Submitted:
05 June 2024
Posted:
10 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Description of the forest harvesting site and process
2.2. Data collection
2.3. Interactions networks
2.4. Adaptation of the environmental impact assessment matrix
- Universality and importance of the criterion;
- Characteristic of the criterion that classifies it for group A or B.
2.4.1. Group A criteria:
- Geographical extent of affected groups (A1): Weights the measure of importance of the geographical scope of the impact, assessed in relation to the spatial boundaries or human interests it will affect.
- A1= 4: International;
- A1= 3: National;
- A1= 2: Regional (Basin, State);
- A1= 1: Location (Sub-basin, municipality);
- A1= 0: None/Few.
- Magnitude of impact (A2): estimates the benefits or severity of the change that has occurred;
- A2= 3: Positive benefits;
- A2= 2: Significant improvement in condition;
- A2= 1: Improvement in condition;
- A2= 0: Null;
- A2= -1: Negative evaluation of the state;
- A2= -2: Considerable negative change in status;
- A2= -3: Significant change in state (negative).
2.4.2. Group B criteria:
- Stability of the impact (B1): delimits whether the impact is permanent or temporary.
- B1= 1: No change;
- B1= 2: Temporary;
- B1= 3: Permanent.
- Reversibility (B2): defines whether the impacts are reversible and whether there are corrective measures capable of reducing, altering or avoiding the problem.
- B2= 1: No possibility;
- B2= 2: Reversible;
- B2= 3: Irreversible.
- Cumulative (B3): estimates whether the impact will be one-off or cumulative over time, based on its effects.
- B3= 1: no change;
- B3= 2: non-cumulative/isolated;
- B3= 3: cumulative/ synergistic.
- Physical environment: parameters related to aspects of climate, soils, relief and hydrology.
- Biotic environment: biological parameters such as flora and fauna.
- Anthropic environment: analysis involving social aspects such as rural workers and the local/regional community, such as occupational health and safety risks, income generation, jobs and changes to the landscape for local residents.
3. Results
3.1. Interaction Networks
3.2. RIAM matrices
- Road maintenance: improved road quality, less susceptibility to erosion, protection of the soil structure, siltation, erosion, changes in physical properties, damage to conservation areas for flora and fauna, opening of clearings, soil compaction, accidents, health problems, absence or death, regional development, income generation, soil, water and air pollution, waste generation, job creation and regional development.
- Logging: location and disorientation in the local landscape, relationship with the local community, supply of organic matter, damage to conservation areas, opening of clearings, soil compaction, siltation, erosion, accidents, greenhouse effect, health problems, absence or death, regional development, income generation, soil, water and air pollution, waste generation, job creation, regional development.
- Storing and drying wood: location and disorientation, hiding places for dangerous animals, accidents, soil compaction, silting up, health problems, absence or death, job creation and regional development.
- Wood loading: damage to rural roads, soil compaction, siltation, damage to conservation areas (flora and fauna), opening of clearings, greenhouse effect, accidents, health problems, absence or death, regional development, income generation, soil, water and air pollution, waste generation and job creation.
- Road transportation: improvement in road quality, soil compaction, silting, damage to conservation areas, erosion, greenhouse effect, accidents, health problems, absence or death, regional development, income generation, soil, water and air pollution, waste generation, job creation, regional development and depletion of water resources.
- brown – soil extraction activity for road construction.
- blue: forestry machinery movement activity.
- yellow – input acquisition activities.
- green – labor hiring activity.
- yellow – input purchasing activity.
