Submitted:
20 May 2024
Posted:
20 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Spider Identification


2.2. Data Analysis
2.3. Web Anomalies


3. Results
3.1. Anomalies
| Anomalies | Percentage of webs in which an anomaly was present | Percentage of anomalies | The average number of anomalies per web | Total anomalies | n |
|---|---|---|---|---|---|
| Hole | 100% | 52.7% | 72.1 | 7567 | 105 |
| Discontinuity | 94.3% | 6.8% | 9.8 | 970 | 99 |
| Supernumerary | 52.4% | 0.7% | 1.8 | 100 | 55 |
| Two spirals stuck together | 100% | 11.1% | 15.1 | 1590 | 105 |
| Nonparallel | 65.7% | 1% | 2.2 | 149 | 69 |
| Deviated | 89.5% | 3.3% | 5.0 | 470 | 94 |
| Zigzag | 85.7% | 3.9% | 6.3 | 564 | 90 |
| Y-shaped | 74.3% | 1.4% | 2.5 | 196 | 78 |
| More than two spirals stuck together | 99% | 14.1% | 19.5 | 2026 | 104 |
| Stop and return | 99% | 5.1% | 7.1 | 737 | 104 |
| Total | 100% | 14369 |

3.2. Relationship between Spider Body Measurements and Web Properties
| Web characteristic | 4th leg length(mm) | Carapace width(mm) | Body length(mm) | |||
|---|---|---|---|---|---|---|
| R2 | P | R2 | P | R2 | P | |
| Horizontal web diameter(cm) | 0.145 | <0.001* | 0.086 | 0.002 | 0.120 | <0.001* |
| Mesh size(mm) | 0.279 | <0.001* | 0.237 | <0.001* | 0.181 | <0.001* |
| Upper radii | 0.052 | 0.019 | 0.049 | 0.024 | 0.044 | 0.032 |
| Anchor points | 0.022 | 0.136 | 0.048 | 0.026 | 0.044 | 0.032 |
| Capture area(cm2) | 0.347 | <0.001* | 0.241 | <0.001* | 0.249 | <0.001* |
| Lower radii | 0.030 | 0.077 | 0.030 | 0.081 | 0.026 | 0.104 |
| Web height from ground(cm) | 0.002 | 0.620 | 0.010 | 0.319 | 0.007 | 0.388 |
| CTL(cm) | 0.096 | 0.001* | 0.061 | 0.012 | 0.084 | 0.003 |
| Upper spirals | 0.035 | 0.059 | 0.045 | 0.031 | 0.019 | 0.158 |
| No. of prey | 0.038 | 0.048 | 0.036 | 0.055 | 0.039 | 0.046 |
| Asymmetry | 0.029 | 0.083 | 0.034 | 0.062 | 0.026 | 0.103 |
| Lower spirals | 0.003 | 0.562 | 0.007 | 0.404 | 0.001 | 0.784 |
| Plant height (cm) | 0.000 | 0.931 | 0.011 | 0.287 | 0.011 | 0.294 |
| Web size(cm) | 0.345 | <0.001* | 0.247 | <0.001* | 0.268 | <0.001* |
| Vertical web diameter(cm) | 0.382 | <0.001* | 0.295 | <0.001* | 0.288 | <0.001* |
| Foliage radius (cm) | 0.001 | 0.792 | 0.024 | 0.120 | 0.011 | 0.281 |
3.3. Relationship between Web Characteristics and Distance from the Road
| Web characteristic | R2 | P | n |
|---|---|---|---|
| Horizontal web diameter(cm) | 0.006 | 0.181 | 105 |
| Mesh size(mm) | 0.025 | 0.632 | 105 |
| Upper radii | 0.021 | 0.268 | 105 |
| Anchor points | 0.066 | 0.001* | 105 |
| Capture area(cm2) | 0.027 | 0.165 | 105 |
| Lower radii | 0.006 | 0.865 | 105 |
| Web height from ground(cm) | 0.041 | 0.004* | 105 |
| CTL(cm) | 0.005 | 0.331 | 105 |
| Upper spirals | 0.000 | 0.771 | 105 |
| No. of prey | 0.093 | 0.020* | 94 |
| Asymmetry | 0.001 | 0.303 | 105 |
| Lower spirals | 0.001 | 0.520 | 105 |
| Plant height (cm) | 0.058 | < 0.001* | 105 |
| Web size(cm) | 0.028 | 0.149 | 105 |
| Vertical web diameter(cm) | 0.040 | 0.254 | 105 |
