Submitted:
17 May 2024
Posted:
20 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Clinical Antipsychotic Effect of Second-Generation Antipsychotic Drugs
3. Mechanisms of Action of Recently Developed Antipsychotic Drugs
4. Why Is the Development of Novel Antipsychotic Drugs Necessary, What Are the Missing Clinical Effects in the Efficacy of Second-Generation Antipsychotic Drugs?
| _ | Cariprazine | Brexipiprazole | Luma- teperone |
SEP 363856 | Xanome-line combined with trospium |
|---|---|---|---|---|---|
| Food and Drug Administration (FDA) approval | Approved for treatment of schizophrenia and acute mania in bipolar disorder in 2015 | Approved for treatment of schizophrenia and as an adjunctive therapy for major depression and for agitated patients with Alzheimer’s disease in 2015 | Approved for treatment of adult patients with schizo-phrenia in 2019 | Ulataront (SEP 363856) has got a break-through therapy designation for treatment of schizophrenia by FDA | The approval of xanomeline, combined with trospium for treatment of schizophrenia is expected in September, 2024 |
| Mecha-nisms of action | A partial agonism at D2/D3 receptors with a higher affinity for D3 receptors and an agonism at 5-HT1A receptors | A partial agonism at D2/D3 receptors and has a 5-HT1A agonism | A partial agonism at D2/5-HT2A receptors; blocks serotonin reuptake, and interferes with glutamate neurotrans-mission | An agonistic effect at TAAR1/5-HT1A receptors. It stabilizes mono-aminergic neurotransmission, i.e., dopaminergic and serotonergic neurons | An agonistic effect at M1/M4 receptors. M1/M4 muscarinic cholinergic neurons stimulation leads to the blockade of D2 dopa-minergic neurons in the prefrontal cortex |
| Thera-peutic effects | Ameliorates positive and negative schizophrenia symptoms and depressive symptoms | Improves positive and negative schizophrenia symptoms and depressive symptoms | emends well positive and negative schizo-phrenia symptoms and ameliorates social capabilities | emends well positive and negative schizophrenia symptoms and improves cognitive functions | improves well positive and negative schizo-phrenia symptoms and cognitive functions |
| Thera-peutic effects on positive schizo-phrenia symptoms | Improves | Improves | Ameliorates | Good therapeutic effect | improves well |
| Thera-peutic effects on negative schizo-phrenia symptoms | Good therapeutic effect | Good therapeutic effect | Ame-liorates | Improves | Improves |
| Thera-peutic effects on affective symptoms | Good anti-depressive and antimanic effects | Good therapeutic effect on depressive and manic symptoms | Good therapeutic effect on depressive and manic symptoms | Good therapeutic effect on depressive and manic symptoms | Good therapeutic effect on depressive and manic symptoms |
| Thera-peutic effects on cognitive symptoms | Improves | Improves | Improves social capabilities | Improves | Improves |
| Adverse effects | Movement disturbances are reduced; however, akathisia appears in 11% of patients. Metabolic and cardiac adverse effects are reduced | The frequency of movement disturbances, and cardiac and metabolic adverse effects are reduced | Movement disturbances and metabolic and cardiac adverse effects are largely reduced | It caused very few adverse effects, for example movement disturbances or cardiac and metabolic adverse effects | Movement distur-bances and metabolic and cardia adverse effects are seen scarcely and rarely |
