Submitted:
27 May 2024
Posted:
27 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Data Pre-Processing
-
Data cleaning:
- Handling missing values: Methods include replacing missing values with the mean, using regression to estimate missing values, or removing incomplete cases.
- Correcting Inconsistencies and Outliers: This involves identifying and resolving errors or outliers using data profiling, statistical methods, or domain-specific knowledge.
- Normalize data:
- 3.
- Split data:
2.3.2. Method for Calculating Drought Index
2.3.3. Bayes Method (BMA)
2.3.4. Artificial Intelligence Model Selection
- Gradient Boosting algorithms
- Model Initialization: The procedure commences by constructing an initial model utilising the training data. The model generates predictions based on the training data, and subsequently calculates the residual errors, which represent the discrepancies between the actual values and the anticipated values.
- Sequential Model Addition: A novel model is trained to forecast the discrepancies between the preceding model's predictions and the actual values. The newly introduced model is incorporated into the ensemble, and the collective predictions of all existing models are utilised to revise the residuals.
- Weight Adjustment and Reweighting: The data points' weights are modified to prioritise the previously misclassified or poorly forecasted points. This procedure is iterated, wherein each subsequent model rectifies the inaccuracies of the collective ensemble of preceding models.
- Iterative process: Models are incrementally included until the training data is accurately predicted or a predetermined maximum number of models is attained. Every iteration has the objective of minimising the total prediction error by dealing with the leftover residuals.
- 2.
- Extreme Gradient Boosting (XGBoost):
- Model Generation: An initial decision tree is constructed using the initial data. The calculation involves determining the discrepancy between the projected values and the actual observations, which is referred to as residuals.
- Subsequent Models: Additional trees are constructed to forecast the discrepancies from the preceding model. These algorithms prioritise the analysis of data points that were previously misclassified or inaccurately anticipated.
- Optimisation involves the ongoing addition of new trees, where each tree aims to rectify the mistakes made by the preceding trees. The designated loss function, such as mean squared error, is optimised by utilising the residuals obtained from each stage.
- Iteration and Combination: This iterative process is done several times. The ultimate model is an amalgamation of all the separate trees, with each tree making a contribution to the overall prediction.
2.3.5. Model Evaluation Method
3. Results
3.1. SPEI Calculation
- Stations with an SPEI < -2 (extremely dry) include Can Tho. These stations received less rainfall than the other stations; hence, the SPEI index was low.
- Stations with an SPEI ≥ 2 (extremely wet) included Ba Tri, Bac Lieu, Ca Mau, My Tho, and Soc Trang (1989). These coastal stations receive more rainfall than the other stations; hence, the SPEI index is high.
3.2. Feature Selection Results by BMA
- The model for SPEI-1: Seven parameters were selected as Rainfall, Avg_Tmax, Avg_Tmin, Avg_Hum, PET, SOI_Anomaly, and SST_NINO4 (posterior probability was 100%).
- The model for SPEI-3: four parameters were selected: Rainfall, Avg_Tmin, Avg_Hum, and SST_NINO4 (posterior probability was 92.5%).
- The model for SPEI-6: Four parameters were selected: Rainfall, Avg_Tmin, Avg_Hum, and SST_NINO4 (posterior probability was 100%).
- The model for SPEI-12:5 parameters were selected as Rainfall, Avg_Tmin, Avg_Hum, SOI_Anomaly, SST_NINO4 (posterior probability was 88.4%).
3.3. Results of Evaluating Machine Learning Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merlo, M.; Giuliani, M.; Du, Y.; Pechlivanidis, I.; Castelletti, A. 2023.
