Submitted:
21 May 2024
Posted:
22 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Review
3. Data Statistical Properties and Econometric Methodology
3.1. Data Sources and Statistical Properties of Variables
3.2. Econometric Methodology
4. Empirical Analysis and Discussion
4.1. Preliminary Results
4.2. Main Results: Mean and Quantile via Moments Analysis
5. Conclusions
Author Contributions
Data Availability Statement
Declarations Consent for publication
Disclosure Statement
References
- Assab, A. (2023). Fiscal Decentralization and Nature-Based Adaptation Financing: A New Perspective on Sovereign Bond Yields. Working Paper. [CrossRef]
- Andrews, D. W., & Monahan, J. C. (1992). An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica: Journal of the Econometric Society, 953-966. [CrossRef]
- Bachner, G. and B. Bednar-Friedl. (2019). The Effects of Climate Change Impacts on Public Budgets and Implications of Fiscal Counterbalancing Instruments. Environmental Modelling and Assessment, Vol. 24, pp. 121–142. [CrossRef]
- Beirne, John, N. Renzhi, & U. Volz (2021a). Feeling the heat: Climate risks and the cost of sovereign borrowing. International Review of Economics and Finance, Vol. 76, pp. 920 – 936. [CrossRef]
- Beirne, J, Renzhi, N. & Volz, U. (2021b). Bracing for the Typhoon: Climate change and sovereign risk in Southeast Asia. Sustainable Development, Vol. 29, pp. 537–551. [CrossRef]
- Blomquist, J., & Westerlund, J. (2013). Testing slope homogeneity in large panels with serial correlation. Economics Letters, 121(3), 374-378. [CrossRef]
- Boehm, H. (2022). Physical climate change and the sovereign risk of emerging economies. Journal of Economic Structures, Vol. 11:31. [CrossRef]
- Cevik, S. and J. T. Jalles. (2020). Feeling the Heat: Climate Shocks and Credit Ratings. IMF Working Paper 2020/286.
- Cevik, S.and J. T. Jalles. (2022a). This changes everything: Climate shocks and sovereign bonds. Energy Economics, Vol. 107. [CrossRef]
- Cevik, S. and J. T. Jalles. (2022b). An Apocalypse Foretold: Climate Shocks and Sovereign Defaults. Open Economies Review, Vol. 33, pp. 89–108. [CrossRef]
- Cheng R., B. Gupta, R. S. Rajan. (2023). Do green financial policies offset the climate transition risk penalty imposed on long-term sovereign bond yields? Research in International Business and Finance, Vol. 65. [CrossRef]
- Choi, I. (2001). Unit root tests for panel data. Journal of international money and Finance, 20(2), 249-272. [CrossRef]
- Chudik, A. & Pesaran, M. H. (2013). Large panel data models with cross-sectional dependence: a survey. CAFE Research Paper, (13.15). Available at https://www.econstor.eu/bitstream/10419/80496/1/cesifo_wp4371.pdf.
- Chudik, A., & Pesaran, M. H. (2015). Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. Journal of econometrics, 188(2), 393-420. [CrossRef]
- Chudik, A., Mohaddes, K., Pesaran, M. H., & Raissi, M. (2016). Long-run effects in large heterogeneous panel data models with cross-sectionally correlated errors. In Essays in Honor of man Ullah (pp. 85-135). Emerald Group Publishing Limited. [CrossRef]
- Collander, S., B. Gan, C. S. Nikitopoulos, K. A. Richards, & L. Ryan. (2023). Climate Transition Risk in Sovereign Bond Markets. Global Finance Journal, Vol. 57. [CrossRef]
- Crifo, P., M. A. Diaye, R. Oueghlissi. (2017). The effect of countries’ ESG ratings on their sovereign borrowing costs. The Quarterly Review of Economics and Finance, Vol. 66, pp. 13-20. [CrossRef]
- De Hoyos, R. E., & Sarafidis, V. (2006). Testing for cross-sectional dependence in panel-data models. The stata journal, 6(4), 482-496. [CrossRef]
