Submitted:
27 May 2024
Posted:
28 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. An Overview of Aquatic Organism Immunology
2.1. Structural and Functional Insights into the Teleost Immune System
2.1.1. Primary and Secondary Immune Organs in Teleosts
2.1.2. The Teleost Innate Immune System
2.1.3. Adaptive Immunity in Teleosts
2.1. The Pecuiliar Case of Aquatic Invertebrates
3. The Current Landscape of Commercially Available Aquaculture Vaccines
3.1. Conventional and Commercially Available Aquaculture Vaccine Technologies
3.1.1. Whole-Cell Inactivated Vaccines
3.1.2. Live Attenuated Vaccines
3.1.3. Subunit Vaccines
3.1.4. DNA Vaccines
| Disease | Pathogen | Inactivated | Live- Attenuated |
Subunit | DNA |
|---|---|---|---|---|---|
| Bacterial Pathogens & Diseases | |||||
| Vibriosis | Vibrio spp. | ✔ | ✔ | ✔ | - |
| Enteric Septicemia | Edwardsiella ictaluri | - | ✔ | - | - |
| Columnaris Disease | Flavobacterium spp. | ✔ | ✔ | - | - |
| Pasteurellosis | Photobacterium. damselae ssp. piscicida | ✔ | ✔ | - | - |
| Furunculosis | Aeromonas salmonicida | ✔ | - | - | - |
| Streptococcosis | Streptococcus spp. | ✔ | - | - | - |
| Lactococcosis | Lactococcus spp. | ✔ | ✔ | - | - |
| Yersiniosis/Enteric Red Mouth | Yersinia ruckeri | ✔ | - | - | - |
| Bacterial Kidney Disease |
Renibacterium salmoninarum | - | ✔ | - | - |
| Piscirickettsiosis | Piscirickettsia salmonis | - | ✔ | - | - |
| Aeromonas Septicemia | Aeromonas spp. | ✔ | - | - | - |
| Tenacibaculosis |
Tenacibaculum maritimum |
✔ | - | - | - |
| Wound Disease | Moritella viscosa | ✔ | - | - | - |
| Viral Pathogens & Diseases | |||||
| Pancreas Disease (PD) | Salmon Alphavirus (SAV) | ✔ | - | - | ✔ |
| Infectious Hematopoietic Necrosis (IHN) | Infectious Hematopoietic Necrosis Virus (IHNV) |
- | - | - | ✔ |
| Infectious Pancreatic Necrosis (IPN) | Infectious Pancreatic Necrosis Virus (IPNV) | ✔ | - | ✔ | - |
| Infectious Salmon Anemia (ISA) | Infectious Salmon Anemia Virus (ISAV) | ✔ | - | - | - |
| Infectious Spleen and Kidney Necrosis (ISKN) | Infectious Speen and Kidney Necrosis Virus (ISKNV) | ✔ | - | - | - |
| Viral Nervous Necrosis (VNN) |
Betanodavirus | ✔ | - | - | - |
| Koi Herpesvirus Disease (KHD) |
Koi Herpesvirus | - | ✔ | - | - |
| Spring Viraemia of Carp (SVC) | Spring Viraemia of Carp Virus (SVCV) | ✔ | - | ✔ | - |
| Grass Carp Hemorrhagic Disease |
Grass Carp Reovirus (GCRV) | ✔ | ✔ | - | - |
3.2. Contemporary Methods of Aquaculture Vaccine Administration
3.2.1. Injection Vaccination
3.2.2. Immersion Vaccination
3.2.3. Oral Vaccination
| Injection Vaccination | Immersion Vaccination | Oral Vaccination | |
|---|---|---|---|
| Immunopotency1 | +++ | ++ | + |
| Practicality2 | + | ++ | +++ |
| Safety3 | + | ++ | +++ |
| Stress Induced4 | +++ | ++ | + |
3.3. The Current State of Adjuvants in Aquaculture Vaccinology
4. A Review on Recent Developments and Milestones
4.1. Alternative and Upcoming Vaccine Technologies for Aquaculture
4.1.2. Vector Vaccines
5.3. Synthetic Peptide - Epitope Vaccines
4.2. Reverse Vaccinology
4.3. Recent Adjuvant Breakthroughs in Aquaculture Vaccinology
4.3.1. Nanoparticles as Aquaculture Vaccine Adjuvants
4.3.2. The Adjuvant Activity of Fish Cytokines
4.4. Progress in Oral Vaccination
4.4.1. Polymer Encapsulation
4.4.2. Bioencapsulation
4.4.3. Plant-based Vaccines
4.5. Development of Vaccines against Parasites
4.5.1. Progress in Sea Lice Vaccine Development
4.5.2. Advancing Ciliate Vaccines
4.5.3. Innovations in Endoparasite Vaccinology
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Natale, F.; Hofherr, J.; Fiore, G.; Virtanen, J. Interactions between Aquaculture and Fisheries. Marine Policy 2013, 38, 205–213. [Google Scholar] [CrossRef]
- Subasinghe, R.; Soto, D.; Jia, J. Global Aquaculture and Its Role in Sustainable Development. Reviews in Aquaculture 2009, 1, 2–9. [Google Scholar] [CrossRef]
- Longo, S.B.; Clark, B.; York, R.; Jorgenson, A.K. Aquaculture and the Displacement of Fisheries Captures. Conservation Biology 2019, 33, 832–841. [Google Scholar] [CrossRef] [PubMed]
- Pradeepkiran, J.A. Aquaculture Role in Global Food Security with Nutritional Value: A Review. Translational Animal Science 2019, 3, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.T.; Gauthier, J.; Derome, N.; Charette, S.J. The Rise and Fall of Antibiotics in Aquaculture. In Microbial Communities in Aquaculture Ecosystems: Improving Productivity and Sustainability; Derome, N., Ed.; Springer International Publishing: Cham, 2019; pp. 1–19. ISBN 978-3-030-16190-3. [Google Scholar]
- Schar, D.; Klein, E.Y.; Laxminarayan, R.; Gilbert, M.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Aquaculture. Sci Rep 2020, 10, 21878. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Habibullah-Al-Mamun, M.; Nagano, I.; Masunaga, S.; Kitazawa, D.; Matsuda, H. Antibiotics, Antibiotic-Resistant Bacteria, and Resistance Genes in Aquaculture: Risks, Current Concern, and Future Thinking. Environ Sci Pollut Res 2022, 29, 11054–11075. [Google Scholar] [CrossRef]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial Resistance: One Health Approach. Vet World 2022, 15, 743–749. [Google Scholar] [CrossRef]
- Stentiford, G.D.; Bateman, I.J.; Hinchliffe, S.J.; Bass, D.; Hartnell, R.; Santos, E.M.; Devlin, M.J.; Feist, S.W.; Taylor, N.G.H.; Verner-Jeffreys, D.W.; et al. Sustainable Aquaculture through the One Health Lens. Nat Food 2020, 1, 468–474. [Google Scholar] [CrossRef]
- Mondal, H.; Thomas, J. A Review on the Recent Advances and Application of Vaccines against Fish Pathogens in Aquaculture. Aquacult Int 2022, 30, 1971–2000. [Google Scholar] [CrossRef]
- Clem, A.S. Fundamentals of Vaccine Immunology. Journal of Global Infectious Diseases 2011, 3, 73. [Google Scholar] [CrossRef]
- Gudding, R.; Van Muiswinkel, W.B. A History of Fish Vaccination: Science-Based Disease Prevention in Aquaculture. Fish & Shellfish Immunology 2013, 35, 1683–1688. [Google Scholar] [CrossRef] [PubMed]
- Snieszko, S.; Piotrowska, W.; Kocylowski, B.; Marek, K. Badania Bakteriologiczne i Serogiczne Nad Bakteriami Posocznicy Karpi. Memoires de l’Institut d’Ichtyobiologie et Pisciculture de la Station de Pisciculture Experimentale a Mydlniki de l’Universite Jagiellonienne a Cracovie 1938, 38.