| References | [3,9,10,14,16,17,18,19] | [19,20,21,22] | [22,23,24,25] | [26,27] | [28,29,30,31,32,33,34,35,36] |
4.1. Cariprazine
4.2. Brexipiprazole
4.3. Lumateperone
4.4. TAAR1 Agonists
4.5. Xanomeline Combined with Trospium
5. Phase III Clinical Studies
6. Discussion
7. Conclusion and Future Perspectives
Conflicts of Interest
References
- Werner, F.M.; Coveñas, R. Classical neurotransmitters and neuropeptides involved in schizoaffective disorder: Focus on prophylactic medication; Bentham Science Publishers: Sharjah, 2016. [Google Scholar]
- Correll, C.U.; Arango, C.; Fagerlund, B.; Galderisi, S.; Kas, M.J.; Leucht, S. Identification and treatment of individuals with childhood onset and early-onset schizophrenia. Eur Neuropsychopharmacol. 2024, 82, 57–71. [Google Scholar] [CrossRef]
- Phawa, M.; Sleem, A.; Elsayed, O.H.; Good, M.E.; El Mallakh, R.S. New antipsychotic medications in the last decade. Curr. Psychiatry Rep. 2021, 23, 87. [Google Scholar]
- Werner, F.M.; Coveñas, R. Updated neural networks in schizophrenia and novel antipsychotic drugs. Clin. Neurophysiol. 2023, 148, e1–e7. [Google Scholar] [CrossRef]
- de Bartolomeis, A.; Ciccarelli, M.; Velucci, L.; Fornaro, M.; Iasevoli, V.; Barone, A. Update on novel antipsychotics and pharmcological strategies for treatment-resistant schizophrenia. Expert Opin Pharmacother 2022, 23, 2035–2035. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Abi-Dargham, A.; Howes, O. Emerging treatments in schizophrenia. J. Clin. Psychiat. 2022, 83, SU21024IP1. [Google Scholar] [CrossRef] [PubMed]
- Mauri, M.C.; Paletta, S.; Di Pace, C.; Reggiori, A.; Cirnigliaro, G.; Valli, I.; Altamura, A.C. Clinical pharmacokinetics of atypical antipsychotics: An update. Clin. Pharmacokinet. 2019, 58, 1219–1220. [Google Scholar] [CrossRef] [PubMed]
- Werner, F.M.; Coveñas, R. Safety of antipsychotic drugs: Focus on therapeutic and adverse effects. Expert Opin. Drug Saf. 2014, 13, 1031–1042. [Google Scholar] [CrossRef]
- Orzelska-Górka, J.; Mikulska, J.; Wiszniewska, A.; Biala, G. New atypical antipsychotics in the treatment of schizophrenia and depression. Int J Mol Sci. 2022, 23, 10624. [Google Scholar] [CrossRef] [PubMed]
- Mohr, P.; Masopust, J.; Kopecek, M. Dopamine receptor partial agonists: Do they differ in their clinical efficacy? Front. Psychiatry 2022, 12, 781946. [Google Scholar] [CrossRef]
- Wu, H.; Siafis, S.; Hamza, T.; Schneider-Thoma, J.; Davis, J.M.; Salanti, G.; Leucht, S. Antipsychotic-induced weight gain: Dose-response meta-analysis of randomized controlled trials. Schizophr. Bull. 2022, 48, 643–654. [Google Scholar] [CrossRef]
- Schneider-Thoma, J.; Chalkou, K.; Dörries, C.; Bighelli, I.; Ceraso, A.; Huhn, M.; Siafis, S.; Davis, J.M.; Cipriani, A.; Furukawa, T.A.; et al. Comparative efficacy and tolerability of 32 oral and injectable long-acting antipsychotics for the maintenance treatment of adults with schizophrenia: A systematic review and network meta-analysis. Lancet 2022, 399, 824–836. [Google Scholar] [CrossRef] [PubMed]