- Eberhardt, M., & Teal, F. (2011). Econometrics for grumblers: a new look at the literature on cross-country growth empirics. Journal of economic Surveys, 25(1), 109-155. [CrossRef]
- Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of econometrics, 115(1), 53-74. [CrossRef]
- Kiley, M., T., Growth at Risk from Climate Change (2021). FEDS Working Paper No.2021-54, SSRN: https://ssrn.com/abstract=3907717 or http://dx.doi.org/10.17016/FEDS.2021.054. [CrossRef]
- Kizys, R., W. Rouatbi, Z. Umar & A. Zaremba. (2021). The Temperature Effect and Sovereign Bond Returns. Working Paper. [CrossRef]
- Kling, G., Y. C. Lo, V. Murinde & Volz, U. (2018). Climate Vulnerability and the Cost of Debt (2018). Working Pape.r. [CrossRef]
- Kling, G., U. Volz, V. Murinde, S. Ayas. (2021). The impact of climate vulnerability on firms’ cost of capital and access to finance. World Development, Volume 137. [CrossRef]
- Klusak, P., M. Agarwala, M. Burke, M. Kraemer & K. Mohaddes (2023) Rising Temperatures, Falling Ratings: The Effect of Climate Change on Sovereign Creditworthiness. Management Science,. [CrossRef]
- Levin, A., Lin, C. F., & Chu, C. S. J. (2002). Unit root tests in panel data: asymptotic and finite-sample properties. Journal of econometrics, 108(1), 1-24. [CrossRef]
- Lis, E.M., Nickel, C. (2010). The impact of extreme weather events on budget balances. International Tax and Public Finance, Vol. 17, pp. 378–399. [CrossRef]
- Lolos, S., Palaios, P., & Papapetrou, E. (2021). Tourism-led growth asymmetries in Greece: evidence from quantile regression analysis. Portuguese Economic Journal, 22, 125–148. [CrossRef]
- Machado, J. A., & Silva, J. S. (2019). Quantiles via moments. Journal of Econometrics, 213(1), 145-173. [CrossRef]
- Melecky, M. and C. Raddatz. (2021). How Do Governments Respond after Catastrophes? Natural-Disaster Shocks and the Fiscal Stance. Policy Research Working Paper. The World Bank. [CrossRef]
- Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. Cambridge Working Papers in Economics, 0435 (3), 1 39. https://ideas.repec.org/p/cam/camdae/0435.html.
- Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of applied econometrics, 22(2), 265-312. [CrossRef]
- Pesaran, M. H, (2016). Cross-Sectional Dependence in Panels, Time Series and Panel Data Econometrics, online edition, Oxford Academic. accessed 3 Oct. 2023. [CrossRef]
- Pesaran, M. H., & Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of econometrics, 68(1), 79-113. [CrossRef]
- Pesaran, M. H., & Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of econometrics, 142(1), 50-93. [CrossRef]
- arXiv:2109.00408.Pesaran, M. H., & Xie, Y. (2021). A Bias-Corrected CD Test for Error Cross-Sectional Dependence in Panel Data Models with Latent Factors. arXiv preprint arXiv:2109.00408. [CrossRef]
- Phillips, P. C., & Sul, D. (2003). Dynamic panel estimation and homogeneity testing under cross section dependence. The econometrics journal, 6(1), 217-259. [CrossRef]
- Saxena. K. and M. Singh. (2023). Do Investors Reward Countries for Participating in Climate Agreements? [CrossRef]
- Semet, R., T. Roncalli & L. Stagnol. (2021). ESG and Sovereign Risk: What is Priced in by the Bond Market and Credit Rating Agencies? [CrossRef]
- Sun, X., Y. Shen, K. Guo and Q. Ji. (2023). Sovereign ratings change under climate risks. Research in International Business and Finance, Volume 66. [CrossRef]
- Swamy, P. A. (1970). Efficient inference in a random coefficient regression model. Econometrica: Journal of the Econometric Society, 311-323. [CrossRef]