| Foliage radius (cm) | 0.060 | 0.001* | 105 |
3.4. Relationship between Web Anomalies and Spider Body Measures
| Web anomaly | 4th leg length (mm) | Carapace width (mm) | Body length (mm) | n | |||
|---|---|---|---|---|---|---|---|
| R2 | P | R2 | P | R2 | P | ||
| Two spirals stuck together | 0.001 | 0.793 | 0.012 | 0.269 | 0.007 | 0.382 | 104 |
| Supernumerary | 0.003 | 0.670 | 0.003 | 0.696 | 0.001 | 0.788 | 55 |
| More than two spirals stuck together | 0.057 | 0.014 | 0.028 | 0.091 | 0.031 | 0.076 | 104 |
| Deviated | 0.185 | 0.001* | 0.011 | 0.136 | 0.184 | 0.001* | 94 |
| Discontinuity | 0.020 | 0.159 | 0.001 | 0.794 | 0.010 | 0.316 | 99 |
| Y-shaped | 0.023 | 0.190 | 0.018 | 0.244 | 0.016 | 0.263 | 78 |
| Non-parallel | 0.000 | 0.906 | 0.007 | 0.493 | 0.001 | 0.761 | 69 |
| Stop and return | 0.000 | 0.936 | 0.000 | 0.907 | 0.000 | 0.971 | 104 |
| Zigzag | 0.000 | 0.994 | 0.003 | 0.632 | 0.007 | 0.443 | 90 |
| Hole | 0.015 | 0.209 | 0.001 | 0.819 | 0.003 | 0.570 | 104 |
3.5. Relationship between Web Anomalies and Distance from the Road







4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rybak, J.; Olejniczak, T. Accumulation of polycyclic aromatic hydrocarbons (PAHs) on the spider webs in the vicinity of road traffic emissions. Environ. Sci. Pollut. Res. 2013, 21, 2313–2324. [Google Scholar] [CrossRef]
- Ambily CB and Antony, A. 2016. Diversity and distribution of spiders in agro ecosystem of Ernakulum, District, Kerala. J Zool Stud. 3(5), 73-77.
- Chaubey, S. Studies On Habit And Habitat, External Morphology, Feeding Capacity And Prey Preference Of Garden Jumping Spider, Opisthoncus Species. Indian J. Sci. Res. 2019, 10, 29. [Google Scholar] [CrossRef]
- Mishra, A.; Rastogi, N. Unraveling the Roles of Solitary and Social Web-Making Spiders in Perennial Ecosystems: Influence on Pests and Beneficials. Proc. Natl. Acad. Sci. India Sect. B: Biol. Sci. 567–576. 2019; 90. [Google Scholar] [CrossRef]
- Khan AA, Kundoo AA, Khan ZH and Hussain K. 2020. Identification of potential and suitable natural enemies of arthropod pests for conservation biological control in vegetable ecosystem of Kashmir. J Entomol Zool Studies. 8(5), 2251-2255.
- Ghazanfar M, Hussain M, Hashim M and Fahid AM. 2016. Checklist of spider (Araneae) fauna of Pakistan: A review. J Entomol Zool Studies. 4, 245-256.
- Lawania KK and Mathur, P. 2015. Study on the pattern and archetecture of spider’s web with special reference to seasonal abundance in eastern region of Rajasthan. India J Environ Sci Toxicol Food Tech. 9(11), 1-9.
- Nyffeler, M.; Bonte, D. Where Have All the Spiders Gone? Observations of a Dramatic Population Density Decline in the Once Very Abundant Garden Spider, Araneus diadematus (Araneae: Araneidae), in the Swiss Midland. Insects 2020, 11, 248. [Google Scholar] [CrossRef]
- Solanki R and Kumar, D. 2015. Spiders (Araneae) from five major agro-ecosystems of Jambughoda village, Panchmahal district, Gujarat, India. Internat J Sci Res. 4(9), 958-961.