- Duff, D.C.B. The Oral Immunization of Trout Against Bacterium Salmonicida. The Journal of Immunology 1942, 44, 87–94. [Google Scholar] [CrossRef]
- Ma, J.; Bruce, T.J.; Jones, E.M.; Cain, K.D. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms 2019, 7, 569. [Google Scholar] [CrossRef] [PubMed]
- Adams, A. Progress, Challenges and Opportunities in Fish Vaccine Development. Fish & Shellfish Immunology 2019, 90, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Shefat, S.H.T. Vaccines for Use in Finfish Aquaculture. Acta Scientific Pharmaceutical Sciences 2018, 2, 15–19. [Google Scholar]
- Su, H.; Yakovlev, I.A.; van Eerde, A.; Su, J.; Clarke, J.L. Plant-Produced Vaccines: Future Applications in Aquaculture. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Workenhe, S.T.; Rise, M.L.; Kibenge, M.J.T.; Kibenge, F.S.B. The Fight between the Teleost Fish Immune Response and Aquatic Viruses. Molecular Immunology 2010, 47, 2525–2536. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.C.; Rise, M.L.; Christian, S.L. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front. Immunol. 2019, 10, 2292. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Nie, L.; Zhu, G.; Xiang, L.; Shao, J. Advances in Research of Fish Immune-Relevant Genes: A Comparative Overview of Innate and Adaptive Immunity in Teleosts. Developmental & Comparative Immunology 2013, 39, 39–62. [Google Scholar] [CrossRef]
- Wu, L.; Qin, Z.; Liu, H.; Lin, L.; Ye, J.; Li, J. Recent Advances on Phagocytic B Cells in Teleost Fish. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef]
- Secombes, C.J.; Belmonte, R. Overview of the Fish Adaptive Immune System. In Fish Vaccines; Adams, A., Ed.; Springer Basel: Basel, 2016; pp. 35–52. ISBN 978-3-0348-0978-8. [Google Scholar]
- Castro, R.; Tafalla, C. 2 - Overview of Fish Immunity. In Mucosal Health in Aquaculture; Beck, B.H., Peatman, E., Eds.; Academic Press: San Diego, 2015; pp. 3–54. ISBN 978-0-12-417186-2. [Google Scholar]
- Mokhtar, D.M.; Zaccone, G.; Alesci, A.; Kuciel, M.; Hussein, M.T.; Sayed, R.K.A. Main Components of Fish Immunity: An Overview of the Fish Immune System. Fishes 2023, 8, 93. [Google Scholar] [CrossRef]
- Barraza, F.; Montero, R.; Wong-Benito, V.; Valenzuela, H.; Godoy-Guzmán, C.; Guzmán, F.; Köllner, B.; Wang, T.; Secombes, C.J.; Maisey, K.; et al. Revisiting the Teleost Thymus: Current Knowledge and Future Perspectives. Biology 2021, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Salinas, I. The Mucosal Immune System of Teleost Fish. Biology 2015, 4, 525–539. [Google Scholar] [CrossRef]
- Nakanishi, T.; Hikima, J.; Yada, T. Osteichthyes: Immune Systems of Teleosts (Actinopterygii). In Advances in Comparative Immunology; Cooper, E.L., Ed.; Springer International Publishing: Cham, 2018; pp. 687–749. ISBN 978-3-319-76768-0. [Google Scholar]
- Mitchell, C.D.; Criscitiello, M.F. Comparative Study of Cartilaginous Fish Divulges Insights into the Early Evolution of Primary, Secondary and Mucosal Lymphoid Tissue Architecture. Fish & Shellfish Immunology 2020, 107, 435–443. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Q.; Huang, Z.; Ding, L.; Xu, Z. Immunoglobulins, Mucosal Immunity and Vaccination in Teleost Fish. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef]
- Ashfaq, H.; Soliman, H.; Saleh, M.; El-Matbouli, M. CD4: A Vital Player in the Teleost Fish Immune System. Vet Res 2019, 50, 1. [Google Scholar] [CrossRef]
- Kordon, A.O.; Pinchuk, L.; Karsi, A. Adaptive Immune System in Fish. Turkish Journal of Fisheries and Aquatic Sciences 2021, 22. [Google Scholar] [CrossRef]
- Thompson, K.D. Chapter 1 - Immunology: Improvement of Innate and Adaptive Immunity. In Fish Diseases; Jeney, G., Ed.; Academic Press, 2017; pp. 1–17, ISBN 978-0-12-804564-0.
- Natnan, M.E.; Low, C.-F.; Chong, C.-M.; Bunawan, H.; Baharum, S.N. Integration of Omics Tools for Understanding the Fish Immune Response Due to Microbial Challenge. Front. Mar. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Cabillon, N.A.R.; Lazado, C.C. Mucosal Barrier Functions of Fish under Changing Environmental Conditions. Fishes 2019, 4, 2. [Google Scholar] [CrossRef]
- Lieschke, G.J.; Trede, N.S. Fish Immunology. Current Biology 2009, 19, R678–R682. [Google Scholar] [CrossRef]
- Sakai, M.; Hikima, J.; Kono, T. Fish Cytokines: Current Research and Applications. Fish Sci 2021, 87, 1–9. [Google Scholar] [CrossRef]
- Kordon, A.O.; Karsi, A.; Pinchuk, L. Innate Immune Responses in Fish: Antigen Presenting Cells and Professional Phagocytes. Turkish Journal of Fisheries and Aquatic Sciences 2018, 18, 1123–1139. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.R. Structure of Fish Toll-like Receptors (TLR) and NOD-like Receptors (NLR). International Journal of Biological Macromolecules 2020, 161, 1602–1617. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, K. Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals. Front. Immunol. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Stosik, M.; Tokarz-Deptuła, B.; Deptuła, W. Immunological Memory in Teleost Fish. Fish & Shellfish Immunology 2021, 115, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Rosales, P.; Muñoz-Atienza, E.; Tafalla, C. Role of Teleost B Cells in Viral Immunity. Fish & Shellfish Immunology 2019, 86, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Xing, J.; Tang, X.; Chi, H.; Sheng, X.; Zhan, W. Cluster of Differentiation Antigens: Essential Roles in the Identification of Teleost Fish T Lymphocytes. Mar Life Sci Technol 2022, 4, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Dijkstra, J.M. Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019, 8, 378. [Google Scholar] [CrossRef] [PubMed]
- Firdaus-Nawi, M.; Zamri-Saad, M. Major Components of Fish Immunity: A Review. 2016.
- Abós, B.; Bailey, C.; Tafalla, C. Adaptive Immunity. In Principles of Fish Immunology : From Cells and Molecules to Host Protection; Buchmann, K., Secombes, C.J., Eds.; Springer International Publishing: Cham, 2022; pp. 105–140. ISBN 978-3-030-85420-1. [Google Scholar]
- Kulkarni, A.; Krishnan, S.; Anand, D.; Kokkattunivarthil Uthaman, S.; Otta, S.K.; Karunasagar, I.; Kooloth Valappil, R. Immune Responses and Immunoprotection in Crustaceans with Special Reference to Shrimp. Reviews in Aquaculture 2021, 13, 431–459. [Google Scholar] [CrossRef]
- Wang, L.; Song, X.; Song, L. The Oyster Immunity. Developmental & Comparative Immunology 2018, 80, 99–118. [Google Scholar] [CrossRef]
- Labaude, S.; Moret, Y.; Cézilly, F.; Reuland, C.; Rigaud, T. Variation in the Immune State of Gammarus Pulex (Crustacea, Amphipoda) According to Temperature: Are Extreme Temperatures a Stress? Developmental & Comparative Immunology 2017, 76, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; He, J.-G. Effects of Environmental Stress on Shrimp Innate Immunity and White Spot Syndrome Virus Infection. Fish & Shellfish Immunology 2019, 84, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Gourbal, B.; Pinaud, S.; Beckers, G.J.M.; Van Der Meer, J.W.M.; Conrath, U.; Netea, M.G. Innate Immune Memory: An Evolutionary Perspective. Immunological Reviews 2018, 283, 21–40. [Google Scholar] [CrossRef] [PubMed]
- Lafont, M.; Vergnes, A.; Vidal-Dupiol, J.; de Lorgeril, J.; Gueguen, Y.; Haffner, P.; Petton, B.; Chaparro, C.; Barrachina, C.; Destoumieux-Garzon, D.; et al. A Sustained Immune Response Supports Long-Term Antiviral Immune Priming in the Pacific Oyster, Crassostrea Gigas. mBio 2020, 11, e02777-19. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Bossier, P.; Norouzitallab, P.; Vanrompay, D. Trained Immunity and Perspectives for Shrimp Aquaculture. Reviews in Aquaculture 2020, 12, 2351–2370. [Google Scholar] [CrossRef]
- Bouallegui, Y. A Comprehensive Review on Crustaceans’ Immune System With a Focus on Freshwater Crayfish in Relation to Crayfish Plague Disease. Front Immunol 2021, 12, 667787. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Lin, Z.; Zheng, Z.; Yao, D.; Yang, S.; Zhao, Y.; Chen, X.; Aweya, J.J.; Zhang, Y. The Mechanisms and Factors That Induce Trained Immunity in Arthropods and Mollusks. Front. Immunol. 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, C.; Martinez-Rodriguez, G.; Costas, B.; Mancera, J.M.; Fernandez-Boo, S.; Rodulfo, H.; De Donato, M. Shrimp Immune Response: A Transcriptomic Perspective. Reviews in Aquaculture 2022, 14, 1136–1149. [Google Scholar] [CrossRef]
- Sánchez-Salgado, J.L.; Pereyra, M.A.; Alpuche-Osorno, J.J.; Zenteno, E. Pattern Recognition Receptors in the Crustacean Immune Response against Bacterial Infections. Aquaculture 2021, 532, 735998. [Google Scholar] [CrossRef]
- Söderhäll, I. Crustacean Hematopoiesis. Developmental & Comparative Immunology 2016, 58, 129–141. [Google Scholar] [CrossRef]
- Melillo, D.; Marino, R.; Italiani, P.; Boraschi, D. Innate Immune Memory in Invertebrate Metazoans: A Critical Appraisal. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Sarath Babu, V.; Lin, H.; Dai, Y.; Kou, H.; Chen, L.; Li, J.; Zhao, L.; Lin, L. The Immune Function of Prophenoloxidase from Red Swamp Crayfish (Procambarus Clarkii) in Response to Bacterial Infection. Fish Shellfish Immunol 2019, 92, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Evariste, L.; Auffret, M.; Audonnet, S.; Geffard, A.; David, E.; Brousseau, P.; Fournier, M.; Betoulle, S. Functional Features of Hemocyte Subpopulations of the Invasive Mollusk Species Dreissena Polymorpha. Fish Shellfish Immunol 2016, 56, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, S.; Liu, H. Recent Insights into Hematopoiesis in Crustaceans. Fish and Shellfish Immunology Reports 2021, 2, 100040. [Google Scholar] [CrossRef] [PubMed]
- Pila, E.; Sullivan, J.; Wu, X.; Fang, J.; Rudko, S.; Gordy, M.; Hanington, P. Haematopoiesis in Molluscs: A Review of Haemocyte Development and Function in Gastropods, Cephalopods and Bivalves. Dev Comp Immunol 2016, 58, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Cerenius, L.; Söderhäll, K. Crayfish Immunity – Recent Findings. Developmental & Comparative Immunology 2018, 80, 94–98. [Google Scholar] [CrossRef]
- Li, F.; Xiang, J. Recent Advances in Researches on the Innate Immunity of Shrimp in China. Dev Comp Immunol 2013, 39, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Chen, L.; Yang, J.; Wei, Q.; Yang, B.; Liu, X.; Yang, D. Two C-Type Lectins from Venerupis Philippinarum: Possible Roles in Immune Recognition and Opsonization. Fish & Shellfish Immunology 2019, 94, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Tassanakajon, A.; Rimphanitchayakit, V.; Visetnan, S.; Amparyup, P.; Somboonwiwat, K.; Charoensapsri, W.; Tang, S. Shrimp Humoral Responses against Pathogens: Antimicrobial Peptides and Melanization. Developmental & Comparative Immunology 2018, 80, 81–93. [Google Scholar] [CrossRef]
- Perdomo-Morales, R.; Montero-Alejo, V.; Perera, E. The Clotting System in Decapod Crustaceans: History, Current Knowledge and What We Need to Know beyond the Models. Fish & Shellfish Immunology 2019, 84, 204–212. [Google Scholar] [CrossRef]
- Saucedo-Vázquez, J.P.; Gushque, F.; Vispo, N.S.; Rodriguez, J.; Gudiño-Gomezjurado, M.E.; Albericio, F.; Tellkamp, M.P.; Alexis, F. Marine Arthropods as a Source of Antimicrobial Peptides. Mar Drugs 2022, 20, 501. [Google Scholar] [CrossRef] [PubMed]
- de la Ballina, N.R.; Maresca, F.; Cao, A.; Villalba, A. Bivalve Haemocyte Subpopulations: A Review. Front. Immunol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Söderhäll, I.; Söderhäll, K. Blood Cell Formation in Crustaceans. Fish & Shellfish Immunology 2022, 131, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Bedekar, M.K.; Kole, S.; Makesh, M. Types of Vaccines Used in Aquaculture. In Fish immune system and vaccines; M., M., K.V., R., Eds.; Springer Nature: Singapore, 2022; pp. 45–63. ISBN 978-981-19126-8-9. [Google Scholar]
- Assefa, A.; Abunna, F. Maintenance of Fish Health in Aquaculture: Review of Epidemiological Approaches for Prevention and Control of Infectious Disease of Fish. Veterinary Medicine International 2018, 2018, e5432497. [Google Scholar] [CrossRef] [PubMed]
- Mohd-Aris, A.; Muhamad-Sofie, M.H.N.; Zamri-Saad, M.; Daud, H.M.; Ina-Salwany, M.Y. Live Vaccines against Bacterial Fish Diseases: A Review. Vet World 2019, 12, 1806–1815. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Wang, S.; Ma, J.; Liu, Q. A Review: Progress in the Development of Fish Vibrio Spp. Vaccines. Immunology Letters 2020, 226, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Jose Priya, T.A.; Kappalli, S. Modern Biotechnological Strategies for Vaccine Development in Aquaculture – Prospects and Challenges. Vaccine 2022, 40, 5873–5881. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.; Lorenzen, N.; Collet, B. DNA Vaccination for Finfish Aquaculture. Fish & Shellfish Immunology 2019, 85, 106–125. [Google Scholar] [CrossRef] [PubMed]
- Akansha, K.; Ram, R.N. Vaccines and Their Role in Fish Disease Management-a Review. Biochemical and Cellular Archives 2015, 15, 39–46. [Google Scholar]
- Subramani, P.A.; Michael, R.D. Chapter 4 - Prophylactic and Prevention Methods Against Diseases in Aquaculture. In Fish Diseases; Jeney, G., Ed.; Academic Press, 2017; pp. 81–117, ISBN 978-0-12-804564-0.