- McCabe, G.J.; Wolock, D.M.; Lombard, M.; Dudley, R.W.; Hammond, J.C.; Hecht, J.S.; Hodgkins, G.A.; Olson, C.; Sando, R.; Simeone, C.; et al. A hydrologic perspective of major U.S. droughts. Int. J. Climatol. 2023, 43, 1234–1250. [Google Scholar] [CrossRef]
- Orimoloye, I.R.; Belle, J.A.; Orimoloye, Y.M.; Olusola, A.O.; Ololade, O.O. Drought: A Common Environmental Disaster. Atmosphere 2022, 13, 111. [Google Scholar] [CrossRef]
- Eyvaz, M.; Albahnasawi, A.; Tekbaş, M.; Gürbulak, E.; Eyvaz, M.; Albahnasawi, A.; Tekbaş, M.; Gürbulak, E. Drought - Impacts and Management; 2022; ISBN 978-1-80355-544-7.
- P, A.; a; Sahoo, N. ; Panigrahi, B.; Das, D.M. Drought Assessment using Standardized Precipitation Index and Normalized Difference Vegetation Index. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1125–1136. [Google Scholar] [CrossRef]
- Busker, T.S.; de Moel, H.; van den Hurk, B.; Aerts, J.C.J.H. Impact-Based Seasonal Rainfall Forecasting to Trigger Early Action for Droughts 2022. [CrossRef]
- Yaseen, Z.M.; Shahid, S. Drought Index Prediction Using Data Intelligent Analytic Models: A Review. In Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation: Theory and Practice of Hazard Mitigation; Deo, R.C., Samui, P., Kisi, O., Yaseen, Z.M., Eds.; Springer Transactions in Civil and Environmental Engineering; Springer: Singapore, 2021; pp. 1–27. ISBN 9789811557729. [Google Scholar]
- Son, B.; Lee, J.; Im, J.; Park, S. Future drought prediction using time-series of drought factors and the US drought monitor data based on deep learning over CONUS. Copernicus Meetings; 2023. [Google Scholar]
- Rasheed, N.K.A.; Otieno, V.; Misiani, H.; Ouma, J.; Otenyo, E.; Kinuya, J.; Amdihun, A. Automatic generation of impact-based drought forecast, implications for early warning and action in East Africa; Copernicus Meetings. 2023. [Google Scholar]
- Monte, T.D.; Cherchi, A.; Alessandri, A.; Gaetani, M. Assessing the predictability of droughts through seasonal forecasts; Copernicus Meetings. 2023. [Google Scholar]
- Seung Kyu, L.; Truong An, D. Evaluating drought events under influence of El-Nino phenomenon: A case study of Mekong delta area, Vietnam. J. Agrometeorol. 2018, 20, 275–279. [Google Scholar] [CrossRef]
- Nguyen, N.A. Historic drought and salinity intrusion in the Mekong Delta in 2016: Lessons learned and response solutions. Vietnam J. Sci. Technol. Eng. 2017, 59, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Dang, T.A. Spatio-temporal variations in meteorology drought over the Mekong River Delta of Vietnam in the recent decades. Paddy Water Environ. 2019, 17, 35–44. [Google Scholar] [CrossRef]
- Adamson, P.; Bird, J. The Mekong: A Drought-prone Tropical Environment? Int. J. Water Resour. Dev. 2010, 26, 579–594. [Google Scholar] [CrossRef]
- Lu, X.; Chua, S. River Discharge and Water Level Changes in the Mekong River: Droughts in an Era of Mega-Dams; Preprints, 2021. [Google Scholar]
- Ngoc, N.T.; Duong, B.D.; Chien, N.Q.; Darby, S.; Nga, P.T.T.; Thao, B.T.P.; Tai, N.V. Meteorological drought assessment using satellite-based TRMM product in Vietnamese Mekong Delta.; Publishing House for Science and Technology: Hanoi, Vietnam, 2019. [Google Scholar]
- Tran, T.V.; Tran, D.X.; Myint, S.W.; Latorre-Carmona, P.; Ho, D.D.; Tran, P.H.; Dao, H.N. Assessing Spatiotemporal Drought Dynamics and Its Related Environmental Issues in the Mekong River Delta. Remote Sens. 2019, 11, 2742. [Google Scholar] [CrossRef]
- Bui, N.; Pal, I.; Chollacoop, N. Drought risk assessment under climate change impacts utilizing CMIP6 climate models in the coastal zone of the Mekong Delta; Copernicus Meetings. 2023. [Google Scholar]
- Nguyen, L.; Li, Q. Relationship between Pacific and Indian Oceans SST and Drought Trends in Vietnam Mekong Delta.; ACTA Press, 2014.
