Submitted:
30 May 2024
Posted:
31 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Mars Dust Storms
2.1. Basic Properties of Dust Storms
2.2. Driving Mechanisms of Dust Storms
2.3. Impacts of Dust Storms
3. Detection Methods for Dust Storms
3.1. Historical Views on Dust Storms
3.2. Orbiter Multicolor Imaging

3.3. Orbiter Infrared Spectroscopy
3.4. Landers/Rovers Monitoring
4. Dust Storm Monitoring and Forecasting for Tianwen-3
4.1. Statistical Predictions
- The four zones are in the Utopia Plain, Isidis Basin, Amazon Plain, and Chryse Plain, respectively. Each has a range of 18º in longitude and 15º in latitude, that is a 3×3 grid in the VDOD database;
- The VDOD data in the grid during Martian year 24-35 are extracted from the database to form a subset for this region;
- In each Martian day, the probabilities of the six dust activity levels are then calculated;
- Since Martian dust storms are seasonal, we extend the date to Martian year 40 and 41 according to the orbit of Mars;
- Finally, the predicted results are shown in Figure 6.
- Take the zone in Utopian Plain as an example (Figure 6a), it is found that,
- Before southern hemisphere spring equinox (LS < 180º), the dust activity is weak, basically below the safety line (VDOD<1.0), and occasionally higher 1.0 with a very short duration;
- After southern hemisphere spring equinox (LS > 180º), the probability of VDOD exceeding 1.0 increases significantly. Especially between LS of 200°~240° (i.e., October 7 to December 11, 2029 in Martian year 40 and August 25 to October 29, 2031 in Martian year 41), the probability of VDOD exceeding 2.0 is greater than 30%. The dust activity generally peaks near LS of 210°~220°, and then begins to weaken and recover. During this period, the operators should pay close attention to the changing trend of dust activity;
- After southern hemisphere summer solstice (LS > 270º), the dust activity is significantly weakened, but still in active level. There is an active period around southern hemisphere autumn equinox (LS ~ 270º), the probabilities for Level 2 and Level 3 are both about 50%. After then, the dust activity will recover to quiet condition and begins another seasonal trend.

4.2. Dust Storm Monitoring for Tianwen-3
- Martian dust storm monitoring and early warning: Conduct large-field multicolor imaging of mid-low latitude dust storm activities on Mars to obtain information such as location, scope and moving speed of dust storms on Mars.
- Spatial and temporal distribution of atmospheric ozone on Mars: Conduct large-field ultraviolet imaging of the column content of low-latitude ozone on Mars to obtain its spatial and temporal distributions, and to improve the accuracy of dust storm identification in combination of water-ice cloud identification in visible light channels.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connerney, J.E.P.; Acuña, M.H.; Wasilewski, P.J.; Ness, N.F.; Rème, H.; Mazelle, C.; Vignes, D.; Lin, R.P.; Mitchell, D.L.; Cloutier, P.A. Magnetic lineations in the ancient crust of Mars. Science, 1999, 284, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Jakosky, B.M. Atmospheric loss to space and the history of water on Mars. Ann. Rev. Earth Planet. Sci. 2021, 49, 71–93. [Google Scholar] [CrossRef]
- Chaffin, M.S.; Kass, D.M.; Aoki, S.; Fedorova, A.A.; Deighan, J.; Connour, K.; Heavens, N.G.; Kleinböhl, A.; Jain, S.K.; Chaufray, J.-Y.; Mayyasi, M.; Clarke, J.T.; Stewart, A.I.F.; Evans, J.S.; Stevens, M.H.; McClintock, W.E.; Crismani, M.M.J.; Holsclaw, G.M.; Lefevre, F.; Lo, D.Y.; Montmessin, F.; Schneider, N.M.; Jakosky, B.; Villanueva, G.; Liuzzi, G.; Daerden, F.; Thomas, I.R.; Lopez-Moreno, J.-J.; Patel, M.R.; Bellucci, G.; Ristic, B.; Erwin, J.T.; Vandaele, A.C.; Trokhimovskiy, A.; Korablev, O.I. Martian water loss to space enhanced by regional dust storms. Nat. Astronom. 2021, 5, 1036–1042. [Google Scholar] [CrossRef]