- Lv, H.; Li, H.; Qiu, Z.; Zhang, F.; Song, J. Assessment of pedestrian exposure and deposition of PM10, PM2.5 and ultrafine particles at an urban roadside: A case study of Xi'an, China. Atmospheric Pollut. Res. 112–121. 2021; 12. [Google Scholar] [CrossRef]
- Hagler, G.S.W.; Baldauf, R.W.; Thoma, E.D.; Long, T.R.; Snow, R.F.; Kinsey, J.S.; Oudejans, L.; Gullett, B.K. Ultrafine particles near a major roadway in Raleigh, North Carolina: Downwind attenuation and correlation with traffic-related pollutants. Atmos. Environ. 2009, 43, 1229–1234. [Google Scholar] [CrossRef]
- Jinsart, W.; Kaewmanee, C.; Inoue, M.; Hara, K.; Hasegawa, S.; Karita, K.; Tamura, K.; Yano, E. Driver exposure to particulate matter in Bangkok. J. Air Waste Manag. Assoc. 2011, 62, 64–71. [Google Scholar] [CrossRef]
- Su, I.; Buehler, M.J. Mesomechanics of a three-dimensional spider web. J. Mech. Phys. Solids 2020, 144, 104096. [Google Scholar] [CrossRef]
- Jiang, Y.; Nayeb-Hashemi, H. Dynamic response of spider orb webs subject to prey impact. Int. J. Mech. Sci. 2020, 186, 105899. [Google Scholar] [CrossRef]
- Rutkowski R, Justyna R, Wioletta R, Maciej B, Katarzyna P and Izabela J. 2019. Mutagenicity of indoor air pollutants adsorbed on spider webs. Ecotoxicol. Environ. Saf. 171, 549-557.
- Rybak, J. 2014. Possible use of spider webs for the indication of organic road pollutants. J Ecol Engin. 15(3).
- Zhou, T.; Luo, X.; Hou, Y.; Xiang, Y.; Peng, S. Quantifying the effects of road width on roadside vegetation and soil conditions in forests. Landsc. Ecol. 2019, 35, 69–81. [Google Scholar] [CrossRef]
- Stojanowska, A.; Mach, T.; Olszowski, T.; Bihałowicz, J.S.; Górka, M.; Rybak, J.; Rajfur, M.; Świsłowski, P. Air Pollution Research Based on Spider Web and Parallel Continuous Particulate Monitoring—A Comparison Study Coupled with Identification of Sources. Minerals 2021, 11, 812. [Google Scholar] [CrossRef]
- Ramírez, O. , de la Campa, A. M. S., Sánchez-Rodas, D., & de la Rosa, J. D. (2020). Hazardous trace elements in thoracic fraction of airborne particulate matter: Assessment of temporal variations, sources, and health risks in a megacity. Sci. Total Environ. 710, 136344.
- Cranford, S.W.; Tarakanova, A.; Pugno, N.M.; Buehler, M.J. Nonlinear material behaviour of spider silk yields robust webs. Nature 2012, 482, 72–76. [Google Scholar] [CrossRef]
- Turner, J.; Vollrath, F.; Hesselberg, T. Wind speed affects prey-catching behaviour in an orb web spider. Sci. Nat. 2011, 98, 1063–1067. [Google Scholar] [CrossRef]
- Blamires, S.J.; Chao, Y.-C.; Liao, C.-P.; Tso, I.-M. Multiple prey cues induce foraging flexibility in a trap-building predator. Anim. Behav. 2011, 81, 955–961. [Google Scholar] [CrossRef]
- Bosia, F.; Poggetto, V.F.D.; Gliozzi, A.S.; Greco, G.; Lott, M.; Miniaci, M.; Ongaro, F.; Onorato, M.; Seyyedizadeh, S.F.; Tortello, M.; et al. Optimized structures for vibration attenuation and sound control in nature: A review. Matter 2022, 5, 3311–3340. [Google Scholar] [CrossRef]
- Agnarsson I, Coddington JA and Kuntner M. 2013. Systematics: progress in the study of spider diversity and evolution. Spider research in the 21st century: trends and perspectives.