- Dalmo, R.; Bøgwald, J.; Tafalla, C. Adjuvants and Delivery Methods: Current and Novel. In Fish Vaccines; Adams, A., Ed.; Springer: Basel, 2016; pp. 75–103. ISBN 978-3-0348-0980-1. [Google Scholar]
- Muñoz-Atienza, E.; Díaz-Rosales, P.; Tafalla, C. Systemic and Mucosal B and T Cell Responses Upon Mucosal Vaccination of Teleost Fish. Front. Immunol. 2021, 11. [Google Scholar] [CrossRef]
- Somamoto, T.; Nakanishi, T. Mucosal Delivery of Fish Vaccines: Local and Systemic Immunity Following Mucosal Immunisations. Fish & Shellfish Immunology 2020, 99, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Tacchi, L.; Xu, Z.; LaPatra, S.E.; Salinas, I. Vaccination Route Determines the Kinetics and Magnitude of Nasal Innate Immune Responses in Rainbow Trout (Oncorhynchus Mykiss). Biology 2020, 9, 319. [Google Scholar] [CrossRef] [PubMed]
- Makesh, M.; Vinay, T.N.; Bedekar, M.K. Methods of Vaccine Delivery. In Fish immune system and vaccines; M., M., K.V., R., Eds.; Springer Nature: Singapore, 2022; pp. 217–230. ISBN 978-981-19126-8-9. [Google Scholar]
- Bøgwald, J.; Dalmo, R.A. Review on Immersion Vaccines for Fish: An Update 2019. Microorganisms 2019, 7, 627. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.Y.; Kwon, M.-G.; Kim, Y.J.; Jung, S.-H.; Park, M.-A.; Son, M.-H. Montanide IMS 1312 VG Adjuvant Enhances the Efficacy of Immersion Vaccine of Inactivated Viral Hemorrhagic Septicemia Virus (VHSV) in Olive Flounder, Paralichthys Olivaceus. Fish Shellfish Immunol 2017, 60, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ji, W.; Xu, Z. Current Use and Development of Fish Vaccines in China. Fish & Shellfish Immunology 2020, 96, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Sari, D.P.; Sukenda, S.; Yuhana, M.; Nuryati, S. Effect of the Hyperosmotic Infiltration Method on Immune Response in Tilapia Vaccinated with Streptococcus Agalactiae. Aquacult Int 2021, 29, 275–288. [Google Scholar] [CrossRef]
- Nuryati, S.; Soraya, S. Alimuddin Efficacy of Anti-Koi Herpesvirus DNA Vaccine in Carp Cyprinus Carpio Fry by Immersion Method and Hyperosmotic Infiltration. IOP Conf. Ser. Earth Environ. Sci. 2022, 1033, 012051. [Google Scholar] [CrossRef]
- Wu, R.; Chi, Y.; Yu, J.; Ni, C.; Yao, J. Enhanced Immersion Vaccination through Hyperosmotic Treatment in the Largemouth Bass (Micropterus Salmoides). Aquaculture 2021, 535, 736371. [Google Scholar] [CrossRef]
- Yun, S.; Giri, S.S.; Kim, H.J.; Kim, S.G.; Kim, S.W.; Kang, J.W.; Han, S.J.; Kwon, J.; Oh, W.T.; Chi, C.; et al. Enhanced Bath Immersion Vaccination through Microbubble Treatment in the Cyprinid Loach. Fish & Shellfish Immunology 2019, 91, 12–18. [Google Scholar] [CrossRef]
- Cobo Labarca, C.; Makhutu, M.; Lumsdon, A.E.; Thompson, K.D.; Jung, R.; Kloas, W.; Knopf, K. The Adjuvant Effect of Low Frequency Ultrasound When Applied with an Inactivated Aeromonas Salmonicida Vaccine to Rainbow Trout (Oncorhynchus Mykiss). Vaccine 2015, 33, 1369–1374. [Google Scholar] [CrossRef]
- Cobo, C.; Makosch, K.; Jung, R.; Kohlmann, K.; Knopf, K. Enhanced Aeromonas Salmonicida Bacterin Uptake and Side Effects Caused by Low Frequency Sonophoresis in Rainbow Trout (Oncorhynchus Mykiss). Fish & Shellfish Immunology 2014, 36, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Kiryu, I.; Ototake, M. Development of a New Vaccine Delivery Method for Fish: Percutaneous Administration by Immersion with Application of a Multiple Puncture Instrument. Vaccine 2002, 20, 3764–3769. [Google Scholar] [CrossRef] [PubMed]
- Yue, K.; Shen, Y. An Overview of Disruptive Technologies for Aquaculture. Aquaculture and Fisheries 2022, 7, 111–120. [Google Scholar] [CrossRef]
- Radhakrishnan, A.; Vaseeharan, B.; Ramasamy, P.; Jeyachandran, S. Oral Vaccination for Sustainable Disease Prevention in Aquaculture—An Encapsulation Approach. Aquac Int 2023, 31, 867–891. [Google Scholar] [CrossRef] [PubMed]
- Mutoloki, S.; Munang’andu, H.M.; Evensen, Ø. Oral Vaccination of Fish – Antigen Preparations, Uptake, and Immune Induction. Front Immunol 2015, 6, 519. [Google Scholar] [CrossRef] [PubMed]
- Embregts, C.W.E.; Forlenza, M. Oral Vaccination of Fish: Lessons from Humans and Veterinary Species. Developmental & Comparative Immunology 2016, 64, 118–137. [Google Scholar] [CrossRef] [PubMed]
- Rombout, J.H.W.M.; Yang, G.; Kiron, V. Adaptive Immune Responses at Mucosal Surfaces of Teleost Fish. Fish & Shellfish Immunology 2014, 40, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Masoomi Dezfooli, S.; Gutierrez-Maddox, N.; Alfaro, A.; Seyfoddin, A. Encapsulation for Delivering Bioactives in Aquaculture. Reviews in Aquaculture 2019, 11, 631–660. [Google Scholar] [CrossRef]
- Raman, R.P.; Kumar, S. Adjuvants for Fish Vaccines. In Fish immune system and vaccines; M., M., K.V., R., Eds.; Springer Nature: Singapore, 2022; pp. 231–244. ISBN 978-981-19126-8-9. [Google Scholar]
- Ji, J.; Torrealba, D.; Ruyra, À.; Roher, N. Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System. Biology 2015, 4, 664–696. [Google Scholar] [CrossRef]
- Schijns, V.E. Induction and Direction of Immune Responses by Vaccine Adjuvants. Crit Rev Immunol 2001, 21, 75–85. [Google Scholar] [CrossRef]
- Ribeiro, C.M.S.; Schijns, V.E.J.C. Immunology of Vaccine Adjuvants. Methods Mol Biol 2010, 626, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Thim, H.L.; Villoing, S.; McLoughlin, M.; Christie, K.E.; Grove, S.; Frost, P.; Jørgensen, J.B. Vaccine Adjuvants in Fish Vaccines Make a Difference: Comparing Three Adjuvants (Montanide ISA763A Oil, CpG/Poly I:C Combo and VHSV Glycoprotein) Alone or in Combination Formulated with an Inactivated Whole Salmonid Alphavirus Antigen. Vaccines (Basel) 2014, 2, 228–251. [Google Scholar] [CrossRef] [PubMed]