- Dubinin, E.; Fraenz, M.; Pätzold, M.; McFadden, J.; Halekas, J.S.; DiBraccio, G.A.; Connerney, J.E.P.; Eparvier, F.; Brain, D.; Jakosky, B.M.; Vaisberg, O.; Zelenyi, L. The effect of solar wind variations on the escape of oxygen ions from Mars through different channels: MAVEN observations. J. Geophys. Res Space Phys. 2017, 122, 11285–11301. [Google Scholar] [CrossRef]
- Heavens, N.G.; Kleinböhl, A.; Chaffin, M.S.; Halekas, J.S.; Kass, D.M.; Hayne, P.O.; McCleese, D.J.; Piqueux, S.; Shirley, J.H.; Schofield, J.T. Hydrogen escape from Mars enhanced by deep convection in dust storms. Nat. Astronom. 2018, 2, 126–132. [Google Scholar] [CrossRef]
- Lillis, R.J.; Brain, D.A.; Bougher, S.W.; Leblanc, F.; Luhmann, J.G.; Jakosky, B.M.; Modolo, R.; Fox, J.; Deighan, J.; Fang, X.; Wang, Y.C.; Lee, Y.; Dong, C.; Ma, Y.; Cravens, T.; Andersson, L.; Curry, S.M.; Schneider, N.M.; Combi, M.; Stewart, I.; Clarke, J.; Grebowsky, J.; Mitchell, D.L.; Yelle, R.; Nagy, A.F.; Baker, D.; Lin, R.P. Characterizing atmospheric escape from Mars today and through time, with MAVEN. Space Sci. Rev. 2015, 195, 357–422. [Google Scholar] [CrossRef]
- Lundin, R.; Barabash, S.; Andersson, H.; Holmström, M.; Grigoriev, A.; Yamauchi, M.; Sauvaud, J.-A.; Fedorov, A.; Dudnik, E.; Thocaven, J.J.; Winningham, D.; Frahm, R.; Scherrer, J.; Sharber, J.; Asamura, K.; Hayakawa, H.; Coates, A.; Linder, D.R.; Curtis, C.; Hsieh, K.C.; Sandel, B.R.; Grande, M.; Carter, M.; Reading, D.H.; Koskinen, H.; Kallio, E.; Riihela, P.; Schmidt, W.; Säles, T.; Kozyra, J.; Krupp, N.; Woch, J.; Luhmann, J.; Mckenna-Lawler, S.; Cerulli-Irelli, R.; Orsini, S.; Maggi, M.; Mura, A.; Milillo, A.; Roelof, E.; Williams, D.; Livi, S.; Brandt, P.; Wurz, P.; Bochsler, P. Solar wind-induced atmospheric erosion at Mars: First results from ASPERA-3 on Mars Express. Science 2004, 305, 1933–1936. [Google Scholar] [CrossRef] [PubMed]
- Ramstad, R.; Barabash, S.; Futaana, Y.; Nilsson, H.; Wang, X.-D.; Holmström, M. The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations. J. Geophys. Res. Planet. 2015, 120, 1298–1309. [Google Scholar] [CrossRef]
- Wei, Y.; Fraenz, M.; Dubinin, E.; Woch, J.; Lühr, H.; Wan, W.; Zong, Q.-G.; Zhang, T.L.; Pu, Z.Y.; Fu, S.Y.; Barabash, S.; Lundin, R.; Dandouras, I. (2012). Enhanced atmospheric oxygen outflow on Earth and Mars driven by a corotating interaction region. J. Geophys. Res. 2012, 117, A03208. [Google Scholar]
- Barlow, N. Mars: An Introduction to Its Interior, Surface and Atmosphere. Cambridge University Press: New York, USA, 2008; pp. 163–186.
- Leovy, C. Weather and climate on Mars. Nature, 2001, 412, 245–249. [Google Scholar] [CrossRef]
- Shirley, J.H. Solar system dynamics and global-scale dust storms on Mars. Icarus, 2015, 251, 128–144. [Google Scholar] [CrossRef]
- Schmidt, F.; Way, M.J.; Costard, F.; Bouley, S.; Séjourné, A.; Aleinov, I. Circumpolar ocean stability on Mars 3 Gy ago. Proc. Natl. Acad. Sci. USA 2022, 119, e2112930118. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; He, F.; Fan, K.; Rong, Z.; Wang, Y. Preliminary predictions of the dust storm activity at the landing site of China’s Zhurong Mars rover in 2022 (in Chinese). Chin. Sci. Bull. 2022, 67, 1938–1944. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Y.; Fan, K.; He, F.; Rong, Z.; Zhou, X.; Tan, N. The impact of dust storms on Mars surface rovers: Review and prospect (in Chinese). Chin. Sci. Bull. 2023, 68, 368–379. [Google Scholar] [CrossRef]