- Dean, B.; Scarr, E. Muscarinic M1 and M4 receptors: Hypothesis driven drug development for schizophrenia. Psychiatry Res. 2020, 288, 112989. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.C.; Tsai, S.-J. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int. J. Mol. Sci. 2017, 17, 1689. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, M.L.R.; Hermann, L.E.; Brown, S.; Jones, P.G.; Shao, L.; Hewitt, M.C.; Campbell, J.E.; Dedic, N.; Hopkins, S.C.; Koblan, K.S.; et al. Ulotaront: A TAAR1 agonist for the treatment of schizophrenia. ACS Med. Chem. Lett. 2022, 13, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Caccia, S.; Invernizzi, R.W.; Nobili, A.; Pasina, L. A new generation of antipsychotics: Pharmacology and clinical utility of cariprazine in schizophrenia. Ther. Clin. Risk Manag. 2013, 9, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Werner, F.M.; Coveñas, R. New developments in the management of schizophrenia and bipolar disorder: Potential use of cariprazine. Ther. Clin. Risk Manag. 2015, 11, 1657–1661. [Google Scholar] [PubMed]
- Laszlovsky, I.; Barbassy, A.; Nemeth, G. Cariprazine, a broad-spectrum antipsychotic for the treatment of schizophrenia: Pharmacology, efficacy and safety. Adv. Ther. 2021, 38, 3652–3673. [Google Scholar] [CrossRef] [PubMed]
- Mohr, P.; Masopust, J.; Kopecek, M. Dopamine receptor partial agonists: Do they differ in their clinical efficacy? Front. Psychiatry 2022, 12, 781946. [Google Scholar] [CrossRef] [PubMed]
- Grossberg, G.T.; Kohegyi, E.; Mergel, V.; Josiassen, M.K.; Meulier, D.; Hobart, M.; Slomkowski, M.; Baker, A.R.; McQuade, R.D.; Cummings, J.L. Efficacy and safety of brexipiprazole for the treatment of agitation in Alzheimer’s dementia: Two 12-week, randomized, double-blind, placebo-controlled trials. Am. J. Geriatr. Psychiatry 2020, 28, 383–400. [Google Scholar] [CrossRef]
- Ishigooka, J.; Iwashita, S.; Igashi, K.; Liew, E.L.; Tadori, Y. Pharmacokinetics and safety of brexipiprazole following multiple-dose administration to Japanese patients with schizophrenia. J. Clin. Pharmacol. 2018, 58, 74–80. [Google Scholar] [CrossRef]
- Greig, S.L. Brexipiprazole: First global approval. Drugs 2015, 75, 1687–1697. [Google Scholar] [CrossRef] [PubMed]
- Edinoff, A.; Wu, N.; de Boisblanc, C.; Feltner, C.O.; Norder, M.; Tzoneva, V.; Kaye, A.M.; Cornett, E.M.; Kaye, A.D.; Viswanath, O.; et al. Lumateperone for the treatment of schizophrenia. Psychopharmacol. Bull. 2020, 50, 32–59. [Google Scholar] [PubMed]
- Werner, F.M.; Coveñas, R. The novel antipsychotic drug cariprazine and cognition enhancing drugs: Indications for their use as the add-on therapy in schizophrenia. Curr. Pharm. Des. 2021, 27, 4033–4038. [Google Scholar] [CrossRef] [PubMed]
- Blair, H.A. Lumateperone: First approval. Drugs 2020, 80, 417–423. [Google Scholar] [CrossRef]
- Snyder, G.L.; Vanover, K.E.; Davis, R.E.; Li, P.; Fienberg, A.; Mates, S. A review of the pharmacology and clinical profile of lumateperone for the treatment of schizophrenia. Adv. Pharmacol. 2021, 90, 253–276. [Google Scholar] [PubMed]