- Veenstra, K.A.; Wang, T.; Russell, K.S.; Tubbs, L.; Ben Arous, J.; Secombes, C.J. MontanideTM ISA 763A VG and ISA 761 VG Induce Different Immune Pathway Responses in Rainbow Trout (Oncorhynchus Mykiss) When Used as Adjuvant for an Aeromonas Salmonicida Bacterin. Fish & Shellfish Immunology 2021, 114, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Wangkahart, E.; Thongsrisuk, A.; Vialle, R.; Pholchamat, S.; Sunthamala, P.; Phudkliang, J.; Srisapoome, P.; Wang, T.; Secombes, C.J. Comparative Study of the Effects of MontanideTM ISA 763A VG and ISA 763B VG Adjuvants on the Immune Response against Streptococcus Agalactiae in Nile Tilapia (Oreochromis Niloticus). Fish & Shellfish Immunology 2023, 134, 108563. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Maruggi, G.; Shan, H.; Li, J. Advances in mRNA Vaccines for Infectious Diseases. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA Vaccines — a New Era in Vaccinology. Nat Rev Drug Discov 2018, 17, 261–279. [Google Scholar] [CrossRef]
- Liu, M.A. A Comparison of Plasmid DNA and mRNA as Vaccine Technologies. Vaccines (Basel) 2019, 7, 37. [Google Scholar] [CrossRef]
- Jose, J.; Snyder, J.E.; Kuhn, R.J. A Structural and Functional Perspective of Alphavirus Replication and Assembly. Future Microbiology 2009, 4, 837–856. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.; Hodneland, K.; Frost, P.; Hoeijmakers, M.; Rimstad, E. Salmonid Alphavirus-Based Replicon Vaccine against Infectious Salmon Anemia (ISA): Impact of Immunization Route and Interactions of the Replicon Vector. Fish & Shellfish Immunology 2014, 36, 383–392. [Google Scholar] [CrossRef]
- Ding, C.; Ma, J.; Dong, Q.; Liu, Q. Live Bacterial Vaccine Vector and Delivery Strategies of Heterologous Antigen: A Review. Immunol Lett 2018, 197, 70–77. [Google Scholar] [CrossRef]
- Du, Y.; Hu, X.; Miao, L.; Chen, J. Current Status and Development Prospects of Aquatic Vaccines. Front. Immunol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Liu, Q.; Li, J.; Ma, J.; Wang, S.; Dong, Q.; Xu, D.; Qiu, J.; Wang, X. Attenuated Listeria Monocytogenes Protecting Zebrafish (Danio Rerio) against Vibrio Species Challenge. Microbial Pathogenesis 2019, 132, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Dang, W.; Sun, L.; Hu, Y. Vibrio Harveyi Hsp70: Immunogenicity and Application in the Development of an Experimental Vaccine against V. Harveyi and Streptococcus Iniae. Aquaculture 2014, 418–419, 144–147. [Google Scholar] [CrossRef]
- Yao, Y.-Y.; Chen, D.-D.; Cui, Z.-W.; Zhang, X.-Y.; Zhou, Y.-Y.; Guo, X.; Li, A.-H.; Zhang, Y.-A. Oral Vaccination of Tilapia against Streptococcus Agalactiae Using Bacillus Subtilis Spores Expressing Sip. Fish & Shellfish Immunology 2019, 86, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Bian, Q.; Zeng, W.; Ren, P.; Sun, H.; Lin, Z.; Tang, Z.; Zhou, X.; Wang, Q.; Wang, Y.; et al. Oral Delivery of Bacillus Subtilis Spores Expressing Grass Carp Reovirus VP4 Protein Produces Protection against Grass Carp Reovirus Infection. Fish & Shellfish Immunology 2019, 84, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Shang, M.; Tang, Z.; Jiang, H.; Dong, H.; Zhou, X.; Lin, Z.; Shi, C.; Ren, P.; Zhao, L.; et al. Oral Delivery of Bacillus Subtilis Spores Expressing Clonorchis Sinensis Paramyosin Protects Grass Carp from Cercaria Infection. Appl Microbiol Biotechnol 2020, 104, 1633–1646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-X.; Kang, Y.-H.; Chen, L.; Siddiqui, S.A.; Wang, C.-F.; Qian, A.-D.; Shan, X.-F. Oral Immunization with Recombinant Lactobacillus Casei Expressing OmpAI Confers Protection against Aeromonas Veronii Challenge in Common Carp, Cyprinus Carpio. Fish Shellfish Immunol 2018, 72, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.-D.; Kang, Y.-H.; Tian, J.-X.; Zhang, D.-X.; Zhang, L.; Tao, L.-T.; Wu, T.-L.; Li, Y.; Wang, G.-Q.; Shan, X.-F. Oral Immunization with Recombinant Lactobacillus Casei Expressing flaB Confers Protection against Aeromonas Veronii Challenge in Common Carp, Cyprinus Carpio. Fish Shellfish Immunol 2019, 87, 627–637. [Google Scholar] [CrossRef]
- Naderi-Samani, M.; Soltani, M.; Dadar, M.; Taheri-Mirghaed, A.; Zargar, A.; Ahmadivand, S.; Hassanzadeh, R.; Goudarzi, L.M. Oral Immunization of Trout Fry with Recombinant Lactococcus Lactis NZ3900 Expressing G Gene of Viral Hemorrhagic Septicaemia Virus (VHSV). Fish Shellfish Immunol 2020, 105, 62–70. [Google Scholar] [CrossRef]
- Li, K.; Yuan, R.; Zhang, M.; Zhang, T.; Gu, Y.; Zhou, Y.; Dai, Y.; Fang, P.; Feng, Y.; Hu, X.; et al. Recombinant Baculovirus BacCarassius-D4ORFs Has Potential as a Live Vector Vaccine against CyHV-2. Fish & Shellfish Immunology 2019, 92, 101–110. [Google Scholar] [CrossRef]
- Yang, J.I.; Kim, K.H. Baculovirus-Mediated Delivery of Viral Hemorrhagic Septicemia Virus G Protein in Forms of Envelope-Spiked Protein and a CMV Promoter-Driven Expression Cassette. Aquaculture 2022, 547, 737426. [Google Scholar] [CrossRef]
- Zhu, M.; Shen, Z.; Gu, Y.; Tong, X.; Zhang, Y.; Pan, J.; Feng, Y.; Hu, X.; Wang, Y.; Cao, G.; et al. A Recombinant Baculovirus Vector Vaccine (BacMCP) against the Infectious Spleen and Kidney Necrosis Virus (ISKNV). J Fish Dis 2023, 46, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Syed, M.S.; Kwang, J. Oral Vaccination of Baculovirus-Expressed VP28 Displays Enhanced Protection against White Spot Syndrome Virus in Penaeus Monodon. PLoS ONE 2011, 6, e26428. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Park, N.H.; Jang, Y.; Gwon, Y.-D.; Cho, Y.; Heo, Y.-K.; Park, K.-H.; Lee, H.-J.; Choi, T.J.; Kim, Y.B. Fusion of Flagellin 2 with Bivalent White Spot Syndrome Virus Vaccine Increases Survival in Freshwater Shrimp. Journal of Invertebrate Pathology 2017, 144, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Premanand, B.; Zhong Wee, P.; Prabakaran, M. Baculovirus Surface Display of Immunogenic Proteins for Vaccine Development. Viruses 2018, 10, 298. [Google Scholar] [CrossRef] [PubMed]
- Citarasu, T.; Lelin, C.; Babu, M.M.; Anand, S.B.; Nathan, A.A.; Vakharia, V.N. Oral Vaccination of Macrobrachium Rosenbergii with Baculovirus-Expressed M. Rosenbergii Nodavirus (MrNV) Capsid Protein Induces Protective Immunity against MrNV Challenge. Fish Shellfish Immunol 2019, 86, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.M.; Sevilla, N.; Martín, V.; Rojas, J.M.; Sevilla, N.; Martín, V. Adenovirus as Tools in Animal Health. In Adenoviruses; IntechOpen, 2018; ISBN 978-1-78984-991-2.