- Rong, Z.; Wei, Y.; He, F.; Gao, J.; Fan, K.; Wang, Y.; Cao, L.; Yan, L.; Ren, Z.; Zhou, X.; Tan, N.; Yu, T. The orbit schemes to monitor Martian dust storms: Benefits to China’s future mars missions (in Chinese). Chin. Sci. Bull. 2023, 68, 716–728. [Google Scholar] [CrossRef]
- Martin, L.J.; Zurek, R.W. An analysis of the history of dust activity on Mars. J. Geophys. Res. 1993, 98, 3221–3246. [Google Scholar] [CrossRef]
- Cantor, B.A.; James, P.B.; Caplinger, M.; Wolff, M.J. Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 2001, 106, 23653–23688. [Google Scholar] [CrossRef]
- Wang, H.; Richardson, M.I. The origin, evolution, and trajectory of large dust storms on Mars during Mars Year 24–30 (1999–2011). Icarus 2015, 251, 112–127. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A.; del Río-Gaztelurrutia, T.; Hernández-Bernal, J.; Delcroix, M. The onset and growth of the 2018 Martian Global Dust Storm. Geophys. Res. Lett. 2019, 46, 6101–6108. [Google Scholar] [CrossRef]
- Kass, D.M.; Kleinböhl, A.; McCleese, D.J.; Schofield, J.T.; Smith, M.D. Interannual similarity in the Martian atmosphere during the dust storm season. Geophys. Res. Lett. 2016, 43, 6111–6118. [Google Scholar] [CrossRef]
- Montabone, L.; Forget, F.; Millour, E.; Wilson, R.J.; Lewis, S.R.; Cantor, B.; Kass, D.; Kleinböhl, A.; Lemmon, M.T.; Smith, M.D.; Wolff, M.J. Eight-year climatology of dust optical depth on Mars. Icarus 2015, 251, 65–95. [Google Scholar] [CrossRef]
- Montabone, L.; Spiga, A.; Kass, D.M.; Kleinböhl, A.; Forget, F.; Millour, E. . Martian year 34 column dust climatology from Mars Climate Sounder observations: Reconstructed maps and model simulations. J. Geophys. Res. Planet. 2020, 125, e2019JE006111. [Google Scholar] [CrossRef]
- Lemmon, M.T.; Guzewich, S.D.; McConnochie, T.; de Vicente-Retortillo, A.; Martínez, G.; Smith, M.D.; Bell III, J.F.; Wellington, D.; Jacob, S. Large dust aerosol sizes seenduring the 2018 Martian global dust event by the Curiosity rover. Geophys. Res. Lett. 2019, 46, 9448–9456. [Google Scholar] [CrossRef]
- Chen-Chen, H.; Pérez-Hoyos, S.; Sánchez-Lavega, A. Dust particle size, shape and optical depth during ht e2018/MY34 martian global dust storm retrieved by MSL Curiosity rover Navigation Cameras. Icarus 2021, 354, 114021. [Google Scholar] [CrossRef]
- Clancy, R.T.; Wolff, M.J.; Christensen, P.R. Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. Geophys. Res. 2003, 108, 5098. [Google Scholar] [CrossRef]
- Wolff, M.J.; Clancy, R.T. Constraints on the size of Martian aerosols from thermal emission spectrometer observations. J. Geophys. Res. 2003, 108, 5097. [Google Scholar] [CrossRef]
- Vicente-Retortillo, Á.; Martínez, G.; Rennó, N.; Lemmon, M.T.; de la Torre Juarez, M. Determination of dust aerosol particle size at Gale crater using REMS UVS and Mastcam measurements. Geophys. Res. Lett. 2017, 44, 3502–3508. [Google Scholar] [CrossRef]
- Fedorova, A.A.; Montmessin, F.; Rodin, A.V.; Korablev, O.I.; Maattanen, A.; Maltagliati, L.; Bertaux, J.-L. Evidence for a bimodal size distribution for the suspended aerosol particles on Mars. Icarus 2014, 231, 239–260. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Tiogo, A.D.; Richardson, M.I.; Newman, C.E.; Talaat, E.R.; Waugh, D.W.; McConnochie, T.H. The impact of a realistic vertical dust distribution on the simulation of the Martian General Circulation. J. Geophys. Res. Planet. 2013, 118, 980–993. [Google Scholar] [CrossRef]
- Medvedev, A.S.; Yiğit, E.; Kuroda, T.; Hartogh, P. General circulation modeling of the Martian upper atmosphere during global dust storms, J. Geophys. Res. Planet. 2013, 118, 2234–2246. [Google Scholar] [CrossRef]