- blue - labor hiring activity.
| Activity or operation | Environmental aspect | Environmental Impact |
Guideline for impact management |
|---|---|---|---|
| Road opening and maintenance/wood transportation | Soil extraction for road construction/Truck traffic | Siltation | Carry out a survey of the technologies available for micro-planning forest harvesting operations (be they mathematical models, drones, geoprocessing, etc.), map sites susceptible to erosion (both pre-harvest and post-harvest), carry out a periodic assessment of environmental aspects and impacts, draw up and update field operating procedures, and constantly train rural workers. Create a panel with the environmental aspects and impacts inherent in the operations and keep it visible at support points in the field. |
| Road opening and maintenance/Timber transportation | Soil extraction for road construction/Truck traffic | Erosions | |
| Road opening and maintenance | Machine handling | Soil compaction | |
| Road opening and maintenance/wood transportation | Soil extraction for road construction/Truck traffic | Damage to conservation areas (> number of flora species) | Map the native vegetation preservation areas directly affected by harvesting operations, carry out the assessment of environmental aspects and impacts periodically, include the care and location of these areas in operating procedures and in the training of field teams. In addition, keep flora inventories of preservation areas up to date, in order to ensure that important species are not suppressed. Create a panel with the environmental aspects and impacts inherent to the operations and keep it visible at the support points in the field. |
| Road opening and maintenance | Soil extraction for road construction | Opening clearings | |
| Road opening and maintenance | OHS risks | Dismissal or death | Train field crews in all harvesting operating procedures. Create a panel with the OHS aspects and impacts inherent in the operations and keep it visible at the support points in the field. |
| Cutting and harvesting/ Loading timber | OHS risks | Dismissal or death | |
| Wood transportation | OHS risks | Accidents | |
| Road opening and maintenance | Purchasing inputs | Soil, water and air pollution | Periodically carry out analyses to monitor the quality of water bodies, soil and air, in order to ensure that they are not contaminated or exceed the limits permitted by Brazilian legislation. |
| Wood transportation | Wet roads | Depletion of water resources | Plan the amount of water resources needed to maintain rural roads and monitor/record the amount used in each operation. |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schweier, J.; Magagnotti, N.; Labelle, E. R.; Athanassiadis, D. Sustainability impact assessment of forest operations: a review. current forestry reports (2019). 2019. 5:101-113. [CrossRef]
- IBÁ. Indústria Brasileira de Árvores - Relatório Anual 2022. 2021. São Paulo. Available in: https://www.iba.org/.
- Oliveira, A. B.; Paz, D. A. S.; Silveira, K. C. da. Expansão da silvicultura do eucalipto e transformações no uso da terra em municípios do oeste maranhense. InterEspaço: Revista de Geografia e Interdisciplinaridade. 2020. v. 6, n. 19, p. e202006. [CrossRef]
- Feng, Y.; Audy, Jean-F. Silvicultura 4.0: Um framework para a cadeia de suprimentos florestal no contexto da Indústria 4.0. Gestão & Produção. 2020. v. 27. [CrossRef]
- Guerino, R. M. G..; Morais, I. L. de.; Santos, A. B. da S..; Campos, R. M. Expansion and socio-environmental impacts of the culture of Eucalyptus spp. (Myrtaceae) in Brazil: a literature panorama. Research, Society and Development. 2022. v. 11, n. 3, p. e48811326751. [CrossRef]
- Soman, H.; Kizha, A. R.; Roth, B. E. Impacts of silvicultural prescriptions and implementation of best management practices on timber harvesting costs. International Journal of Forest Engineering. 2019. v. 30, n. 1, p. 14-25. [CrossRef]
- IBÁ. Indústria Brasileira de Árvores - Relatório Anual 2022. 2023. São Paulo. Disponível em: https://www.iba.org/.
- Lei Complementar 123/2006. Lei Complementar Nº 123, de 14 de dezembro de 2006. Disponível em: https://www.planalto.gov.br/ccivil_03/leis/lcp/lcp123.htm.