- Quang, C.N.X.; Hoa, H.V.; Giang, N.N.H.; Hoa, N.T. Assessment of meteorological drought in the Vietnamese Mekong delta in period 1985-2018. IOP Conf. Ser. Earth Environ. Sci. 2021, 652, 012020. [Google Scholar] [CrossRef]
- Orn-uma Polpanich; Dhyey Bhatpuria; Tania Fernanda Santos Santos; Chayanis Krittasudthacheewa Leveraging Multi-Source Data and Digital Technology to Support the Monitoring of Localized Water Changes in the Mekong Region. Available online: https://www.mdpi.com/2071-1050/14/3/1739 (accessed on Jan 27, 2024).
- Zhang, X.; Qu, Y.; Ma, M.; Liu, H.; Su, Z.; Lv, J.; Peng, J.; Leng, G.; He, X.; Di, C. Satellite-Based Operational Real-Time Drought Monitoring in the Transboundary Lancang–Mekong River Basin. Remote Sens. 2020, 12, 376. [Google Scholar] [CrossRef]
- Shabri, A. A hybrid wavelet analysis and adaptive neuro-fuzzy inference system for drought forecasting. Appl. Math. Sci. 2014, 8, 6909–6918. [Google Scholar] [CrossRef]
- Salite, D. Traditional prediction of drought under weather and climate uncertainty: analyzing the challenges and opportunities for small-scale farmers in Gaza province, southern region of Mozambique. Nat. Hazards 2019, 96, 1289–1309. [Google Scholar] [CrossRef]
- Bertini, C.; Andel, S.J. van; Perez, G.C.; Werner, M. AI-enhanced drought forecasting: a case study in the Netherlands; Copernicus Meetings. a: drought forecasting, 2022. [Google Scholar]
- Luong Bang Nguyen; Manh Hung Le Application of Artificial Neural Network and Climate Indices to Drought Forecasting in South-Central Vietnam Available online: http://www.pjoes.com/Application-of-Artificial-Neural-nNetwork-and-Climate-Indices-to-Drought-nForecasting,105972,0,2.html (accessed on Jan 27, 2024).
- Lee, J.; Kim, C.-G.; Lee, J.E.; Kim, N.W.; Kim, H. Application of Artificial Neural Networks to Rainfall Forecasting in the Geum River Basin, Korea. Water 2018, 10, 1448. [Google Scholar] [CrossRef]
- Jalalkamali, A.; Moradi, M.; Moradi, N. Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index. Int. J. Environ. Sci. Technol. 2015, 12, 1201–1210. [Google Scholar] [CrossRef]
- Kikon, A.; Deka, P.C. Artificial intelligence application in drought assessment, monitoring and forecasting: a review. Stoch. Environ. Res. Risk Assess. 2022, 36, 1197–1214. [Google Scholar] [CrossRef]
- Qaisrani, Z.N.; Nuthammachot, N.; Techato, K.; Asadullah; Jatoi, G. H.; Mahmood, B.; Ahmed, R. Drought variability assessment using standardized precipitation index, reconnaissance drought index and precipitation deciles across Balochistan, Pakistan. Braz. J. Biol. 2022, 84, e261001. [Google Scholar] [CrossRef] [PubMed]
- F. D. Kartika and P. Wijayanti, “Drought disaster modeling using drought index: a systematic literature review,” IOP Conf. Ser.: Earth Environ. Sci., vol. 1190, no. 1, p. 012026, Jun. 2023. [CrossRef]
- M. Öney and A. Anli, “Regional Drought Analysis with Standardized Precipitation Evapotranspiration Index (SPEI): Gediz Basin, Turkey,” J Agr Sci-Tarim Bili, vol. 29, no. 4, Art. no. 4, Nov. 2023. [CrossRef]
- P. Kumari, S. P. Kumari, S. Rehana, S. K. Singh, and M. Inayathulla, “Development of a new agro-meteorological drought index (SPAEI-Agro) in a data-scarce region,” Hydrological Sciences Journal, vol. 68, no. 9, pp. 1301–1322, Jul. 2023. [CrossRef]