- Hanel, R.; Conrath, B.; Hovis, W.; Kunde, V.; Lowman, P.; Maguire, W.; Pearl, J.; Pirraglia, J.; Prabhakara, C.; Schlachman, B.; Levin, G.; Straat, P.; Burke, T. Investigation of the Martian environment by infrared spectroscopy on Mariner 9. Icarus 1972, 17, 423–442. [Google Scholar] [CrossRef]
- Leovy, C.B.; Zurek, R.W.; Pollack, J.B. Mechanisms for Mars dust storms. J. Atmos. Sci. 1973, 30, 749–762. [Google Scholar] [CrossRef]
- Gierasch, P.J.; Goody, R.M. A model of a Martian great dust storm. J. Atmos. Sci. 1973, 30, 169–179. [Google Scholar] [CrossRef]
- Leovy, C.B.; Briggs, G.A.; Young, A.T.; Smith, B.A.; Pollack, J.B.; Shipley, E.N.; Wildey, R.L. The Martian atmosphere: Mariner 9 television experiment progress report. Icarus 1972, 17, 373–393. [Google Scholar] [CrossRef]
- Cross, C.A. Heat balance of the Martian polar caps. Icarus 1971, 110–114. [Google Scholar] [CrossRef]
- Ryan, J.A.; Sharman, R.D.; Lucich, R.D. Local Mars dust storm generation mechanism. Geophys. Res. Lett. 1981, 8, 899–901. [Google Scholar] [CrossRef]
- Newman, C.E.; Lewis, S.R.; Read, S.R.; Forget, F. Modeling the Martian dust cycle, 1, Representations of dust transport processes, J. Geophys. Res. 2002, 107, 5123. [Google Scholar] [CrossRef]
- Newman, C.E.; Lewis, S.R.; Read, S.R.; Forget, F. Modeling the Martian dust cycle, 2, Multiannual radiatively active dust transport simulations. J. Geophys. Res. 2002, 107, 5124. [Google Scholar] [CrossRef]
- Ryan, J.A.; Lucich, R.D. Possible dust devils, vortices on Mars. J. Geophys. Res. 1983, 88, 11005–11011. [Google Scholar] [CrossRef]
- Basu, S.; Wilson, J.; Richardson, M.; Ingersoll, A. Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM, J. Geophys. Res. 2006, 111, E09004. [Google Scholar] [CrossRef]
- Shirley, J.H. Solar system dynamics and global-scale dust storms on Mars. Icarus 2015, 251, 128–144. [Google Scholar] [CrossRef]
- Shirley, J.H.; Mischna, M.A. Orbit-spin coupling and the interannual variability of global-scale dust storm occurrence on Mars. Planet. Space Sci. 2017, 139, 37–50. [Google Scholar] [CrossRef]
- Mischna, M.A.; Shirley, J.H. Numerical modeling of orbit-spin coupling accelerations in a Mars general circulation model: Implications for global dust storm activity. Planet. Space Sci. 2017, 141, 45–72. [Google Scholar] [CrossRef]
- Newman, C.E.; Lee, C.; Mischna, M.A.; Richardson, M.I.; Shirley, J.H. An initial assessment of the impact of postulated orbit-spin coupling on Mars dust storm variability in fully interactive dust simulations. Icarus 2019, 317, 649–668. [Google Scholar] [CrossRef]
- Shirley, J.H.; McKim, R.J.; Battalio, J.M.; Kass, D.M. Orbit-Spin Coupling and the Triggering of the Martian Planet-Encircling Dust Storm of 2018. J. Geophys. Res. Planet. 2020, 125, e2019JE006077. [Google Scholar] [CrossRef]
- Bertrand, T.; Wilson, R.J.; Kahre, M.A.; Urata, R.; Kling, A. Simulation of the 2018 global dust storm on Mars using the NASA Ames Mars GCM: A multitracer approach. J. Geophys. Res. Planet. 2020, 125, e2019JE006122. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Heavens, N.G.; Newman, C.E.; Richardson, M.I.; Yang, C.; Li, J.; Cui, J. Earth-like thermal and dynamical coupling processes in the Martian climate system. Earth Sci. Rev. 2022, 229, 104023. [Google Scholar] [CrossRef]
- Zhou, X.; Wei, Y.; Wu, Z.; Ren, Z.; Tan, N.; Fan, S.; He, F.; Rong, Z.; Yan, L.; Wang, Y.; Fan, K.; Gao, J. Martian whole atmosphere model and dust activities: Review and prospect (in Chinese). Chin. Sci. Bull. 2024, 69, 1058–1067. [Google Scholar] [CrossRef]