- Baron, M.D.; Iqbal, M.; Nair, V. Recent Advances in Viral Vectors in Veterinary Vaccinology. Curr Opin Virol 2018, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.-D.; Dong, W.-T.; Zhang, Y.; Hu, J.-J.; Liu, J.-X.; Zhao, X.-X. A Recombinant Adenovirus Targeting Typical Aeromonas Salmonicida Induces an Antibody-Mediated Adaptive Immune Response after Immunization of Rainbow Trout. Microb Pathog 2019, 133, 103559. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xie, H.; Yan, Z.; Li, B.; Wu, P.; Qian, X.; Zhang, X.; Wu, J.; Liu, J.; Zhao, X. Development of a Live Vector Vaccine against Infectious Hematopoietic Necrosis Virus in Rainbow Trout. Fish & Shellfish Immunology 2019, 89, 516–524. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Yuan, R.; Chen, X.; Chen, S.; Qiu, Y.; Yang, Q.; Wang, M.; Shi, J.; Zhang, S. Development of a Recombinant Adenovirus-Vectored Vaccine against Both Infectious Hematopoietic Necrosis Virus and Infectious Pancreatic Necrosis Virus in Rainbow Trout (Oncorhynchus Mykiss). Fish Shellfish Immunol 2023, 132, 108457. [Google Scholar] [CrossRef]
- Jeong, K.-H.; Kim, H.J.; Kim, H.-J. Current Status and Future Directions of Fish Vaccines Employing Virus-like Particles. Fish Shellfish Immunol 2020, 100, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Dhar, A.K.; Manna, S.K.; Thomas Allnutt, F.C. Viral Vaccines for Farmed Finfish. VirusDis. 2014, 25, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Angulo, C.; Tello-Olea, M.; Reyes-Becerril, M.; Monreal-Escalante, E.; Hernández-Adame, L.; Angulo, M.; Mazon-Suastegui, J.M. Developing Oral Nanovaccines for Fish: A Modern Trend to Fight Infectious Diseases. Reviews in Aquaculture 2021, 13, 1172–1192. [Google Scholar] [CrossRef]
- Nakahira, Y.; Mizuno, K.; Yamashita, H.; Tsuchikura, M.; Takeuchi, K.; Shiina, T.; Kawakami, H. Mass Production of Virus-Like Particles Using Chloroplast Genetic Engineering for Highly Immunogenic Oral Vaccine Against Fish Disease. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.I.; Kim, K.H. Display of Streptococcus Iniae α-Enolase on the Surface of Virus-Like Particles (VLPs) of Nervous Necrosis Virus (NNV) Using SpyTag/SpyCatcher. Mar Biotechnol 2022, 24, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Barsøe, S.; Skovgaard, K.; Sepúlveda, D.; Stratmann, A.; Vendramin, N.; Lorenzen, N. Nervous Necrosis Virus-like Particle (VLP) Vaccine Stimulates European Sea Bass Innate and Adaptive Immune Responses and Induces Long-Term Protection against Disease. Pathogens 2021, 10, 1477. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Wei, Y.; Li, Z.; Lin, G.; Han, F.; Hao, L.; Wu, J.; Liu, X.; Zhang, Y. Research Progress on Bacterial Ghosts as Novel Fishery Vaccines. Aquaculture 2022, 548, 737526. [Google Scholar] [CrossRef]
- Chen, H.; Ji, H.; Kong, X.; Lei, P.; Yang, Q.; Wu, W.; Jin, L.; Sun, D. Bacterial Ghosts-Based Vaccine and Drug Delivery Systems. Pharmaceutics 2021, 13, 1892. [Google Scholar] [CrossRef] [PubMed]
- Mahendran, R.; Jeyabaskar, S.; Sitharaman, G.; Michael, R.D.; Paul, A.V. Computer-Aided Vaccine Designing Approach against Fish Pathogens Edwardsiella Tarda and Flavobacterium Columnare Using Bioinformatics Softwares. Drug Des Devel Ther 2016, 10, 1703–1714. [Google Scholar] [CrossRef]
- Sharma, M.; Dixit, A. Immune Response Characterization and Vaccine Potential of a Recombinant Chimera Comprising B-Cell Epitope of Aeromonas Hydrophila Outer Membrane Protein C and LTB. Vaccine 2016, 34, 6259–6266. [Google Scholar] [CrossRef]
- Baliga, P.; Shekar, M.; Venugopal, M.N. Potential Outer Membrane Protein Candidates for Vaccine Development Against the Pathogen Vibrio Anguillarum: A Reverse Vaccinology Based Identification. Curr Microbiol 2018, 75, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Pumchan, A.; Krobthong, S.; Roytrakul, S.; Sawatdichaikul, O.; Kondo, H.; Hirono, I.; Areechon, N.; Unajak, S. Novel Chimeric Multiepitope Vaccine for Streptococcosis Disease in Nile Tilapia (Oreochromis Niloticus Linn.). Sci Rep 2020, 10, 603. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.I.; Mahfuj, S.; Islam, M.J.; Mou, M.J.; Sanjida, S. Use of Integrated Core Proteomics, Immuno-Informatics, and In Silico Approaches to Design a Multiepitope Vaccine against Zoonotic Pathogen Edwardsiella Tarda. Applied Microbiology 2022, 2, 414–437. [Google Scholar] [CrossRef]
- Islam, S.I.; Mou, M.J.; Sanjida, S. Application of Reverse Vaccinology to Design a Multi-Epitope Subunit Vaccine against a New Strain of Aeromonas Veronii. J Genet Eng Biotechnol 2022, 20, 118. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Pathak, D.C.; Mannan, M.A.-U.; Kaushik, V. In-Silico Designing of Epitope-Based Vaccine against the Seven Banded Grouper Nervous Necrosis Virus Affecting Fish Species. Netw Model Anal Health Inform Bioinform 2021, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Shih, T.-C.; Ho, L.-P.; Chou, H.-Y.; Wu, J.-L.; Pai, T.-W. Comprehensive Linear Epitope Prediction System for Host Specificity in Nodaviridae. Viruses 2022, 14, 1357. [Google Scholar] [CrossRef] [PubMed]
- Jungi, S.V.; Machimbirike, V.I.; Linh, N.V.; Sangsuriya, P.; Salin, K.R.; Senapin, S.; Dong, H.T. Synthetic Peptides Derived from Predicted B Cell Epitopes of Nervous Necrosis Virus (NNV) Show Antigenicity and Elicit Immunogenic Responses in Asian Seabass (Lates Calcarifer). Fish Shellfish Immunol 2023, 139, 108854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xing, J.; Tang, X.; Sheng, X.; Chi, H.; Zhan, W. Identification of B-Cell Epitopes on Capsid Protein Reveals Two Potential Neutralization Mechanisms in Red-Spotted Grouper Nervous Necrosis Virus. J Virol 2023, 97, e0174822. [Google Scholar] [CrossRef] [PubMed]
- Shih, T.-C.; Ho, L.-P.; Wu, J.-L.; Chou, H.-Y.; Pai, T.-W. A Voting Mechanism-Based Linear Epitope Prediction System for the Host-Specific Iridoviridae Family. BMC Bioinformatics 2019, 20, 192. [Google Scholar] [CrossRef]
- Islam, S.I.; Mahfuj, S.; Alam, M.A.; Ara, Y.; Sanjida, S.; Mou, M.J. Immunoinformatic Approaches to Identify Immune Epitopes and Design an Epitope-Based Subunit Vaccine against Emerging Tilapia Lake Virus (TiLV). Aquaculture Journal 2022, 2, 186–202. [Google Scholar] [CrossRef]
- Gong, Y.-M.; Wei, X.-F.; Zheng, Y.-Y.; Li, Y.; Yu, Q.; Li, P.-F.; Zhu, B. Combining Phage Display Technology with In Silico-Designed Epitope Vaccine to Elicit Robust Antibody Responses against Emerging Pathogen Tilapia Lake Virus. J Virol 2023, 97, e0005023. [Google Scholar] [CrossRef] [PubMed]
- Momtaz, F.; Foysal, J.; Rahman, M.; Fotedar, R. Design of Epitope Based Vaccine Against Shrimp White Spot Syndrome Virus (WSSV) By Targeting the Envelope Proteins: An Immunoinformatic Approach. TrJFAS 2018, 19, 149–159. [Google Scholar] [CrossRef]
- Shine, P.V.; Shankar, K.M.; Abhiman, B.; Sudheer, N.S.; Patil, R. Epitope Mapping of the White Spot Syndrome Virus (WSSV) VP28 Monoclonal Antibody through Combined in Silico and in Vitro Analysis Reveals the Potential Antibody Binding Site. Mol Cell Probes 2020, 50, 101508. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.I.; Mou, M.J.; Sanjida, S. In Silico-Based Vaccine Design Against Hepatopancreatic Microsporidiosis in Shrimp. Trends in Sciences 2022, 19, 2679. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Malick, R.C.; Mondal, N.; Patra, P.; Pal, B.B.; Patra, B.C.; Kumar Das, B. Computational Characterization of Epitopic Region within the Outer Membrane Protein Candidate in Flavobacterium Columnare for Vaccine Development. J Biomol Struct Dyn 2020, 38, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Machimbirike, V.I.; Pornputtapong, N.; Senapin, S.; Wangkahart, E.; Srisapoome, P.; Khunrae, P.; Rattanarojpong, T. A Multi-Epitope Chimeric Protein Elicited a Strong Antibody Response and Partial Protection against Edwardsiella Ictaluri in Nile Tilapia. J Fish Dis 2022, 45, 1–18. [Google Scholar] [CrossRef]
- Bidmos, F.A.; Siris, S.; Gladstone, C.A.; Langford, P.R. Bacterial Vaccine Antigen Discovery in the Reverse Vaccinology 2.0 Era: Progress and Challenges. Front Immunol 2018, 9, 2315. [Google Scholar] [CrossRef]
- Heinson, A.I.; Woelk, C.H.; Newell, M.-L. The Promise of Reverse Vaccinology. Int Health 2015, 7, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Chukwu-Osazuwa, J.; Cao, T.; Vasquez, I.; Gnanagobal, H.; Hossain, A.; Machimbirike, V.I.; Santander, J. Comparative Reverse Vaccinology of Piscirickettsia Salmonis, Aeromonas Salmonicida, Yersinia Ruckeri, Vibrio Anguillarum and Moritella Viscosa, Frequent Pathogens of Atlantic Salmon and Lumpfish Aquaculture. Vaccines 2022, 10, 473. [Google Scholar] [CrossRef]