- Toscani, C.; Leborgne, R.; Pasquet, A. Behavioural analysis of web building anomalies in the orb-weaving spiderZygiella x-notata(Araneae, Araneidae). Arachnol. Mitteilungen: Arachnol. Lett. 79–83. 2012; 43. [Google Scholar] [CrossRef]
- Harmer, A.M.T.; Blackledge, T.A.; Madin, J.S.; Herberstein, M.E. High-performance spider webs: integrating biomechanics, ecology and behaviour. J. R. Soc. Interface 2010, 8, 457–471. [Google Scholar] [CrossRef]
- Pasquet, A.; Marchal, J.; Anotaux, M.; Leborgne, R. Imperfections in perfect architecture: The orb web of spiders. Eur. J. Èntomol. 2013, 110, 493–500. [CrossRef]
- Anotaux, M.; Toscani, C.; Leborgne, R.; Châline, N.; Pasquet, A. Aging and foraging efficiency in an orb-web spider. J. Ethol. 2014, 32, 155–163. [Google Scholar] [CrossRef]
- Pasquet, A.; Marchal, J.; Anotaux, M.; Leborgne, R. Does building activity influence web construction and web characteristics in the orb-web spider Zygiella x-notata (Araneae, Araneidae)?. Zoöl. Stud. 2014; 53, 11. [Google Scholar] [CrossRef]
- Pasquet, A.; Toscani, C.; Anotaux, M. Influence of aging on brain and web characteristics of an orb web spider. J. Ethol. 2017, 36, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Fatemizadeh, F. Quantifying Landscape Degradation Following Construction of a Highway Using Landscape Metrics in Southern Iran. Front. Ecol. Evol. 2021, 9. [Google Scholar] [CrossRef]
- Siemers BM and Schaub, A. 2011. Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators. Proceed Royal Soc B: Biol Sci. 278(1712), 1646-1652.
- Shao, L. , Zhao, Z., & Li, S. (2023). Is phenotypic evolution affected by spiders’ construction behaviors? Syst. Biol. 72(2), 319-340.
- Caleb, J.T. Spiders (Arachnida: Araneae) from the vicinity of Araabath Lake, Chennai, India. J. Threat. Taxa 2020, 12, 15186–15193. [Google Scholar] [CrossRef]
- Tikader, BK. 1982. Family Araneidae (= Argiopidae), typical orbweavers. Fauna India (Araneae). 2, 1-293.
- Sen S, Dhali DC, Saha S and Raychaudhuri D. 2015. Spiders (Araneae: Arachnida) of Reserve Forests of Dooars: Gorumara National Park, Chapramari Wildlife Sanctuary and Mahananda Wildlife Sanctuary. World Scientific News. 20, 1-339.
- Herberstein ME and Tso, IM. 2000. Evaluation of formulae to estimate the capture area and mesh height of orb webs (Araneoidea, Araneae). J. Arachnol. 28(2), 180-184.
- Prokop P and Grygláková, D. 2005. Factors affecting the foraging success of the wasp-like spider Argiope bruennichi (Araneae): role of web design. Biologia. 60(2), 165-169.
- Blackledge, T.A.; Gillespie, R.G. ESTIMATION OF CAPTURE AREAS OF SPIDER ORB WEBS IN RELATION TO ASYMMETRY. J. Arachnol. 2002, 30. [Google Scholar] [CrossRef]
- Hesselberg, T. Ontogenetic Changes in Web Design in Two Orb-Web Spiders. Ethology 2010, 116, 535–545. [Google Scholar] [CrossRef]
- Michalko, R.; Košulič, O.; Martinek, P.; Birkhofer, K. Disturbance by invasive pathogenic fungus alters arthropod predator–prey food-webs in ash plantations. J. Anim. Ecol. 2021, 90, 2213–2226. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yang, J.; Wang, Z.; Zhibin, W.; Tian, J.; Chen, J.; Liu, S.; Li, J.; Liang, Q.; Lan, J. Transcriptome Changes Reveal the Toxic Mechanism of Cadmium and Lead Combined Exposure on Silk Production and Web-Weaving Behavior of Spider A. ventricosus. Environ. Sci. Technol. 2023, 57, 14917–14928. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.W. The Life Cycle, Habitat and Variation in Selected Web Parameters in the Spider, Nephila clavipes Koch (Araneidae). Am. Midl. Nat. 1977, 98, 95–108. [Google Scholar] [CrossRef]
- Markó, V.; Bogya, S.; Kondorosy, E.; Blommers, L.H. Side effects of kaolin particle films on apple orchard bug, beetle and spider communities. Int. J. Pest Manag. 2010, 56, 189–199. [Google Scholar] [CrossRef]
- Zschokke S and Vollrath, F. 1995. Web construction patterns in a range of orb-weaving spiders (Araneae). Eur. J. Entomol. 92(3), 523-541.
- Heiling AM and Herberstein, ME. 1998. The web of Nuctenea sclopetaria (Araneae, Araneidae): relationship between body size and web design. J. Arachnol. 91-96. Vol?
- Ward D and Lubin, Y. 1992. Temporal and spatial segregation of web-building in a community of orb-weaving spiders. J. Arachnol. 73-87.