- Kobulniczky, B.; Holobâcă, I.-H.; Črepinšek, Z.; Pogačar, T.; Jiman, A.-M.; Žnidaršič, Z. Comparison of Standardized Precipitation Index (SPI) and Standardized Potential Evapotranspiration Index (SPEI) applicability for drought assessment during the maize growing period between Bărăgan (Romania) and Prekmurje (Slovenia) regions (1991; Copernicus Meetings. 1991. [Google Scholar]
- Tam, B.Y.; Cannon, A.J.; Bonsal, B.R. Standardized precipitation evapotranspiration index (SPEI) for Canada: assessment of probability distributions. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2023, 48, 283–299. [Google Scholar] [CrossRef]
- Santini, M.; Noce, S.; Mancini, M.; Caporaso, L. A Global Multiscale SPEI Dataset under an Ensemble Approach. Data 2023, 8, 36. [Google Scholar] [CrossRef]
- Shi, X.; Yang, Y.; Ding, H.; Chen, F.; Shi, M. Analysis of the Variability Characteristics and Applicability of SPEI in Mainland China from 1985 to 2018. Atmosphere 2023, 14, 790. [Google Scholar] [CrossRef]
- Azman, R.M.N.R.; Noor, N. a. M.; Abdullah, S.; Ideris, M.M. Analysis of Drought Index in Sub-Urban Area Using Standard Precipitation Evapotranspiration Index (SPEI). Int. J. Integr. Eng. 2022, 14, 157–163. [Google Scholar] [CrossRef]
- Sandhya Krishna, P.; Yamini Krishna, B. ; Nafisa, Shaik. ; Ratna Sravani, T.; Ragha Madhuri, J.; Vanditha, Ch. Prediction of Droughts using SPEI. In Proceedings of the 2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT); 2023; pp. 839–845. [Google Scholar]
- Azman, R.M.N.R.; Noor, N. a. M.; Abdullah, S.; Ideris, M.M. Analysis of Drought Index in Sub-Urban Area Using Standard Precipitation Evapotranspiration Index (SPEI). Int. J. Integr. Eng. 2022, 14, 157–163. [Google Scholar] [CrossRef]
- Careto, J.A.M.; Soares, P.M.M.; Cardoso, R.M.; Russo, A.; Lima, D.C.A. A new ensemble-based SPI and SPEI index to depict droughts projections for the Iberia Peninsula with the EURO-CORDEX; Copernicus Meetings. 2022. [Google Scholar]
- Nguyen, V.H.; Yen, H.P.H. Seasonal variation and its impacts in rice-growing regions of the Mekong Delta. Int. J. Clim. Change Strateg. Manag. 2021, 13, 483–491. [Google Scholar] [CrossRef]
- Thanh Nguyen Giao; Thi Hong Huynh Nhien Evaluating Water Quality Variation in the Vietnamese Mekong Delta Area Using Cluster and Discriminant Analysis | Applied Environmental Research. Available online: https://ph01.tci-thaijo.org/index.php/aer/article/view/240912 (accessed on Jan 30, 2024).
- Dinh, T.K.H.; Dang, T.A. Potential risks of climate variability on rice cultivation regions in the Mekong Delta, Vietnam. Rev. Bras. Eng. Agríc. E Ambient. 2022, 26, 348–355. [Google Scholar] [CrossRef]
- Cosslett, T.L.; Cosslett, P.D. The Mekong Delta Provinces. In Water Resources and Food Security in the Vietnam Mekong Delta; Cosslett, T.L., Cosslett, P.D., Eds.; Natural Resource Management and Policy; Springer International Publishing: Cham, 2014; ISBN 978-3-319-02198-0. [Google Scholar]
- Minh Huynh,; Pankaj Kumar; Nguyen Van Toan Deciphering the relationship between meteorological and hydrological drought in Ben Tre province, Vietnam. Available online: https://www.researchsquare.com (accessed on Jan 26, 2024).