- Moxon, R.; Reche, P.A.; Rappuoli, R. Editorial: Reverse Vaccinology. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
- Kanampalliwar, A.M. Reverse Vaccinology and Its Applications. Methods Mol Biol 2020, 2131, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Madonia, A.; Melchiorri, C.; Bonamano, S.; Marcelli, M.; Bulfon, C.; Castiglione, F.; Galeotti, M.; Volpatti, D.; Mosca, F.; Tiscar, P.-G.; et al. Computational Modeling of Immune System of the Fish for a More Effective Vaccination in Aquaculture. Bioinformatics 2017, 33, 3065–3071. [Google Scholar] [CrossRef]
- Asgary, A.; Valtchev, S.Z.; Chen, M.; Najafabadi, M.M.; Wu, J. Artificial Intelligence Model of Drive-Through Vaccination Simulation. Int J Environ Res Public Health 2021, 18, 268. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Abraham, A.; Baldwin, J.; Piplani, S.; Petrovsky, N. Artificial Intelligence in Vaccine and Drug Design. Methods Mol Biol 2022, 2410, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, E.; Mohanty, A. Role of Artificial Intelligence in Peptide Vaccine Design against RNA Viruses. Inform Med Unlocked 2021, 26, 100768. [Google Scholar] [CrossRef]
- Vinay, T.N.; Bhat, S.; Gon Choudhury, T.; Paria, A.; Jung, M.-H.; Shivani Kallappa, G.; Jung, S.-J. Recent Advances in Application of Nanoparticles in Fish Vaccine Delivery. Reviews in Fisheries Science & Aquaculture 2018, 26, 29–41. [Google Scholar] [CrossRef]
- Shaalan, M.; Saleh, M.; El-Mahdy, M.; El-Matbouli, M. Recent Progress in Applications of Nanoparticles in Fish Medicine: A Review. Nanomedicine 2016, 12, 701–710. [Google Scholar] [CrossRef]
- Min, Y.; Roche, K.C.; Tian, S.; Eblan, M.J.; McKinnon, K.P.; Caster, J.M.; Chai, S.; Herring, L.E.; Zhang, L.; Zhang, T.; et al. Antigen-Capturing Nanoparticles Improve the Abscopal Effect and Cancer Immunotherapy. Nat Nanotechnol 2017, 12, 877–882. [Google Scholar] [CrossRef]
- Giri, S.S.; Kim, S.G.; Kang, J.W.; Kim, S.W.; Kwon, J.; Lee, S.B.; Jung, W.J.; Park, S.C. Applications of Carbon Nanotubes and Polymeric Micro-/Nanoparticles in Fish Vaccine Delivery: Progress and Future Perspectives. Reviews in Aquaculture 2021, 13, 1844–1863. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, G.-L.; Gong, Y.-X.; Ling, F.; Wang, G.-X. Protective Immunity of Grass Carp Immunized with DNA Vaccine Encoding the Vp7 Gene of Grass Carp Reovirus Using Carbon Nanotubes as a Carrier Molecule. Fish Shellfish Immunol 2015, 42, 325–334. [Google Scholar] [CrossRef]
- Hu, F.; Li, Y.; Wang, Q.; Wang, G.; Zhu, B.; Wang, Y.; Zeng, W.; Yin, J.; Liu, C.; Bergmann, S.M.; et al. Carbon Nanotube-Based DNA Vaccine against Koi Herpesvirus given by Intramuscular Injection. Fish Shellfish Immunol 2020, 98, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Li, Y.; Wang, Q.; Zhu, B.; Wu, S.; Wang, Y.; Zeng, W.; Yin, J.; Liu, C.; Bergmann, S.M.; et al. Immersion Immunization of Koi (Cyprinus Carpio) against Cyprinid Herpesvirus 3 (CyHV-3) with Carbon Nanotube-Loaded DNA Vaccine. Aquaculture 2021, 539, 736644. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y.; Chen, G.; Zhang, C.; Wang, G.-X.; Zhu, B. Protective Immunity against Infectious Spleen and Kidney Necrosis Virus Induced by Mannose Modified Subunit Vaccine with Carbon Nanotubes in Mandarin Fish. Aquaculture Research 2022, 53, 2175–2184. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, C.; Lin, Q.; Li, N.-Q.; Huang, Z.-B.; Zhao, M.; Fu, X.-Z.; Wang, G.-X.; Zhu, B. Single-Walled Carbon Nanotubes as Delivery Vehicles Enhance the Immunoprotective Effect of an Immersion DNA Vaccine against Infectious Spleen and Kidney Necrosis Virus in Mandarin Fish. Fish Shellfish Immunol 2020, 97, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zheng, Y.-Y.; Gong, Y.-M.; Zhao, Z.; Guo, Z.-R.; Jia, Y.-J.; Wang, G.-X.; Zhu, B. Evaluation of Immune Response and Protection against Spring Viremia of Carp Virus Induced by a Single-Walled Carbon Nanotubes-Based Immersion DNA Vaccine. Virology 2019, 537, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, Z.; Zha, J.-W.; Wang, G.-X.; Zhu, B. Single-Walled Carbon Nanotubes as Delivery Vehicles Enhance the Immunoprotective Effect of a DNA Vaccine against Spring Viremia of Carp Virus in Common Carp. Fish Shellfish Immunol 2017, 71, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Li, C. An Overview of Cytokine Used as Adjuvants in Fish: Current State and Future Trends. Reviews in Aquaculture 2021, 13, 996–1014. [Google Scholar] [CrossRef]
- Guo, M.; Tang, X.; Sheng, X.; Xing, J.; Zhan, W. Comparative Study of the Adjuvant Potential of Four Th0 Cytokines of Flounder (Paralichthys Olivaceus) on an E. Tarda Subunit Vaccine. Dev Comp Immunol 2018, 86, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Tang, X.; Sheng, X.; Xing, J.; Zhan, W. The Effects of IL-1β, IL-8, G-CSF and TNF-α as Molecular Adjuvant on the Immune Response to an E. Tarda Subunit Vaccine in Flounder (Paralichthys Olivaceus). Fish Shellfish Immunol 2018, 77, 374–384. [Google Scholar] [CrossRef]
- Matsumoto, M.; Araki, K.; Hayashi, K.; Takeuchi, Y.; Shiozaki, K.; Suetake, H.; Yamamoto, A. Adjuvant Effect of Recombinant Interleukin-12 in the Nocardiosis Formalin-Killed Vaccine of the Amberjack Seriola Dumerili. Fish Shellfish Immunol 2017, 67, 263–269. [Google Scholar] [CrossRef]
- Robertsen, B.; Chang, C.-J.; Bratland, L. IFN-Adjuvanted DNA Vaccine against Infectious Salmon Anemia Virus: Antibody Kinetics and Longevity of IFN Expression. Fish Shellfish Immunol 2016, 54, 328–332. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, Q.; Xu, L.; Li, S.; Wang, D.; Zhao, J.; Liu, H.; Feng, J.; Lu, T. Effects of Different Cytokines on Immune Responses of Rainbow Trout in a Virus DNA Vaccination Model. Oncotarget 2017, 8, 112222–112235. [Google Scholar] [CrossRef]
- Tang, X.; Guo, M.; Sheng, X.; Xing, J.; Zhan, W. Interleukin-2 (IL-2) of Flounder (Paralichthys Olivaceus) as Immune Adjuvant Enhance the Immune Effects of E. Tarda Subunit Vaccine OmpV against Edwardsiellosis. Dev Comp Immunol 2020, 106, 103615. [Google Scholar] [CrossRef]
- Guo, M.; Tang, X.; Sheng, X.; Xing, J.; Zhan, W. The Immune Adjuvant Effects of Flounder (Paralichthys Olivaceus) Interleukin-6 on E. Tarda Subunit Vaccine OmpV. Int J Mol Sci 2017, 18, 1445. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Cai, J.; Yu, D.; Tang, J.; Lu, Y.; Wu, Z.; Huang, Y.; Jian, J. An IL-6 Gene in Humphead Snapper (Lutjanus Sanguineus): Identification, Expression Analysis and Its Adjuvant Effects on Vibrio Harveyi OmpW DNA Vaccine. Fish & Shellfish Immunology 2019, 95, 546–555. [Google Scholar] [CrossRef]
- Wu, Y.; Rashidpour, A.; Almajano, M.P.; Metón, I. Chitosan-Based Drug Delivery System: Applications in Fish Biotechnology. Polymers (Basel) 2020, 12, 1177. [Google Scholar] [CrossRef]
- Ballesteros, N.A.; Alonso, M.; Saint-Jean, S.R.; Perez-Prieto, S.I. An Oral DNA Vaccine against Infectious Haematopoietic Necrosis Virus (IHNV) Encapsulated in Alginate Microspheres Induces Dose-Dependent Immune Responses and Significant Protection in Rainbow Trout (Oncorrhynchus Mykiss). Fish Shellfish Immunol 2015, 45, 877–888. [Google Scholar] [CrossRef]
- Halimi, M.; Alishahi, M.; Abbaspour, M.R.; Ghorbanpoor, M.; Tabandeh, M.R. Valuable Method for Production of Oral Vaccine by Using Alginate and Chitosan against Lactococcus Garvieae/Streptococcus Iniae in Rainbow Trout (Oncorhynchus Mykiss). Fish Shellfish Immunol 2019, 90, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Wang, X.; Wang, K.; He, J.; Zhu, L.; He, Y.; Chen, D.; Ouyang, P.; Geng, Y.; Huang, X.; et al. Preparation, Characterization and Evaluation of the Immune Effect of Alginate/Chitosan Composite Microspheres Encapsulating Recombinant Protein of Streptococcus Iniae Designed for Fish Oral Vaccination. Fish Shellfish Immunol 2018, 73, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Mzula, A.; Wambura, P.N.; Mdegela, R.H.; Shirima, G.M. Current State of Modern Biotechnological-Based Aeromonas Hydrophila Vaccines for Aquaculture: A Systematic Review. BioMed Research International 2019, 2019, e3768948. [Google Scholar] [CrossRef]