- Fenton, L.K.; Geissler, P.E.; Haberle, R.M. Global warming and climate forcing by recent albedo changes on Mars. Nature 2007, 446, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Kass, D.M.; Schofield, J.T.; Kleinböhl, A.; McCleese, D.J.; Heavens, N.G.; Shirley, J.H.; Steele, L.J. Mars Climate Sounder observation of Mars' 2018 global dust storm. Geophys. Res. Lett. 2020, 47, e2019GL083931. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Lemmon, M.; Smith, C.L.; Martínez, G.; de Vicente-Retortillo, Á.; Newman, C.E.; Baker, M.; Campbell, C.; Cooper, B.; Gómez-Elvira, J.; Harri, A.-M.; Hassler, D.; Martin-Torres, F.J.; McConnochie, T.; Moores, J.E.; Kahanpää, H.; Khayat, A.; Richardson, M.I.; Smith, M.D.; Sullivan, R.; de la Torre Juarez, M.; Vasavada, A.R.; Viúdez-Moreiras, D.; Zeitlin, C.; Mier, M.-P.Z. . Mars Science Laboratory observations of the 2018/Mars year 34 global dust storm. Geophys. Res. Lett. 2019, 46, 71–79. [Google Scholar] [CrossRef]
- Haberle, R.M.; Pollack, J.B.; Barnes, J.R.; Zurek, R.W.; Leovy, C.B.; Murphy, J.R.; Lee, H.; Schaeffer, J. Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal-mean circulation. J Geophys Res. 1993, 98, 3093–3123. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Zhang, X.; Li, J.; Cui, J. Dust tides and rapid meridional motions in the Martian atmosphere during major dust storms, Nat. Commun. 2020, 11, 614. [Google Scholar]
- Zhao, Y.; Zhong, L.; Yuan, R.; Zhao, C.; Li, R.; Wang, Y.; Lian, Y.; Richardson, M. Simulation of Martian dust effects on polar CO2 ice caps and atmospheric circulation using the MarsWRF model. J. Geophys. Res. Planet. 2021, 126, e2021JE006937. [Google Scholar] [CrossRef]
- Clancy, R.T.; Wolff, M.J.; Lefèvre, F.; Cantor, B.A.; Malin, M.C.; Smith, M.D. Daily global mapping of Mars ozone column abundances with MARCI UV band imaging. Icarus 2016, 266, 112–133. [Google Scholar] [CrossRef]
- Melnik, O.; Parrot, M. Electrostatic discharge in Martian dust storms. <italic>J. Geophys. Res.</italic> 1998, 103. 29107-29117.
- Farrell, W.M.; Kaiser, M.L.; Desch, M.D.; Houser, J.G.; Cummer, S.A.; Wilt, D.M.; Landis, G.A. Detecting electrical activity from Martian dust storms. J. Geophys. Res. 1999, 104, 3795–3801. [Google Scholar] [CrossRef]
- Krauss, C.E.; Horanyi, M.; Robertson, S. Experimental evidence for electrostatic discharging of dust near the surface of Mars. New J. Phys. 2003, 5, 70. [Google Scholar] [CrossRef]
- Merrison, J.; Jensen, J.; Kinch, K.; Mugford, R.; Nørnberg, P. The electrical properties of Mars analogue dust. Planet Space Sci. 2004, 52, 279–290. [Google Scholar] [CrossRef]
- Michael, M.; Tripathi, S.N. Effect of charging of aerosols in the lower atmosphere of Mars during the dust storm of 2001. Planet Space Sci. 2008, 56, 1696–1702. [Google Scholar] [CrossRef]
- Haider, S.A.; Sheel, V.; Smith, M.D.; Maguire, W.C.; Molina-Cuberos, G.J. Effect of dust storms on the D region of the Martian ionosphere: Atmospheric electricity. J. Geophys. Res. Space Phys. 2010, 115, A12336. [Google Scholar] [CrossRef]
- McDunn, T.L.; Bougher, S.W.; Murphy, J.; Smith, M.D.; Forget, F.; Bertaux, J.-L.; Montmessin, F. Simulating the density and thermal structure of the middle atmosphere (80–130 km) of Mars using the MGCM–MTGCM: a comparison with MEX/SPICAM observations. Icarus 2010, 206, 5–17. [Google Scholar] [CrossRef]
- Chaufray, J.Y.; Chaffin, M.S.; Deighan, J.; Jain, S.; Schneider, N.; Mayyasi, M.; Jakosky, B. Effect of the 2018 Martian global dust storm on the CO2 density in the lower nightside thermosphere observed from MAVEN/IUVS Lyman-alpha absorption. Geophys. Res. Lett. 2020, 47, e2019GL082889. [Google Scholar] [CrossRef]
- Fang, X.; Ma, Y.; Lee, Y.; Bougher, S.; Liu, G.; Benna, M.; Mahaffy, P.; Montabone, L.; Pawlowski, D.; Dong, C.; Dong, Y.; Jakosky, B. Mars dust storm effects in the ionosphere and magnetosphere and implications for atmospheric carbon loss. J. Geophys. Res. Space Phys. 2020, 125, e2019JA026838. [Google Scholar] [CrossRef]