- Britto, P. C; Britto, P.C.; Jaeger, D.; Hoffmann, S.; Robert, R.C.G.; Vibrans, A.C.; Fantini, A.C. Impact assessment of timber harvesting operations for enhancing sustainable management in a secondary Atlantic Forest. Sustainability. 2019. v. 11, n. 22, p. 6272. [CrossRef]
- Alberts, R.C.; Retief, F.P., Cilliers, D. P., Roos, C.; Hauptfleisch, M. Environmental impact assessment (EIA) effectiveness in protected areas, Impact Assessment and Project Appraisal. 2021. 39:4, 290-303. [CrossRef]
- Martins, T. S.; Junior, G. N. da R. C. Avaliação de impacto ambiental: uma revisão sistemática sob a ótica metodológica. E&S Engineering and Science. 2018. v. 7, n. 2, p. 29-41. [CrossRef]
- Penadés-Plà, V.; Martínez-Muñoz, D.; García-Segura, T.; Navarro, I.J.; Yepes, V. Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability. 2020. v. 12, n. 10, p. 4265. [CrossRef]
- Sánchez, L. E. Avaliação de Impacto Ambiental - Conceitos e Métodos - 3ª Ed. 2020. Oficina de textos: São Paulo, Brasil. pp. 69-81.
- Banyal, S., Aggarwal, R. K., & Bhardwaj, S. K. A review on methodologies adopted during environmental impact assessment of development projects. Journal of Pharmacognosy and Phytochemistry. 2019. 8(4), 2108-2119. [CrossRef]
- Harker, K. J., Arnold, L., Sutherland, I. J., & Gergel, S. E. Perspectives from landscape ecology can improve environmental impact assessment. Facets. 2021. 6(1), 358-378. [CrossRef]
- Ritter, C. D., McCrate, G., Nilsson, R. H., Fearnside, P. M., Palme, U., & Antonelli, A. Environmental impact assessment in Brazilian Amazonia: Challenges and prospects to assess biodiversity. Biological Conservation. 2017. 206, 161-168. [CrossRef]
- Proto, A. R., Bacenetti, J., Macrì, G., & Zimbalatti, G. Roundwood and bioenergy production from forestry: Environmental impact assessment considering different logging systems. Journal of cleaner production. 2017. 165, 1485-1498. [CrossRef]
- IBGE. Mapa de solos do Brasil. Ministério do Planejamento, Orçamento e Gestão. 2001. Disponível em: https://www.ibge.gov.br/geociencias.
- IBF. Brazilian Forestry Institute. Available at: https://www.ibflorestas.org.br/.
- Labelle, E. R., & Lemmer, K. J. Selected environmental impacts of forest harvesting operations with varying degree of mechanization. Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering. 2019. 40(2), 239-257. [CrossRef]
- Pereira, D. P.; Carmo, F. C. de A.; Guimarães, P. P.; Neto, P. N. de M.; Moreira, G. L.; Silva, E. P. M. Aprendizagem da mecanização e colheita florestal por meio da metodologia de painéis interativos. Agropecuária Científica no Semiárido. 2022. v. 18, n. 1, p. 94-97. https://doi.org/10.30969/acsa.v17i1.1360.
- De Jesus, M. S.; Silva, M.G.; Tavares, M. S.; Silva, L.G.O.C.; Santos, R. E. M.; Brandão, T. M.; Costa, I. M. N. B. C; Amoriom, E.O.C. Métodos de avaliação de impactos ambientais: uma revisão bibliográfica. Brazilian Journal of Development. 2021. v. 7, n. 4, p. 38039-38070. [CrossRef]
- Pastakia, C. M. R; Jensen, A. The rapid impact assessment matrix (RIAM) for EIA. Environment Impact Asses Rev. 1998. p. 18:461-82. [CrossRef]
- Fonseca, A., de F., C.; Sánchez, L., E.; Ribeiro, J. C. J. Reforming EIA systems: a critical review of proposals in Brazil. Environmental Impact Assessment Review. 2017. v. 62, n. Ja 2017., p. 90-97. https://doi.org/10.1016/j.eiar.2016.10.002.