- Garduño-González, K.A.; Peña-Benavides, S.A.; Araújo, R.G.; Castillo-Zacarías, C.; Melchor-Martínez, E.M.; Oyervides-Muñoz, M.A.; Sosa-Hernández, J.E.; Purton, S.; Iqbal, H.M.N.; Parra-Saldívar, R. Current Challenges for Modern Vaccines and Perspectives for Novel Treatment Alternatives. Journal of Drug Delivery Science and Technology 2022, 70, 103222. [Google Scholar] [CrossRef]
- Jazayeri, S.D.; Lim, H.X.; Shameli, K.; Yeap, S.K.; Poh, C.L. Nano and Microparticles as Potential Oral Vaccine Carriers and Adjuvants Against Infectious Diseases. Front. Pharmacol. 2021, 12. [Google Scholar] [CrossRef]
- Jiao, X.; Cheng, S.; Hu, Y.; Sun, L. Comparative Study of the Effects of Aluminum Adjuvants and Freund’s Incomplete Adjuvant on the Immune Response to an Edwardsiella Tarda Major Antigen. Vaccine 2010, 28, 1832–1837. [Google Scholar] [CrossRef]
- Gjessing, M.C.; Falk, K.; Weli, S.C.; Koppang, E.O.; Kvellestad, A. A Sequential Study of Incomplete Freund’s Adjuvant-Induced Peritonitis in Atlantic Cod. Fish Shellfish Immunol 2012, 32, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Mutoloki, S.; Cooper, G.A.; Marjara, I.S.; Koop, B.F.; Evensen, Ø. High Gene Expression of Inflammatory Markers and IL-17A Correlates with Severity of Injection Site Reactions of Atlantic Salmon Vaccinated with Oil-Adjuvanted Vaccines. BMC Genomics 2010, 11, 336. [Google Scholar] [CrossRef]
- Spinos, E.; Kokkoris, G.D.; Bakopoulos, V. Prevention of Sea Bass (Dicentrarchus Labrax, L. 1758) Photobacteriosis and Vibriosis. Long Term Efficacy Study of Intraperitoneally Administered Bivalent Commercial Vaccines. Aquaculture 2017, 471, 172–184. [Google Scholar] [CrossRef]
- Li, J.; Tang, L.; Li, S.; Li, G.; Mo, Z. The Efficacy and Side-Effects of Oil-Based Adjuvants Emulsified Vibrio Anguillarum Bivalent Inactivated Vaccine in Turbot (Scophthalmus Maximus) under Production Mode. Aquaculture 2020, 524, 735259. [Google Scholar] [CrossRef]
- Miccoli, A.; Manni, M.; Picchietti, S.; Scapigliati, G. State-of-the-Art Vaccine Research for Aquaculture Use: The Case of Three Economically Relevant Fish Species. Vaccines 2021, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Tziouvas, H.; Varvarigos, P. Intensity Scale of Side Effects in European Sea Bass (Dicentrarchus Labrax) Post Intraperitoneal Injection with Commercial Oil-Adjuvanted Vaccines. Bulletin of the EAFP 2021, 41, 103–110. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Z.; Hao, L.; Wu, J.; Qin, B.; Liang, Z.; Ma, J.; Ke, H.; Yang, H.; Li, Y.; et al. Oral Vaccination Using Artemia Coated with Recombinant Saccharomyces Cerevisiae Expressing Cyprinid Herpesvirus-3 Envelope Antigen Induces Protective Immunity in Common Carp (Cyprinus Carpio Var. Jian) Larvae. Research in Veterinary Science 2020, 130, 184–192. [Google Scholar] [CrossRef]
- Hazreen-Nita, M.; Azila, A.; Mukai, Y.; Firdaus-Nawi, M.; Nur-Nazifah, M. A Review of Betanodavirus Vaccination as Preventive Strategy to Viral Nervous Necrosis (VNN) Disease in Grouper. Aquac. Int. 2019, 27, 1565–1577. [Google Scholar] [CrossRef]
- Embregts, C.W.E.; Reyes-Lopez, F.; Pall, A.C.; Stratmann, A.; Tort, L.; Lorenzen, N.; Engell-Sorensen, K.; Wiegertjes, G.F.; Forlenza, M.; Sunyer, J.O.; et al. Pichia Pastoris Yeast as a Vehicle for Oral Vaccination of Larval and Adult Teleosts. Fish Shellfish Immunol 2019, 85, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Rout, S.S.; de Grahl, I.; Yu, X.; Reumann, S. Production of a Viral Surface Protein in Nannochloropsis Oceanica for Fish Vaccination against Infectious Pancreatic Necrosis Virus. Appl Microbiol Biotechnol 2022, 106, 6535–6549. [Google Scholar] [CrossRef] [PubMed]
- Dang, M.; Cao, T.; Vasquez, I.; Hossain, A.; Gnanagobal, H.; Kumar, S.; Hall, J.R.; Monk, J.; Boyce, D.; Westcott, J.; et al. Oral Immunization of Larvae and Juvenile of Lumpfish (Cyclopterus Lumpus) against Vibrio Anguillarum Does Not Influence Systemic Immunity. Vaccines 2021, 9, 819. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.L.; Waheed, M.T.; Lössl, A.G.; Martinussen, I.; Daniell, H. How Can Plant Genetic Engineering Contribute to Cost-Effective Fish Vaccine Development for Promoting Sustainable Aquaculture? Plant Molecular Biology 2013, 83, 33. [Google Scholar] [CrossRef] [PubMed]
- Concha, C.; Cañas, R.; Macuer, J.; Torres, M.J.; Herrada, A.A.; Jamett, F.; Ibáñez, C. Disease Prevention: An Opportunity to Expand Edible Plant-Based Vaccines? Vaccines (Basel) 2017, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Shahid, N.; Daniell, H. Plant-Based Oral Vaccines against Zoonotic and Non-Zoonotic Diseases. Plant Biotechnol J 2016, 14, 2079–2099. [Google Scholar] [CrossRef] [PubMed]
- Marsian, J.; Hurdiss, D.L.; Ranson, N.A.; Ritala, A.; Paley, R.; Cano, I.; Lomonossoff, G.P. Plant-Made Nervous Necrosis Virus-Like Particles Protect Fish Against Disease. Front Plant Sci 2019, 10, 880. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; van Eerde, A.; Steen, H.S.; Heldal, I.; Haugslien, S.; Ørpetveit, I.; Wüstner, S.C.; Inami, M.; Løvoll, M.; Rimstad, E.; et al. Establishment of a Piscine Myocarditis Virus (PMCV) Challenge Model and Testing of a Plant-Produced Subunit Vaccine Candidate against Cardiomyopathy Syndrome (CMS) in Atlantic Salmon Salmo Salar. Aquaculture 2021, 541, 736806. [Google Scholar] [CrossRef]
- Sproles, A.E.; Fields, F.J.; Smalley, T.N.; Le, C.H.; Badary, A.; Mayfield, S.P. Recent Advancements in the Genetic Engineering of Microalgae. Algal Research 2021, 53, 102158. [Google Scholar] [CrossRef]
- Jiji, M.G.; Ninan, M.A.; Thomas, V.P.; Thomas, B.T. Edible Microalgae: Potential Candidate for Developing Edible Vaccines. Vegetos 2023. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.J.; Janssen, M.; Südfeld, C.; D’Adamo, S.; Wijffels, R.H. Hypes, Hopes, and the Way Forward for Microalgal Biotechnology. Trends Biotechnol 2023, 41, 452–471. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.-C.; Lamb, A.; Fox, D.; Porphy Jegathese, S.J. An Evaluation of Microalgae as a Recombinant Protein Oral Delivery Platform for Fish Using Green Fluorescent Protein (GFP). Fish & Shellfish Immunology 2019, 87, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Zainal Abidin, A.A.; Suntarajh, M.; Balia Yusof, Z.N. Transformation of a Malaysian Species of Nannochloropsis: Gateway to Construction of Transgenic Microalgae as Vaccine Delivery System to Aquatic Organisms. Bioengineered 2020, 11, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Abidin, A.A.Z.; Othman, N.A.; Yusoff, F.M.; Yusof, Z.N.B. Determination of Transgene Stability in Nannochloropsis Sp. Transformed with Immunogenic Peptide for Oral Vaccination against Vibriosis. Aquacult Int 2021, 29, 477–486. [Google Scholar] [CrossRef]
- Feng, S.; Feng, W.; Zhao, L.; Gu, H.; Li, Q.; Shi, K.; Guo, S.; Zhang, N. Preparation of Transgenic Dunaliella Salina for Immunization against White Spot Syndrome Virus in Crayfish. Arch Virol 2014, 159, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Kiataramgul, A.; Maneenin, S.; Purton, S.; Areechon, N.; Hirono, I.; Brocklehurst, T.W.; Unajak, S. An Oral Delivery System for Controlling White Spot Syndrome Virus Infection in Shrimp Using Transgenic Microalgae. Aquaculture 2020, 521, 735022. [Google Scholar] [CrossRef]
- Lanh, P.T.; Nguyen, H.M.; Duong, B.T.T.; Hoa, N.T.; Thom, L.T.; Tam, L.T.; Thu, H.T.; Nha, V.V.; Hong, D.D.; Mouradov, A.; et al. Generation of Microalga Chlamydomonas Reinhardtii Expressing VP28 Protein as Oral Vaccine Candidate for Shrimps against White Spot Syndrome Virus (WSSV) Infection. Aquaculture 2021, 540, 736737. [Google Scholar] [CrossRef]
- Jia, X.-H.; Zhang, C.-L.; Shi, D.-J.; Zhuang, M.-M.; Wang, X.; Jia, R.; Zhang, Z.-Y.; Huang, J.; Sun, Y.-H.; Qian, W.-Y.; et al. Oral Administration of Anabaena-Expressed VP28 for Both Drug and Food against White Spot Syndrome Virus in Shrimp. J Appl Phycol 2016, 28, 1001–1009. [Google Scholar] [CrossRef]
- Zhai, Y.-F.; Xu, R.-H.; Yang, Z.-F.; Chi, X.-P.; Wei, S.-Y.; He, P.-M.; Jia, R. The Role of Trans-Vp28 Gene Synechocystis Sp. PCC6803 in the Defense against White Spot Syndrome Virus (WSSV). Aquaculture 2021, 539, 736613. [Google Scholar] [CrossRef]
- Shinn, A.P.; Pratoomyot, J.; Bron, J.E.; Paladini, G.; Brooker, E.E.; Brooker, A.J. Economic Costs of Protistan and Metazoan Parasites to Global Mariculture. Parasitology 2015, 142, 196–270. [Google Scholar] [CrossRef] [PubMed]