- Niu, D.D.; Cui, J.; Wu, S.Q.; Gu, H.; Cao, Y.-T.; Wu, Z.-P.; Wu, X.-S.; Zhong, J.-H.; Wu, M.-Y.; Wei, Y.; Zhang, T.-L. Species-dependent response of the Martian ionosphere to the 2018 global dust event. J. Geophys. Res. Planets. 2021, 126, e2020JE006679. [Google Scholar] [CrossRef]
- Mukundan, V.; Thampi, S.V.; Bhardwaj, A.; Fang, X. Impact of the 2018 Mars global dust storm on the ionospheric peak: A study using a photochemical model. J. Geophys. Res. Planet. 2021, 126, e2021JE006823. [Google Scholar] [CrossRef]
- Stone, S.W.; Yelle, R.V.; Benna, M.; Lo, D.Y.; Elrod, M.K.; Mahaffy, P.R. Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science 2020, 370, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Hvidberg, C.S.; Fishbaugh, K.E.; Winstrup, M.; Svensson, A.; Byrne, S.; Herkenhoff, K.E. Reading the climate record of the Martian polar layered deposits. Icarus 2012, 221, 405–419. [Google Scholar] [CrossRef]
- Colaprete, A.; Barnes, J.; Haberle, R.; Hollingsworth, J.L.; Kieffer, H.H.; Titus, T.N. Albedo of the south pole on Mars determined by topographic forcing of atmosphere dynamics. Nature 2005, 435, 184–188. [Google Scholar] [CrossRef]
- Golombek, M.P.; Warner, N.H.; Ganti, V.; Lamb, M.P.; Parker, T.J.; Fergason, R.L.; Sullivan, R. Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars. J. Geophys. Res. Planet. 2014, 119, 2522–2547. [Google Scholar] [CrossRef]
- Farley, K.A.; Malespin, C.; Mahaffy, P.; Grotzinger, J.P.; Vasconcelos, P.M.; Milliken, R.E.; Malin, M.; Edgett, K.S.; Pavlov, A.A.; Hurowitz, J.A.; Grant, J.A.; Miller, H.B.; Arvidson, R.; Beegle, L.; Calef, F.; Conrad, P.G.; Dietrich, W.E.; Eigenbrode, J.; Gellert, R.; Gupta, S.; Hamilton, V.; Hassler, D.M.; Lewis, K.W.; McLennan, M.; Ming, D.; Navarro-González, R.; Schwenzer, S.P.; Steele, A.; Stolper, E.M.; Sumner, D.Y.; Vaniman, D.; Vasavada, A.; Williford, K.; Wimmer-Schweingruber, R.F.; the MSL Science Team. In Situ Radiometric and Exposure Age Dating of the Martian Surface. Science 2013, 343, 1247166. [Google Scholar] [CrossRef]
- Team, R. Characterization of the Martian Surface Deposits by the Mars Pathfinder Rover, Sojourner. Science 1997, 278, 1765–1767. [Google Scholar] [CrossRef]
- Rieder, R.T.; Economou, T.E.; Wänke, H.; Turkevich, A.; Crisp, J.; Brückner, J.; Dreibus, G.; McSween, Jr., H. Y. The Chemical Composition of Martian Soil and Rocks Returned by the Mobile Alpha Proton X-ray Spectrometer: Preliminary Results from the X-ray Mode. Science 1998, 278, 1771–1774. [Google Scholar] [CrossRef]
- Lorenz, R.D.; Martínez, G.M.; Spiga, A.; Vicente-Retortillo, A.; Newman, C.E.; Murdoch, N.; Forget, F.; Millour, E.; Pierron, T. Lander and rover histories of dust accumulation on and removal from solar arrays on Mars. Planet. Space Sci. 2021, 207, 105337. [Google Scholar] [CrossRef]
- Yen, A.; Gellert, R.; Schröder, C.; Morris, R.V.; Bell III, J.F.; Knudson, A.T.; Clark, B.C.; Ming, D.M.; Crisp, J.A.; Arvidson, R.E.; Blaney, D.; Brückner, J.; Christensen, P.R.; DesMarais, D.J.; de Souza Jr, P.A.; Economou, T.E.; Ghosh, A.; Hahn, B.C.; Herkenhoff, K.E.; Haskin, L.A.; Hurowitz, J.A.; Joliff, B.L.; Johnson, J.R.; Klingelhöfer, G.; Madsen, M.B.; McLennan, S.M.; McSween, H.Y.; Richter, L.; Rieder, R.; Rodionov, D.; Soderblom, L.; Squyres, S.W.; Tosca, N.J.; Wang, A.; Wyatt, M.; Zipfel, J. An integrated view of the chemistry and mineralogy of Martian soils. Nature 2005, 436, 49–54. [Google Scholar] [CrossRef]
- Slipher, E.C. Mars—The Photographic Story. Northland Press: Arizona, USA, 1962.