| 1 | See Cevik and Jalles (2020) discussed above |
| Notation | Variable | Source and link |
|---|---|---|
| yield | Long-term sovereign yields based on EMU convergence criterion series | Eurostat; Open product page |
| temp | Monthly average mean surface air temperature | Climate Change Knowledge Portal – World Bank https://climateknowledgeportal.worldbank.org/download-data |
| precip | Monthly precipitation level (country average) | Climate Engine; https://app.climateengine.org/climateEngine |
| Variable | No. of obs. | Mean | Median | Variance | Min | Max | Skewness | Kurtosis |
|---|---|---|---|---|---|---|---|---|
| yield | 7452 | 5.009 | 4.39 | 15.798 | -0.9 | 29.24 | 1.350 | 5.585 |
| temp | 10078 | 9.863 | 9.555 | 64.094 | -16.29 | 29.74 | -0.052 | 2.498 |
| precip | 10225 | 57.927 | 52.22 | 1974.666 | 0.119 | 355.64 | 1.292 | 5.794 |
| Variable | Fisher type (P-Perron) test | Fisher type (DFuller) test | Im-Pesaran-Shin test |
Pesaran test |
| yields | -20.478*** | -17.374*** | -6.8688*** | -11.980*** |
| temp | -36.340*** | -36.340*** | -43.284*** | -21.864*** |
| precip | -89.304*** | -89.304*** | -70.6252*** | -21.864*** |
| Variable | Cross sectional independence | Slope homogeneity | |
| Pesaran CD test | Pesaran & Xie test | Pesaran and Yamagata test |
|
| temp model | 167.75*** abs (corr): 0.731 |
-16.08*** (0.000) |
-3.002*** (0.003) |
| precip model | 175.04*** abs (corr): 0.783 |
-16.12*** (0.000) |
154.496*** (0.000) |
| yields | 165.06*** abs (corr): 0.709 |
- | - |
| temp | 155.02*** abs(corr): 0.699 |
- | - |
| precip | 21.19*** abs(corr): 0.178 |
- | - |
| Temp model | Precip. model |
Temp model | Precip. model |
Temp model | Precip. model |
Temp model | Precip. model |
Temp. model | Precip. model | |||
| Ind. var. | Location estimator | Location estimator | Scale estimator |
Scale estimator |
MG estimator | MG estimator | DCCE estimator | DCCE estimator | CS-ARDL estimator | CS-ARDL estimator | ||
| Short run | Long run | Short run | Long run | |||||||||
| temp | 0.0432*** | -0.0020 | -0.0385*** | -0.0421*** | -0.0590** | -1.0590*** | ||||||
| (0.008) | (0.0067) | (0.0124) | (0.0136) | (0.0241) | (0.0241) | |||||||
| temp_sq. | 0.0022*** | 0.0012*** | 0.00106* | 0.0023*** | 0.0036*** | 0.0029** | ||||||
| (0.0003) | (0.0003) | (0.000550) | (0.000692) | (0.0013) | (0.0012) | |||||||
| l.temp | -0.0440*** | -0.0405*** | ||||||||||
| (0.0113) | (0.0098) | |||||||||||
| l.temp_sq. | 0.0014*** | 0.00134*** | ||||||||||
| (0.00046) | (0.00041) | |||||||||||
| Constant | 4.330*** | 5.363*** | 1.187*** | 1.571*** | 4.939*** | 4.613*** | 5.1399*** | 4.6009*** | 5.3822 | 5.0572*** | 4.6273*** | 4.6135*** |
| (0.0600) | (0.0646) | (0.0471) | (0.0532) | (0.400) | (0.393) | (0.456574) | (0.41939) | (0.4917) | (0.4311) | (0.4820) | (0.4762) | |
| precip | -0.0058*** | -0.0058*** | -0.000680 | -0.000621 | -0.0011 | -1.0010*** | ||||||
| (0.0012) | (0.0012) | (0.00299) | (0.00297) | (0.0031) | (0.00316) | |||||||
| precip_sq. | 0.000021*** | 0.000022*** | 0.0000164 | 0.0000156 | 0.0000183 | 0.0000169 | ||||||
| (6.11e-06) | (6.11e-06) | (2.36e-05) | (0.000022) | (0.0000248) | (0.0000244) | |||||||
| l.precip | -0.00147 | -0.001314 | ||||||||||
| (0.003269) | (0.003251) | |||||||||||
| l.precip_sq. | 0.0000191 | 0.0000179 | ||||||||||
| (0.000023) | (0.0000228) | |||||||||||
| Obs. | 7,131 | 7,334 | 7,131 | 7,334 | 7,131 | 7,334 | 7,131 | 7,334 | 7,125 | 7,303 | ||
| Number of countries | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | ||
| Low risk economy | Normal risk economy | High risk economy | |||||||