- Dodd, S.; Carvalho, A.F.; Puri, B.K.; Maes, M.; Bertolasci, C.C.; Morris, B.; Berk, M. Trace amine-associated receptor 1 (TAAR1): A new drug target for psychiatry? Neurosci. Biobehav. Rev. 2021, 120, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Koblan, K.S.; Kent, J.; Hopkins, S.C.; Krystal, J.H.; Cheng, H.; Goldman, R.; Loebel, A. A non-D2-receptor-binding drug for the treatment of schizophrenia. N. Eng. J. Med. 2020, 382, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Dean, B. Muscarinic M1 and M4 receptor agonists for schizophrenia: Promising candidates for the therapeutic arsenal. Expert Opin. Investig. Drugs 2023, 32, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Kaul, I.; Sawchak, S.; Correll, C.U.; Kakar, R.; Breier, A.; Zhu, A.; Miller, A.C.; Paul, S.M.; Brannan, S.K. Efficacy and safety of the muscarinic receptor agonist KarXT (xanomeline-trospium) in schizophrenia (EMERGENT-2) in the USA: Results from a randomised, double-blind, placebo-controlled, flexible-dose phase 3 trial. Lancet 2024, 403, 160–170. [Google Scholar] [CrossRef]
- Jones, C.K.; Byun, N.; Bubser, M. Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology 2012, 37, 16–42. [Google Scholar] [CrossRef]
- Jones, C.K.; Eberle, E.L.; Shaw, D.B.; McKinzie, D.L.; Shannon, H.E. Pharmacologic interactions between the muscarinic cholinergic and dopaminergic systems in the modulation of prepulse inhibition in rats. J. Pharmacol. Exp. Ther. 2005, 312, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.; Wess, J.; Fulton, B.S.; Fink-Jensen, A.; Caine, S.B. Modulation of prepulse inhibition through both M1 and M 4 muscarinic receptors in mice. Psychopharmacology (Berlin) 2010, 208, 401–416. [Google Scholar] [CrossRef] [PubMed]
- Thorn, C.A.; Popiolek, M.; Stark, E.; Edgerton, J.R. Effects of M1 and M4 activation on excitatory synaptic transmission in CA1. Hippocampus 2017, 27, 794–810. [Google Scholar] [CrossRef] [PubMed]
- Crook, J.M.; Tomaskovic-Crook, E.; Copolov, D.L.; Dean, B. Decreased muscarinic receptor binding in subjects with schizophrenia: A study of the human hippocampal formation. Biol. Psychiatry 2000, 48, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Werner, F.; Coveñas, R. New, not anti-dopaminergic antipsychotic drugs in the treatment of schizophrenia, M4 or M1 receptor agonists and TAAR1 agonists. Clin. Neurophysiol. 2024, 159, e1–e54. [Google Scholar] [CrossRef]
- Krystal, J.H.; Kane, J.M.; Correll, C.U.; Walling, D.P.; Leoni, M.; Duvvuri, S.; Patel, S.; Chang, I.; Iredale, P.; Frohlich, L.; et al. Emraclidine, a novel positive allosteric modulator of cholinergic M4 receptors, for the treatment of schizophrenia: A two-part, randomised, double-blind, placebo-controlled, phase 1b trial. Lancet 2022, 400, 2210–2220. [Google Scholar] [CrossRef] [PubMed]
- Corponi, F.; Fabri, C.; Bitter, I.; Montgomery, S.; Vieta, E.; Kapser, S.; Pallanti, S.; Serretti, A. Novel antipsychotics specificity profile: A clinically oriented review of lurasidone, brexpiprazole, cariprazine and lumateperone. Eur Neuropsychopharmacol. 2019, 29, 971–985. [Google Scholar] [CrossRef] [PubMed]
- Citrome, L. Activating and Sedating Adverse Effects of Second-Generation Antipsychotics in the Treatment of Schizophrenia and Major Depressive Disorder: Absolute Risk Increase and Number Needed to Harm. J Clin Psychopharmacol 2017, 37, 138–147. [Google Scholar] [CrossRef]
- Barmann, R.; Mujumder, P.; Doifode, T.; Kablinger, A. Newer antipsychotics: Brexpiprazole, cariprazine, and lumateperone: A pledge or another unkept promise? World J Psychiatry 2021, 11, 1228–1238. [Google Scholar] [CrossRef]
- Edinoff, A.; Ruoff, M.F.; Ghaffar, Y.T.; Rezayev, A.; Jani, T.; Kaye, A.M.; Cornett, E.M.; Kaye, A.D.; Viswanath, O.; Urits, I. Carprazine to treat Schizophrenia and Bipolar Disorder in Adults. Psychopharmacol Bull 2020, 50, 83–117. [Google Scholar]