- Duarte, C. G., Dibo, A. P. A., & Sánchez, L. E. O que diz a pesquisa Acadêmica sobre Avaliação de Impacto e Licenciamento Ambiental no Brasil? Ambiente & Sociedade. 2017. 20, 261-292. [CrossRef]
- Nogueira, L. R.S.; Ribeiro, A.I.; Medeiros, G. A.; Martins, A. C.G.; Longo, R. M. Análise integrada dos aspectos e impactos ambientais da atividade operacional em Parque Eólico No Sudoeste Da Bahia / Brasil. Revista Gestão & Sustentabilidade Ambiental. 2020. v. 9, n. 4, p. 40-63. [CrossRef]
- Silva, E. B. R. da; Silva, W. C. da; Gonçalves, M. F.; Friaes, E. P. P. F.; Pedroso, A. J. S.; Costa, B. O. da; Rocha, C. B. R.; Colares Camargo Júnior, R. N. Principais metodologias de Avaliação de Impacto Ambiental no território brasileiro. CIS - Conjecturas Inter Studies. 2022. v. 22, n. 1, p. 2137-2146. [CrossRef]
- Schettino, S.; Azevedo, P. T. O., Caçador, S. S.; Minette, L. J.; Guimarães, N. V. Estudo comparativo dos índices de qualidade de vida no trabalho florestal em atividades com e sem mecanização. Agropecuária Científica no Semiárido. 2020. v.16, n.1, p. 20-26. [CrossRef]
- Korneeva, Y.; Simonova, N.; Shadrina, N. The psychosocial risk factors evaluation and management of shift personnel at forest harvesting. Forests. 2022. v. 13, n. 9, p. 1447. [CrossRef]
- Gümüş, S.; Ünver Okan, S.; Hatay, T. Analysis of work accidents in wood harvesting: a case study of the East Black Sea region. Forestist. 2020. v. 70, n. 1. [CrossRef]
- Schettino, S., Minette, L. J., Lima, R. C. A., Nascimento, G. S. P., Caçador, S. S., & Vieira, M. P. L. Forest harvesting in rural properties: Risks and worsening to the worker's health under the ergonomics approach. International Journal of Industrial Ergonomics. 2021. V. 82, p. 103087. [CrossRef]
- Leite, E. S., Santos, J. S., Gomes, B. M., Nóbrega, J. C. A., & Nóbrega, R. S. A. Compactação do solo causada pelo harvester e intensidade de tráfego do forwarder na colheita florestal. Scientia Forestalis. 2020. v. 48(126), p. e3075. [CrossRef]
- Pinto, A. C. M., Souza, A. L. D., Souza, A. P. D., Machado, C. C., Minette, L. J., & Vale, A. B. D. Análise de danos de colheita de madeira em floresta tropical úmida sob regime de manejo florestal sustentado na Amazônia Ocidental. Revista Árvore. 2022. 26, 459-466. [CrossRef]
- Picchio, R., Mederski, P.S. & Tavankar, F. How and how much, do harvesting activities affect forest soil, regeneration and stands?. Curr Forestry Rep 6. 2020. p. 115-128. [CrossRef]
- Abbas, D., Handler, R. M. Life-cycle assessment of forest harvesting and transportation operations in Tennessee. Journal of Cleaner Production. 2017. ed. 176 p. 512 - 520. [CrossRef]
- Kouchaki-Penchah, H.; Moaf, A. B.; Kougir-Chegini, Z.; Lang, M.N. Cradle to gate environmental impact assessment of the Iranian forestry operations. Environmental Impact Assessment Review. 2023. v. 102, p. 107183. [CrossRef]
- Zhao, J., Smith, W.; Wang, J.; Zhang, X.; Bergman, R. Life-cycle impact assessment of hardwood forest resources in the eastern United States. Science of The Total Environment. 2024. v. 909, p. 168458. [CrossRef]