- Baum, R.; Witt, P.N. Changes in Orb Webs of Spiders During Growth (Araneus Diadematus Clerck and Neoscona Vertebrata Mc Cook) 1)2). Behaviour 1960, 16, 309–318. [Google Scholar] [CrossRef]
- Mazzia, C.; Capowiez, Y.; Marliac, G.; Josselin, D.; Pasquet, A. Spinosad application in an apple orchard affects both the abundance of the spider Araneus diadematus and its web construction behaviour. Ecotoxicology 2020, 29, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Sensenig, A.; Agnarsson, I.; Blackledge, T.A. Behavioural and biomaterial coevolution in spider orb webs. J. Evol. Biol. 2010, 23, 1839–1856. [Google Scholar] [CrossRef] [PubMed]
- Baba, Y.G.; Kusahara, M.; Maezono, Y.; Miyashita, T. Adjustment of web-building initiation to high humidity: a constraint by humidity-dependent thread stickiness in the spider Cyrtarachne. Sci. Nat. 2014, 101, 587–593. [Google Scholar] [CrossRef]
- Blamires, S.J.; I Sellers, W. Modelling temperature and humidity effects on web performance: implications for predicting orb-web spider (Argiope spp.) foraging under Australian climate change scenarios. Conserv. Physiol. 2019; 7, coz083. [Google Scholar] [CrossRef]
- Tew, E.R.; Adamson, A.; Hesselberg, T. The web repair behaviour of an orb spider. Anim. Behav. 2015, 103, 137–146. [Google Scholar] [CrossRef]
- Rhisiart AA and Vollrath, F. 1994. Design features of the orb web of the spider, Araneus diadematus. Behavioral Ecology. 5(3): 280-287.
- Sensenig, A.T.; Agnarsson, I.; Blackledge, T.A. Adult spiders use tougher silk: ontogenetic changes in web architecture and silk biomechanics in the orb-weaver spider. J. Zoöl. 28–38. 2011; 38. [Google Scholar] [CrossRef]
- Sanphui P, Dey S, Mukherjee D and Saha S. 2017. Affirming length of body or part/s and weight there of as a determinant of capture area of spider web. World Scientific News. 71,105-117.
- Butt, A.; Alam, I.; Naz, R. Variations in Web Architecture of Argiope trifasciata (Araneae, Araneidae) and Its Relationship with Body Parameters and Entangled Prey. Pak. J. Zoöl. 855–860. 2017; 49. [Google Scholar] [CrossRef]
- Anotaux, M.; Marchal, J.; Châline, N.; Desquilbet, L.; Leborgne, R.; Gilbert, C.; Pasquet, A. Ageing alters spider orb-web construction. Anim. Behav. 2012, 84, 1113–1121. [Google Scholar] [CrossRef]
- Opell, BD. 1999. Redesigning spider webs: stickiness, capture area and the evolution of modern orb-webs. Evol. Ecol. Res. 1(4), 503-516.
- Sensenig, A.T.; Kelly, S.P.; Lorentz, K.A.; Lesher, B.; Blackledge, T.A. Mechanical performance of spider orb webs is tuned for high-speed prey. J. Exp. Biol. 2013, 216, 3388–3394. [Google Scholar] [CrossRef] [PubMed]
- Rao, D.; Fernandez, O.C.; Castañeda-Barbosa, E.; Díaz-Fleischer, F. Reverse positional orientation in a neotropical orb-web spider, Verrucosa arenata. Sci. Nat. 2011, 98, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Kuntner, M.; Gregorič, M.; Li, D. Mass predicts web asymmetry in Nephila spiders. Sci. Nat. 2010, 97, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Zschokke, S.; Countryman, S.; Cushing, P.E. Spiders in space—orb-web-related behaviour in zero gravity. Sci. Nat. 2020, 108, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tahir HM, Butt A and Alam I. 2010. Relationship of web characteristics and body measures of Leucauge decorata (Araneae: Tetragnathidae). Pakistan Journal of Zoology. 42(3). Page?
- Herberstein, M. E. , & Heiling, A. M. (2013). Does mesh height influence prey length in orb-web spiders (Araneae)? EJE, 95(3), 367-371.
- Watanabe, T. Effects of Web Design on the Prey Capture Efficiency of the Uloborid Spider Octonoba sybotides under Abundant and Limited Prey Conditions. Zoöl. Sci. 585–590. 2001; 18. [Google Scholar] [CrossRef]
- Aoyanagi, Y.; Okumura, K. Simple Model for the Mechanics of Spider Webs. Phys. Rev. Lett. 2010, 104, 038102. [Google Scholar] [CrossRef]
- Krafft, B.; Cookson, L.J. The Role of Silk in the Behaviour and Sociality of Spiders. Psyche: A J. Èntomol. 1–25,. 2012; 2012. [Google Scholar] [CrossRef]
- Foellmer MW, Marson M and Moya-Laraño J. 2011. Running performance as a function of body size, leg length, and angle of incline in male orb-web spiders, Argiope aurantia. Evol. Ecol. Res. 13(5): 513-526.