- Shivam, S.; El-Matbouli, M.; Kumar, G. Development of Fish Parasite Vaccines in the OMICs Era: Progress and Opportunities. Vaccines 2021, 9, 179. [Google Scholar] [CrossRef] [PubMed]
- Hutson, K.S.; Cable, J.; Grutter, A.S.; Paziewska-Harris, A.; Barber, I. Aquatic Parasite Cultures and Their Applications. Trends in Parasitology 2018, 34, 1082–1096. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, K. Control of Parasitic Diseases in Aquaculture. Parasitology 2022, 149, 1985–1997. [Google Scholar] [CrossRef]
- Costello, M.J. The Global Economic Cost of Sea Lice to the Salmonid Farming Industry. Journal of Fish Diseases 2009, 32, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bjelland, H. vanhauwaer Estimating Costs of Sea Lice Control Strategy in Norway. Preventive Veterinary Medicine 2014, 117, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Abolofia, J.; Asche, F.; Wilen, J.E. The Cost of Lice: Quantifying the Impacts of Parasitic Sea Lice on Farmed Salmon. Marine Resource Economics 2017, 32, 329–349. [Google Scholar] [CrossRef]
- Barrett, L.T.; Oppedal, F.; Robinson, N.; Dempster, T. Prevention Not Cure: A Review of Methods to Avoid Sea Lice Infestations in Salmon Aquaculture. Reviews in Aquaculture 2020, 12, 2527–2543. [Google Scholar] [CrossRef]
- Figueroa, C.; Bustos, P.; Torrealba, D.; Dixon, B.; Soto, C.; Conejeros, P.; Gallardo, J.A. Coinfection Takes Its Toll: Sea Lice Override the Protective Effects of Vaccination against a Bacterial Pathogen in Atlantic Salmon. Sci Rep 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Barker, S.E.; Bricknell, I.R.; Covello, J.; Purcell, S.; Fast, M.D.; Wolters, W.; Bouchard, D.A. Sea Lice, Lepeophtheirus Salmonis (Krøyer 1837), Infected Atlantic Salmon (Salmo Salar L.) Are More Susceptible to Infectious Salmon Anemia Virus. PLoS ONE 2019, 14, e0209178. [Google Scholar] [CrossRef]
- Lhorente, J.P.; Gallardo, J.A.; Villanueva, B.; Carabaño, M.J.; Neira, R. Disease Resistance in Atlantic Salmon (Salmo Salar): Coinfection of the Intracellular Bacterial Pathogen Piscirickettsia Salmonis and the Sea Louse Caligus Rogercresseyi. PLoS ONE 2014, 9, e95397. [Google Scholar] [CrossRef]
- Carvalho, L.A.; Whyte, S.K.; Braden, L.M.; Purcell, S.L.; Manning, A.J.; Muckle, A.; Fast, M.D. Impact of Co-Infection with Lepeophtheirus Salmonis and Moritella Viscosa on Inflammatory and Immune Responses of Atlantic Salmon (Salmo Salar). Journal of Fish Diseases 2020, 43, 459–473. [Google Scholar] [CrossRef]
- Roper, J.; Grayson, T.H.; Jenkins, P.G.; Hone, J.V.; Wrathmell, A.B.; Russell, P.M.; Harris, J.E. The Immunocytochemical Localisation of Potential Candidate Vaccine Antigens from the Salmon Louse Lepeophtheirus Salmonis (Kroyer 1837). Aquaculture 1995, 132, 221–232. [Google Scholar] [CrossRef]
- Labus, M.B.; Coull, J.J.; Dacanay, A.; Melvin, W.T.; Andrade-salas, O.; Munro, A.L. Identification and Expression of Antigens from Lepeophtheirus Salmonis for Use in Vaccination Trials. Biochemical Society Transactions 1996, 24, 254S. [Google Scholar] [CrossRef]
- Boxshall, G.A.; Defaye, D. Pathogens of Wild and Farmed Fish: Sea Lice; CRC Press: Boca Raton, FL, USA, 1993; ISBN 978-0-203-01132-4. [Google Scholar]
- Swain, J.K.; Johansen, L.-H.; González, Y.C. Validating a Salmon Lice Vaccine Candidate as a Preventive Measure against Salmon Lice at the Lab-Scale. Nofima rapportserie 2018. [Google Scholar]
- Swain, J.K.; Carpio, Y.; Johansen, L.-H.; Velazquez, J.; Hernandez, L.; Leal, Y.; Kumar, A.; Estrada, M.P. Impact of a Candidate Vaccine on the Dynamics of Salmon Lice (Lepeophtheirus Salmonis) Infestation and Immune Response in Atlantic Salmon (Salmo Salar L.). PLoS ONE 2020, 15, e0239827. [Google Scholar] [CrossRef]
- Leal, Y.; Velazquez, J.; Hernandez, L.; Swain, J.K.; Rodríguez, A.R.; Martínez, R.; García, C.; Ramos, Y.; Estrada, M.P.; Carpio, Y. Promiscuous T Cell Epitopes Boosts Specific IgM Immune Response against a P0 Peptide Antigen from Sea Lice in Different Teleost Species. Fish & Shellfish Immunology 2019, 92, 322–330. [Google Scholar] [CrossRef]
- Contreras, M.; Karlsen, M.; Villar, M.; Olsen, R.H.; Leknes, L.M.; Furevik, A.; Yttredal, K.L.; Tartor, H.; Grove, S.; Alberdi, P.; et al. Vaccination with Ectoparasite Proteins Involved in Midgut Function and Blood Digestion Reduces Salmon Louse Infestations. Vaccines 2020, 8, 32. [Google Scholar] [CrossRef]
- Tartor, H.; Karlsen, M.; Skern-Mauritzen, R.; Monjane, A.L.; Press, C.M.; Wiik-Nielsen, C.; Olsen, R.H.; Leknes, L.M.; Yttredal, K.; Brudeseth, B.E.; et al. Protective Immunization of Atlantic Salmon (Salmo Salar L.) against Salmon Lice (Lepeophtheirus Salmonis) Infestation. Vaccines 2022, 10, 16. [Google Scholar] [CrossRef]
- Casuso, A.; Valenzuela-Muñoz, V.; Benavente, B.P.; Valenzuela-Miranda, D.; Gallardo-Escárate, C. Exploring Sea Lice Vaccines against Early Stages of Infestation in Atlantic Salmon (Salmo Salar). Vaccines 2022, 10, 1063. [Google Scholar] [CrossRef]
- Jørgensen, L. von G. The Fish Parasite Ichthyophthirius Multifiliis – Host Immunology, Vaccines and Novel Treatments. Fish & Shellfish Immunology 2017, 67, 586–595. [Google Scholar] [CrossRef]
- Jørgensen, L.v.G.; Sigh, J.; Kania, P.W.; Holten-Andersen, L.; Buchmann, K.; Clark, T.; Rasmussen, J.S.; Einer-Jensen, K.; Lorenzen, N. Approaches towards DNA Vaccination against a Skin Ciliate Parasite in Fish. PLoS ONE 2012, 7, e48129. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Y.; Zhang, X.; Xu, Z. Immune Responses of Fish to Ichthyophthirius Multifiliis (Ich): A Model for Understanding Immunity against Protozoan Parasites. Developmental & Comparative Immunology 2019, 93, 93–102. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, S.; Huang, K.; Zhao, W.; Zou, H.; Li, W.; Li, M.; Wang, G. Can Chilodonella Uncinata Induce Cross-Protection in Koi Carp (Cyprinus Carpio) against Ichthyophthirius Multifiliis? Evidence from Immune Response and Challenge Experiments. Aquaculture 2024, 579, 740198. [Google Scholar] [CrossRef]
- Xu, D.-H.; Zhang, D.; Shoemaker, C.; Beck, B. Dose Effects of a DNA Vaccine Encoding Immobilization Antigen on Immune Response of Channel Catfish against Ichthyophthirius Multifiliis. Fish & Shellfish Immunology 2020, 106, 1031–1041. [Google Scholar] [CrossRef]
- Watanabe, Y.; Zenke, K.; Itoh, N.; Yoshinaga, T. Functional Analysis of the Proteases Overexpressed during the Invasive and Parasitic Stages of Cryptocaryon Irritans and Their Potential as Vaccine Antigens. Aquaculture 2021, 540, 736657. [Google Scholar] [CrossRef]
- Watanabe, Y.; Takada, Y.; Kotake, M.; Zenke, K.; Itoh, N.; Yoshinaga, T. Evaluation of the Protective Effects of DNA Vaccines Encoding an Infection-Related Cysteine Protease from Cryptocaryon Irritans, the Pathogenic Organism of Cryptocaryoniasis. Aquaculture 2022, 548, 737641. [Google Scholar] [CrossRef]
- Mahasri, G. Development of Spore Protein of Myxobolus Koi as an Immunostimulant for Prevent of Myxobolusis on Gold Fish (Cyprinus Carpio Linn) by Oral Immunisation. IOP Conf. Ser.: Earth Environ. Sci. 2017, 55, 012009. [Google Scholar] [CrossRef]
- Kismiyati; Mahasri, G. Effectivity Test Of Crude Protein Spore of Myxobolus Koi as Materials Development For Sub Unit Vaccine To Prevent the Gold Fish (Cyprinus Carpio, Linn) Dead by Myxobolusis. IOP Conf. Ser.: Earth Environ. Sci. 2018, 116, 012105. [Google Scholar] [CrossRef]
- Faber, M.N.; Holland, J.W.; Secombes, C.J. Vaccination Strategies and IgM Responses against PKD in Rainbow Trout. Fish & Shellfish Immunology 2019, 91, 423. [Google Scholar] [CrossRef]
- Kumar, G.; Sudhagar, A.; Shivam, S.; Nilsen, F.; Bartholomew, J.L.; El-Matbouli, M. Identification of in Vivo Induced Antigens of the Malacosporean Parasite Tetracapsuloides Bryosalmonae (Cnidaria) Using in Vivo Induced Antigen Technology. Front. Cell. Infect. Microbiol. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Harikrishnan, R.; Balasundaram, C.; Heo, M.-S. Poly d,l-Lactide-Co-Glycolic Acid (PLGA)-Encapsulated Vaccine on Immune System in Epinephelus Bruneus against Uronema Marinum. Experimental Parasitology 2012, 131, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, Y.; Ni, X.; Guo, Z.; Zhang, J.; Wang, X.; Li, R. Transcriptomic Analysis of Gene Expression in Immune Pathways in the Spleen of Takifugu Rubripes after Immunization with Scuticociliate Vaccine. Aquaculture 2024, 581, 740380. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
