 120, 102481. [Google Scholar] [CrossRef]
- Rode, J.; Gómez-Baggethun, E.; Krause, T. Motivation Crowding by Economic Incentives in Conservation Policy: A Review of the Empirical Evidence. Ecological Economics 2015, 117, 270–282. [Google Scholar] [CrossRef]
- Bosch, D.J.; Cook, Z.L.; Fuglie, K.O. Voluntary versus Mandatory Agricultural Policies to Protect Water Quality: Adoption of Nitrogen Testing in Nebraska. Applied Economic Perspectives and Policy 1995, 17, 13–24. [Google Scholar] [CrossRef]
| 1 | UAA is defined as the smallest georeferenced land object registered in the agriculture cadaster. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