- Zhou, K.; Shi, X.; Renaud, F. Understanding precipitation moisture sources of the Vietnamese Mekong Delta and their dominant factors during recent drought events; Copernicus Meetings. 2023. [Google Scholar]
- Lavane, K.; Kumar, P.; Meraj, G.; Han, T.G.; Ngan, L.H.B.; Lien, B.T.B.; Van Ty, T.; Thanh, N.T.; Downes, N.K.; Nam, N.D.G.; et al. Assessing the Effects of Drought on Rice Yields in the Mekong Delta. Climate 2023, 11, 13. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Kumar, P.; Van Ty, T.; Duy, D.V.; Han, T.G.; Lavane, K.; Avtar, R. Understanding Dry and Wet Conditions in the Vietnamese Mekong Delta Using Multiple Drought Indices: A Case Study in Ca Mau Province. Hydrology 2022, 9, 213. [Google Scholar] [CrossRef]
- Nguyen, D.P.; Ha, H.D.; Trinh, N.T.; Nguyen, M.T. Application of artificial intelligence for forecasting surface quality index of irrigation systems in the Red River Delta, Vietnam. Environ. Syst. Res. 2023, 12, 24. [Google Scholar] [CrossRef]
- Rattayová, V.; Garaj, M.; Kandera, M.; Hlavčová, K. Evaluation of Hargreaves method for calculation of reference evapotranspiration in selected stations of Slovakia; Copernicus Meetings. 2023. [Google Scholar]
- Al-Asadi, K.; Abbas, A.A.; Dawood, A.S.; Duan, J.G. Calibration and Modification of the Hargreaves–Samani Equation for Estimating Daily Reference Evapotranspiration in Iraq. J. Hydrol. Eng. 2023, 28, 05023005. [Google Scholar] [CrossRef]
- Koç, D.L.; Can, M.E. Reference evapotranspiration estimate with missing climatic data and multiple linear regression models. PeerJ 2023, 11, e15252. [Google Scholar] [CrossRef]
- Elagib, N.A.; Musa, A.A. Correcting Hargreaves-Samani formula using geographical coordinates and rainfall over different timescales. Hydrol. Process. 2023, 37, e14790. [Google Scholar] [CrossRef]
- Hargreaves, G.; Samani, Z. Reference Crop Evapotranspiration From Temperature. Appl. Eng. Agric. 1985, 1. [Google Scholar] [CrossRef]
- Mulualem, G.M.; Liou, Y.-A. Application of Artificial Neural Networks in Forecasting a Standardized Precipitation Evapotranspiration Index for the Upper Blue Nile Basin. Water 2020, 12, 643. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Max Hinne; Quentin F. Gronau; Eric-Jan Wagenmakers A Conceptual Introduction to Bayesian Model Averaging Available online:. Available online: https://journals.sagepub.com/doi/full/10.1177/2515245919898657 (accessed on Feb 2, 2024).
- Tuan, N.V. Regression Models and Scientific Discovery Available online:. Available online: https://www.sachkhaiminh.com/mo-hinh-hoi-quy-va-kham-pha-khoa-hoc-gs-nguyen-van-tuan (accessed on Feb 2, 2024).