- Toivio, J.; Helmisaaria, H. S.; Palviainena, M.; Lindemanb, H.; Ala-Ilomäkic, J.; Sirénc, M.; Uusitalob, J. Impacts of timber forwarding on physical properties of forest soils in southern Finland. Forest Ecology and Management. 2017. (405) p.22-30. [CrossRef]
- Labelle, E. R.; Lemmer, K. J. Selected Environmental Impacts of Forest Harvesting Operations with Varying Degree of Mechanization. Croatian Journal of Forest Engineering. 2019. Vol.: 40 (2). [CrossRef]
- Rodrigues, C. K.; Lopes, E. da S.; Müller, M. M. L. Avaliação da qualidade estrutural do solo em colheita mecanizada (harvester e forwarder) de Eucalyptus grandis. Agrarian, 2020. v. 13, n. 47, p. 56-62. [CrossRef]
- Labelle, E.R., Hansson, L., Högbom, L. Strategies to mitigate the effects of soil physical disturbances caused by forest ma-chinery: a comprehensive review. Curr Forestry. 2022. Rep 8, 20-37. [CrossRef]
- Bayle, G. Ecological and social impacts of eucalyptus tree plantation on the environment. Journal of Biodiversity Conservation and Bioresource Management. 2019. v. 5, n. 1, p. 93-104. [CrossRef]
- McEwan, A., Marchi, E., Spinelli, R., & Brink, M. Past, present and future of industrial plantation forestry and implication on future timber harvesting technology. Journal of Forestry Research. 2020. 31, 339-351. [CrossRef]
- Titus, B. D., Brown, K., Helmisaari, H. S., Vanguelova, E., Stupak, I., Evans, A., Reece, P. Sustainable Forest biomass: a review of current residue harvesting guidelines. Energy, Sustainability and Society. 2021. v. 11, p. 1-32. [CrossRef]
- de Jesus França, L. C., Júnior, F. W. A., e Silva, C. S. J., Monti, C. A. U., Ferreira, T. C., de Oliveira Santana, C. J., & Gomide, L. R. Forest landscape planning and management: a state-of-the-art review 2022. Trees, Forests and People, 8, 100275. [CrossRef]
- Savari, M., Eskandari Damaneh, H., & Eskandari Damaneh. Factors influencing local people’s participation in sustainable forest management. Arabian Journal of Geosciences. 2020. 13(13), 513. [CrossRef]










| Value Range (ES) | Numerical Scale | Environmental Impact Class |
|---|---|---|
| 108 a 72 | 05 | Extremely Positive |
| 71 a 36 | 04 | Significantly Positive |
| 35 a 19 | 03 | Moderately Positive |
| 18 a 10 | 02 | Not very positive |
| 09 a 01 | 01 | Very Little Positive |
| Zero | 0 | Unchanged |
| -01 a - 09 | -01 | Very Slightly Negative |
| -10 a -18 | -02 | Slightly negative |
| -19 a -35 | -03 | Moderately Negative |
| -36 a -71 | -04 | Significantly Negative |
| -72 a -108 | -05 | Extremely Negative |
| Rapid Impact Assessment Matrix - RIAM | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Activity or operation |
Environmental aspect |
Environmental Impact | Medium | A1 | A2 | B1 | B2 | B3 | IMPACT INDEX (ES) |
NUM. VALUE (RV) |
ENVIRONMENTAL IMPACT LEVEL |
| Wood transportation |
Truck traffic | Improved road quality | Anthropic | 1 | 2 | 2 | 2 | 3 | 14 | 2 | Not very positive |
| Soil compaction | Physical | 1 | -2 | 3 | 2 | 3 | -16 | -2 | Slightly negative | ||
| Siltation | Physical | 1 | -3 | 3 | 2 | 3 | -24 | -3 | Moderately Negative | ||
| Damage to conservation areas (> number of flora species) | Biotic | 1 | -3 | 3 | 2 | 3 | -24 | -3 | Moderately Negative | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
