Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Function of the NAC1 Gene from Fraxinus mandshurica in Cold Resistance and Growth Promotion in Tobacco

Version 1 : Received: 21 May 2024 / Approved: 22 May 2024 / Online: 22 May 2024 (10:18:17 CEST)

How to cite: Cao, Y.; He, L.; Peng, G.; Li, B.; Wang, Y.; Zhang, C.; Zhang, Y.; Zhan, Y. Function of the NAC1 Gene from Fraxinus mandshurica in Cold Resistance and Growth Promotion in Tobacco. Preprints 2024, 2024051430. https://doi.org/10.20944/preprints202405.1430.v1 Cao, Y.; He, L.; Peng, G.; Li, B.; Wang, Y.; Zhang, C.; Zhang, Y.; Zhan, Y. Function of the NAC1 Gene from Fraxinus mandshurica in Cold Resistance and Growth Promotion in Tobacco. Preprints 2024, 2024051430. https://doi.org/10.20944/preprints202405.1430.v1

Abstract

To elucidate the function of the cold resistance regulatory gene FmNAC1 from Fraxinus mandshurica, this study identified the role that the overexpression of the FmNAC1 gene plays in tobacco growth and cold stress regulation. The cloned FmNAC1 gene from F. mandshurica is 891 bp in length and encodes 296 amino acids. Our subcellular localization analysis confirmed that FmNAC1 is primarily located in the nucleus and functions as a transcription factor. FmNAC1 is responsive to cold and NaCl stress, as well as to the induction of IAA, GA, and ABA hormone signals. To further elucidate its function in cold resistance, four transgenic tobacco lines of FmNAC1 overexpression(FmNAC1-OE)were generated through tissue culture after the agrobacterium-mediated transformation of wild-type (WT) tobacco. These FmNAC1-OE plants exhibited accelerated growth after transplantation. When exposed to low-temperature conditions at -5°C for 24 hours, the rates of wilting and yellowing of the FmNAC1-OE plants were significantly lower than those of the WT tobacco plants. Additionally, the membrane integrity, osmotic regulation, and reactive oxygen species (ROS)-scavenging abilities of the FmNAC1-OE tobacco lines were better than those of the WT plants, indicating the potential of the FmNAC1 gene to improve plant cold resistance. The gene expression results further revealed that the FmNAC1 transcription factor exhibits regulatory interactions with growth-related genes such as IAA and AUX1; cold resistance-related genes such as ICE, DREB, and CBF1; and genes involved in the clearance of reactive oxygen species (ROS), such as CAT and SOD. All of this evidence shows that the FmNAC1 transcription factor from F. mandshurica plays a key role in contributing to the enhancement of growth, cold resistance, and ROS clearance in transgenic tobacco plants.

Keywords

FmNAC1; Fraxinus mandshurica; cold resistance; transgenic tobacco

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.