- Fan, J.; Ma, X.; Wu, L.; Zhang, F.; Yu, X.; Zeng, W. Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agric. Water Manag. 2019, 225, 105758. [Google Scholar] [CrossRef]
- Fan, J.; Wang, X.; Wu, L.; Zhou, H.; Zhang, F.; Yu, X.; Lu, X.; Xiang, Y. Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Convers. Manag. 2018, 164, 102–111. [Google Scholar] [CrossRef]
- Schapire, R.E. The Boosting Approach to Machine Learning: An Overview. In Nonlinear Estimation and Classification; Denison, D.D., Hansen, M.H., Holmes, C.C., Mallick, B., Yu, B., Eds.; Lecture Notes in Statistics; Springer: New York, NY, 2003; ISBN 978-0-387-21579-2. [Google Scholar]
- Ali, Z.; Abduljabbar, Z.; Tahir, H.; Sallow, A.; Almufti, S. Exploring the Power of eXtreme Gradient Boosting Algorithm in Machine Learning: a Review. 2023, 12, 320–334. [CrossRef]









| Station Name | Geographical Locations | Annual Mean Rainfall (mm) | Annual Mean Temperature (0C) | |
|---|---|---|---|---|
| Latitude | Longitude | |||
| Chau Doc | 10°42'12.7"N | 105°07'58.7"E | 1360 | 27.0 |
| Cao Lanh | 10°28'16.6"N | 105°38'42.1"E | 1356 | 27.0 |
| Moc Hoa | 10°45'12.6"N | 105°56'00.5"E | 1564 | 27.3 |
| Can Tho | 10°01'33.9"N | 105°46'07.8"E | 1544 | 26.6 |
| My Tho | 10°21'03.3"N | 106°23'53.9"E | 1349 | 26.7 |
| Cang Long | 9°59'33.7"N | 106°12'11.3"E | 1672 | 26.8 |
| Ba Tri | 10°02'30.6"N | 106°35'37.3"E | 1473 | 26.8 |
| Soc Trang | 9°36'05.2"N | 105°58'24.9"E | 1859 | 26.8 |
| Bac Lieu | 9°17'43.5"N | 105°42'50.1"E | 1712 | 26.8 |
| Ca Mau | 9°10'28.5"N | 105°10'41.5"E | 2366 | 26.7 |
| Rach Gia | 10°00'44.5"N | 105°04'37.7"E | 2057 | 27.6 |
| SPEI | Drought Category |
|---|---|
| SPEI ≥ 2 | Extremely wet |
| 1.5 ≤ SPEI < 1 | Severely wet |
| 1 ≤ SPEI < 1.5 | Moderately wet |
| -1 ≤ SPEI < 1 | Near normal |
| -1.5 ≤ SPEI < -1 | Moderately dry |
| -2 ≤ SPEI < -1.5 | Severely dry |
| SPEI < -2 | Extremely dry |
| No. | Model name | Hyperparameter tuning |
|---|---|---|
| 1 | Gradient Boosting (GB) |
|
| 2 | eXtreme Gradient Boosting (XGBoost) |
|
| Models | Input parameters | Output | Evaluation criteria | |||
|---|---|---|---|---|---|---|
| MAE | MSE | RMSE | R2 | |||
| Gradient Boosting | Rainfall, Avg_Tmax, Avg_Tmin, Avg_Hum, PET, SOI_Anomaly, SST_NINO4 | SPEI-1 | 0.34 | 0.19 | 0.44 | 0.90 |
| Rainfall, Avg_Tmin, Avg_Hum, SST_NINO4 | SPEI-3 | 0.38 | 0.26 | 0.51 | 0.83 | |
| Rainfall, Avg_Tmin, Avg_Hum, SST_NINO4 | SPEI-6 | 0.36 | 0.24 | 0.49 | 0.86 | |
| Rainfall, Avg_Tmin, Avg_Hum, SOI_Anomaly, SST_NINO4 | SPEI-12 | 0.36 | 0.23 | 0.48 | 0.87 | |
| XGBoost | Rainfall, Avg_Tmax, Avg_Tmin, Avg_Hum, PET, SOI_Anomaly, SST_NINO4 | SPEI-1 | 0.28 | 0.16 | 0.37 | 0.94 |
| Rainfall, Avg_Tmin, Avg_Hum, SST_NINO4 | SPEI-3 | 0.33 | 0.21 | 0.45 | 0.89 | |
| Rainfall, Avg_Tmin, Avg_Hum, SST_NINO4 | SPEI-6 | 0.32 | 0.19 | 0.41 | 0.90 | |
| Rainfall, Avg_Tmin, Avg_Hum, SOI_Anomaly, SST_NINO4 | SPEI-12 | 0.30 | 0.17 | 0.41 | 0.92 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).