- Martin, L.J.; Zurek, R.W. An analysis of the history of dust activity on Mars. J. Geophys. Res. 1993, 98, 3221–3246. [Google Scholar] [CrossRef]
- Zurek, R.W.; Martin, L.J. Interannual variability of planet-encircling dust storms on Mars. J. Geophys. Res. 1993, 98, 3247–3259. [Google Scholar] [CrossRef]
- Malin, M.C.; Danielson, G.E.; Ravine, M.A.; Soulanille, T.A. Design and development of the Mars Observer Camera. Int. J. Imaging Syst. Technol. 1991, 3, 76–91. [Google Scholar] [CrossRef]
- Malin, M.C.; Danielson, G.E.; Ingersoll, A.P.; Masursky, H.; Veverka, J.; Ravine, M.A.; Soulanille, T.A. Mars Observer Camera, J. Geophys. Res. 1992, 97, 7699–7718. [Google Scholar] [CrossRef]
- Bell III, J.F.; Wolff, M.J.; Malin, M.C.; Calvin, W.M.; Cantor, B.A.; Caplinger, M.A.; Clancy, R.T.; Edgett, K.S.; Edwards, L.J.; Fahle, J.; Ghaemi, F.; Haberle, R.M.; Hale, A.; James, P.B.; Lee, S.W.; MaConnochie, T.; Noe Dobrea, E.; Ravine, M.A.; Schaeffer, D.; Supulver, K.D.; Thomas, P.C. Mars Reconnaissance Orbiter Mars Color Imager (MARCI): Instrument description, calibration, and performance. J. Geophys. Res. 2009, 114, E08S92. [Google Scholar] [CrossRef]
- Li, B.; Yue, Z.; Qu, S.; Yao, P.; Fu, X.; Ling, Z.; Chen, S. Spatio-Temporal Analysis of Dust Storm Activity in Chryse Planitia Using MGS-MOC Observations from Mars Years 24–28. Universe 2021, 7, 433. [Google Scholar] [CrossRef]
- Battalio, M.; Wang, H. The Mars Dust Activity Database (MDAD): A comprehensive statistical study of dust storm sequences. Icarus 2021, 354, 114059. [Google Scholar] [CrossRef]
- Yu, G.B.; Liu, E.H.; Liu, G.L.; Zhou, L.; Zeng, J.Z.; Chen, Y.P.; Zhou, X.D.; Zhao, R.J.; Zhu, S.Y. Moderate Resolution Imaging Camera (MoRIC) of China’s First Mars Mission Tianwen-1. Earth Planet Phys, 2020, 4, 364–370. [Google Scholar] [CrossRef]
- Horn, D.; McAfee, J.M.; Winer, A.M.; Herr, K.C.; Pimentel, G.C. The composition of the Martian atmosphere: Minor constituents. Icarus 1972, 16, 543–556. [Google Scholar] [CrossRef]
- Cimino, G.; Clavin, W.M. Calibration and analysis of Mariner 7 infrared spectra. Bull. Am. Astron. Soc. 1996, 28, 1068. [Google Scholar]
- Christensen, P.R.; Bandfield, J.L.; Hamilton, V.E.; Ruff, S.W.; Kieffer, H.H.; Titus, T.N.; Malin, M.C.; Morris, R.V.; Lane, M.D.; Clark, R.L.; Jakosky, B.M.; Mellon, M.T.; Pearl, J.C.; Conrath, B.J.; Smith, M.D.; Clancy, R.T.; Kuzmin, R.O.; Roush, T.; Mehall, G.L.; Gorelick, N.; Bender, K.; Murray, K.; Dason, S.; Greene, E.; Silverman, S.; Greenfield, G. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res. 2001, 106, 23823–23871. [Google Scholar] [CrossRef]
- Christensen, P.R.; Jakosky, B.M.; Kieffer, H.H.; Malin, M.C.; McSween Jr., H. Y.; Nealson, K.; Mehall, G.L.; Silverman, S.H.; Ferry, S.; Caplinger, M.; Ravine, M. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 2004, 110, 85–130. [Google Scholar] [CrossRef]
- McCleese, D.J.; Schofield, J.T.; Taylor, F.W.; Calcutt, S.B.; Foote, M.C.; Kass, D.M.; Leovy, C.B.; Paige, D.A.; Read, P.L.; Zurek, R.W. Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions. J. Geophys. Res. 2007, 112, E05S06. [Google Scholar] [CrossRef]
- Smith, M.D.; Pearl, J.C.; Conrath, B.J.; Christensen, P.R. Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of dust opacity during aerobraking and science phasing. J. Geophys. Res. 2000, 105, 9539–9552. [Google Scholar] [CrossRef]
- Smith, M.D.; Bandfield, J.L.; Christensen, P.R.; Richardson, M.I. Thermal Emission Imaging System (THEMIS) infrared observations of atmospheric dust and water ice cloud optical depth. J. Geophys. Res. 2003, 108, 5115. [Google Scholar] [CrossRef]