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
| Ind. var. | qtile_10 | qtile_20 | qtile_30 | qtile_40 | qtile_50 | qtile_60 | qtile_70 | qtile_80 | qtile_90 |
| temp | 0.0456*** | 0.0451*** | 0.0447*** | 0.0443*** | 0.0439*** | 0.0433*** | 0.0424*** | 0.0412*** | 0.0394** |
| (0.00813) | (0.0077) | (0.007) | (0.0076) | (0.008) | (0.0088) | (0.0105) | (0.0136) | (0.0186) | |
| temp_sq. | 0.000781** | 0.00106*** | 0.0012*** | 0.0015*** | 0.0017*** | 0.0021*** | 0.0026*** | 0.0033*** | 0.004*** |
| (0.000335) | (0.0003) | (0.0003) | (0.0003) | (0.0003) | (0.0003) | (0.0004) | (0.0006) | (0.0008) | |
| Cons. | 2.974*** | 3.239*** | 3.447*** | 3.672*** | 3.940*** | 4.297*** | 4.773*** | 5.469*** | 6.498*** |
| (0.0503) | (0.0455) | (0.0451) | (0.0476) | (0.0526) | (0.0624) | (0.0769) | (0.0980) | (0.137) | |
| Obs. | 7,131 | 7,131 | 7,131 | 7,131 | 7,131 | 7,131 | 7,131 | 7,131 | 7,131 |
| Cumulative temperature effects | |||||||||
| temp.=15.97 ℃, (75% percentile) | |||||||||
| Coef. | 0.0705*** (0.0053) |
0.0788*** (0.0051) |
0.0854*** (0.0052) |
0.0926*** (0.0056) |
0.1010*** (0.0064) |
0.1123*** (0.0079) |
0.1274*** (0.0101) |
0.1494*** (0.0136) |
0.1820*** (0.0191) |
| temp.=23.1 ℃, (95% percentile) | |||||||||
| Coef. | 0.08164*** (0.0092) |
0.0939*** (0.0088) |
0.1036*** (0.0089) |
0.1141*** (0.0094) |
0.1265*** (0.1051) |
0.1432*** (0.0125) |
0.1653*** (0.0158) |
0.1977*** (0.0211) |
0.2456*** (0.0295) |
| temp.=27.25 ℃, (99% percentile) | |||||||||
| Coef. | 0.08813*** (0.0118) |
0.1027*** (0.0112) |
0.1142*** (0.0113) |
0.1267*** (0.0119) |
0.1415*** (0.0131) |
0.1612*** (0.0155) |
0.1874*** (0.0194) |
0.2258*** (0.0259) |
0.2827*** (0.0362) |
| Low risk economy | Normal risk economy | High risk economy | |||||||
| (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | |
| Ind. Var | qtile_10 | qtile_20 | qtile_30 | qtile_40 | qtile_50 | qtile_60 | qtile_70 | qtile_80 | qtile_90 |
| precip | -0.0028** | -0.0044*** | -0.0054*** | -0.0064*** | -0.0076*** | -0.0092*** | -0.0115*** | -0.0150*** | -0.0205*** |
| (0.0013) | (0.0012) | (0.0012) | (0.0012) | (0.0013) | (0.0015) | (0.00183) | (0.0024) | (0.00353) | |
| precip_sq. | 1.99e-05*** | 2.58e-05*** | 2.94e-05*** | 3.31e-05*** | 3.76e-05*** | 4.32e-05*** | 5.15e-05*** | 6.43e-05*** | 8.44e-05*** |
| (7.62e-06) | (7.08e-06) | (6.94e-06) | (6.96e-06) | (7.19e-06) | (7.77e-06) | (9.09e-06) | (1.18e-05) | (1.67e-05) | |
| Cons. | 3.529*** | 3.956*** | 4.218*** | 4.489*** | 4.817*** | 5.225*** | 5.832*** | 6.769*** | 8.235*** |
| (0.0553) | (0.0442) | (0.0437) | (0.0468) | (0.0542) | (0.0652) | (0.0860) | (0.116) | (0.161) | |
| Obs. | 7,334 | 7,334 | 7,334 | 7,334 | 7,334 | 7,334 | 7,334 | 7,334 | 7,334 |
| Cumulative precipitation effects | |||||||||
| precip.=1.24, (1% percentile) | |||||||||
| Coef. | -0.00282** (0.00137) |
-0.00441*** (0.00122) |
-0.00537*** (0.00120) |
-0.00637*** (0.00123) |
-0.00759*** (0.00132) |
-0.00910*** (0.00148) |
-0.01135*** (0.00181) |
-0.0148*** (0.00242) |
-0.0202*** (0.00349) |
| precip.=4.39, (5% percentile) | |||||||||
| Coef. | -0.00269** (0.00127) |
-0.00424*** (0.001178) |
-0.00519*** (0.00116) |
-0.00617*** (0.00119) |
-0.0073*** (0.00127) |
-0.0088*** (0.00143) |
-0.0110*** (0.0017) |
-0.0144*** (0.00235) |
-0.0197*** (0.00339) |
| precip.=22.52, (25% percentile) | |||||||||
| Coef. | -0.001976* (0.001025) |
-0.00331*** (0.000948) |
-0.00412*** (0.000943) |
-0.00497*** (0.000971) |
-0.00599*** (0.001047) |
-0.00726 (0.001189) |
-0.00915*** (0.001469) |
-0.0121*** (0.00198) |
-0.0166*** (0.00285) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