- Foelix, R. 2011. Biology of spiders. OUP USA. Is it correct infor?
- Papadopoulos NT, Carey JR, Katsoyannos BI, Kouloussis NA, Müller HG and Liu X. 2002. Supine behaviour predicts the time to death in male Mediterranean fruitflies (Ceratitis capitata). Proceedings of the Royal Society of London. Series B: Biological Sciences. 269(1501), 1633-1637.
- Heiling AM and Herberstein, ME. 2000. Interpretations of orb-web variability: a review of past and current ideas. Ekologia(Bratislava)/Ecology(Bratislava). 19, 97-106.
- Samu F and Vollrath, F. 1992. Spider orb web as bioassay for pesticide side effects. Entomologia Experimentalis et Applicata. 62(2), 117-124.
- Osaki, S.; Osaki, M. Evolution of spiders from nocturnal to diurnal gave spider silks mechanical resistance against UV irradiation. Polym. J. 2010, 43, 200–204. [Google Scholar] [CrossRef]
- Wilder, S. M. (2011). Spider nutrition: an integrative perspective. In Advances in insect physiology (Vol. 40, pp. 87-136). Academic Press.
- Tietjen, W.J.; Cady, A.B. SUBLETHAL EXPOSURE TO A NEUROTOXIC PESTICIDE AFFECTS ACTIVITY RHYTHMS AND PATTERNS OF FOUR SPIDER SPECIES. J. Arachnol. 2007, 35, 396–406. [Google Scholar] [CrossRef]
- Yeoman MS and Faragher RGA. 2001. Ageing and the nervous system: insights from studies on invertebrates. Biogerontology. 2(2): 85-97.
- Landolfa, M.A.; Barth, F.G. Vibrations in the orb web of the spider Nephila clavipes: cues for discrimination and orientation. Journal of Comparative Physiology A 1996, 179, 493–508. [Google Scholar] [CrossRef]
- Mulder, T.; Wilkins, L.; Mortimer, B.; Vollrath, F. Dynamic environments do not appear to constrain spider web building behaviour. Sci. Nat. 2021, 108, 1–8. [Google Scholar] [CrossRef]
- Mcnett, B.J.; Rypstra, A.L. Habitat selection in a large orb-weaving spider: vegetational complexity determines site selection and distribution. Ecol. Èntomol. 423–432. 2000; 25. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Alexander, L.E. ROADS AND THEIR MAJOR ECOLOGICAL EFFECTS. Annu. Rev. Ecol. Syst. 1998, 29, 207–231. [Google Scholar] [CrossRef]
- Hesselberg, T. Exploration behaviour and behavioural flexibility in orb-web spiders: A review. Curr. Zoöl. 313–327. 2015; 61. [Google Scholar] [CrossRef]
- Tew N and Hesselberg, T. 2017. The effect of wind exposure on the web characteristics of a tetragnathid orb spider. J. Insect Behav. 30(3): 273-286.
- Johnson, J.C.; Urcuyo, J.; Moen, C.; Ii, D.R.S. Urban heat island conditions experienced by the Western black widow spider (Latrodectus hesperus): Extreme heat slows development but results in behavioral accommodations. PLOS ONE 2019, 14, e0220153. [Google Scholar] [CrossRef] [PubMed]
- Zschokke, S. 1999. Nomenclature of the orb-web. J. Arachnol. 27(2): 542-546.
- Jyoti, J.; Kumar, A.; Lakhani, P.; Kumar, N.; Bhushan, B. Structural properties and their influence on the prey retention in the spider web. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 377, 20180271. 2018. [Google Scholar] [CrossRef]
- Zschokke, S. 2000. Form and function of the orb-web. European arachnology. 19: 99.
- Heard TA and Hendrikz, JK. 1993. Factors influencing flight activity of colonies of the stingless bee Trigona-carbonaria (Hymenoptera, Apidae). Aust. J. Zool. 41(4), 343-353.
- Namazi, H. R. (2017). The complexity based analysis of the correlation between spider’s brain signal and web. ARC Journal of Neuroscience, 2(4), 38-44.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