- Smith, M.D. Interannual variability in TES atmospheric observations of Mars during 1999-2003. Icarus 2004, 167, 148–165. [Google Scholar] [CrossRef]
- Kleinböhl, A.; Schofield, J.T.; Kass, D.M.; Abdou, W.A.; Backus, C.R.; Sen, B.; Shirley, J.H.; Lawson, W.G.; Richardson, M.I.; Taylor, F.W.; Teanby, N.A.; McCleese, D.J. Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure and dust and water ice opacity. J. Geophys. Res. 2009, 114, E10006. [Google Scholar] [CrossRef]
- Lemmon, M.T.; Wolff, M.J.; Bell III, J.F.; Smith, M.D.; Cantor, B.A.; Smith, P.H. Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 2015, 251, 96–111. [Google Scholar] [CrossRef]
- Bell III, J.F.; Squyres, S.W.; Herkenhoff, K.E.; Maki, J.N.; Arneson, H.M.; Brown, D.; Collins, S.A.; Dingizian, A.; Elliot, S.T.; Hagerott, E.C.; Hayes, A.G.; Johnson, M.J.; Johnson, J.R.; Joseph, J.; Kinch, K.; Lemmon, M.T.; Morris, R.V.; Scherr, L.; Schwochert, M.; Shepard, M.K.; Smith, G.H.; Sohl-Dickstein, J.N.; Sullivan, R.J.; Sullivan, W.T.; Wadsworth, M. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. J. Geophys. Res. 2003, 108, 8063. [Google Scholar] [CrossRef]
- Kleinböhl, A.; Schofield, J.T.; Abdou, W.A.; Irwin, P.G.J.; de Kok, R.J. A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere. J. Quant. Spectrosc. Radiat. Transfer. 2011, 112, 1568–1580. [Google Scholar] [CrossRef]
- Staab, M.S.; Herman, JA.; Reich, K.; Reich, K.; Sridhar, V.; Nelson, R.W. MER Opportunity dust-storm recovery operations and implications for future Mars surface missions. In 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 07–14 March 2020.
- Lorenz, R.D.; Martínez, G.M.; Spiga, A.; Vicente-Retorillo, A.; Newman, C.E.; Murdoch, N.; Forget, F.; Millour, E.; Pierron, T. Lander and rover histories of dust accumulation on and removal from solar arrays on Mars. Planet Space Sci. 2021, 207, 105337. [Google Scholar] [CrossRef]
- Information Office of the State Council of the People’s Republic of China. China’s Spaceflight in 2021 (in Chinese). Beijing: People’s Publishing House, 2022.
- He, F.; Wei, Y.; Rong, Z.; Reng, Z.; Yan, L.; Tan, N.; Wang, Y.; Fan, K.; Zhou, X.; Gao, J. Monitoring methods for Martian dust storms (in Chinese). Chin. Sci. Bull. 2023, 68, 2046–2057. [Google Scholar]
- Fan, K.; Wei, Y. Prospection of multi-spacecraft planetary exploration missions in upcoming future (in Chinese). Chin. Sci. Bull. 2021, 66, 4350–4353. [Google Scholar] [CrossRef]






| Levels | VDOD Values | Actions |
|---|---|---|
| Level 1 | <0.7 | No restrictions. |
| Level 2 | 0.7<VDOD<1.0 | No restrictions but watch the VDOD closely. |
| Level 3 | 1.0<VDOD<2.0 | Scientific activities can only be carried out in reasonable limits during the day, with no overnight activities, and the operation team searches for possible parking points for rovers and protective measures for landers. |
| Level 4 | 2.0<VDOD<3.0 | Start driving to a parking point to safely ride out the dust storm, allowing ONLY essential activities (VDOD observation and battery control board history). |
| Level 5 | 3.0<VDOD<3.5 | Final drive to parking point, minimal activities ONLY (VDOD observation and battery control board history), begin ultra-high frequency (UHF) overflights per couple of days, and wait for VDOD to drop. |
| Level 6 | VDOD>3.5 | Minimal activities ONLY (VDOD observation and battery control board history), UHF overflights per couple of days, and wait for VDOD to drop. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