- Breier, A.; Brannan, S.K.; Braun, S.M.; Miller, A.C. Evidence of trospium’s ability to mitigate cholinergic adverse events related to xanomeline: Phase 1 study results. Psychopharmacology (Berl). 2023, 240, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.K.O.; Noetzel, M.J.; De Lorme, K.C.; Jukubík, J.; Dolezal, V. Pharmacological evaluation of the long-term effects of xanomeline on the M(1) muscarinic acetylcholine receptor. PLoS ONE 2010, 5, e15722. [Google Scholar] [CrossRef] [PubMed]
- Russel, K.J.; Ingram, S.M.; Teal, L.B.; Linsley, C.W.; Jones, C.K. M1/M4-Preferring Muscarinic Cholinergic Receptor Agonist Xanomeline Reverses Wake and Arousal Deficits in Nonpathologically Aged Mice. ACS Chem. Neurosci. 2023, 14, 435–457. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, G.; Laszlovszky, I.; Czobor, P.; Szalai, E.; Szatmari, B.; Harsanyi, J.; Barabassy, A.; Debelle, M.; Durgam, S.; Bitter, I.; et al. Cariprazine versus risperidone monotherapy for treatment of predominant negative symptoms in patients with schizophrenia: A randomised, double-blind, controlled trial. Lancet 2017, 389, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; Daniel, D.G.; Vieta, E.; Laszlovszky, I.; Goetgebeur, P.J.; Earley, W.R.; Patel, M.D. The efficacy of cariprazine on cognition: A post hoc analysis from phase II/III clinical trials in bipolar mania, bipolar depression, and schizophrenia. CNS Spectr. 2023, 28, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Hishimoto, A.; Yasui-Furukori, N.; Sekine, D.; Matsukawa, M.; Yamada, S. Treatment discontinuation among patients with schizophrenia treated with brexpiprazole and other oral atypical antipsychotics in Japan: A retrospective observational study. Adv. Ther. 2022, 39, 4299–4314. [Google Scholar] [CrossRef]
- Correll, C.U.; Davis, R.E.; Weingart, M.; Saillard, J.; O’Gorman, C.; Kane, J.M.; Lieberman, J.A.; Tamminga, C.A.; Mates, S.; Vanover, K.E. Efficacy and safety of lumateperone for treatment of schizophrenia. A ramomized clinical trial. JAMA Psychiatry 2020, 77, 349–358. [Google Scholar] [CrossRef]

| Second-generation antipsychotic drugs | |
| Criterium | 2nd generation antipsychotic drugs |
| Therapeutic effect on disorder symptoms | Good therapeutic effect on positive schizophrenia symptoms |
| Therapeutic effect on negative schizophrenia symptoms | Reduced therapeutic effect on negative schizophrenia symptoms |
| Therapeutic effect on cognitive symptoms | No therapeutic effect on cognitive symptoms |
| References | 5 - 36 |
| Mechanism of action of 3rd generation antipsychotic drugs | |
| Antipsychotic drug | Mechanism of action |
| Cariprazine | Partial agonism at D2 and D3 receptors and an agonism at 5-HT1A receptors |
| Brexipiprazole | Partial agonism at D2 receptors and an agonism at 5-HT1A receptors |
| Lumateperone | Partial agonism at D2 and 5-HT2A receptors, blocks serotonin reuptake and interfers with the glutamate neurotransmission |
| Lumataront | Agonism at TAAR1 receptors and 5-HT1A receptors |
| Xanomeline | Agonism at M4 and M1 receptors, which interacts with a D2 receptor blockade |
| Therapeutic and adverse effects of 3rd generation antipsychotic drugs | |
| Therapeutic effects on positive schizophrenia symptoms | Improves well. |
| Therapeutic effects on negative schizophrenia symptoms | Improves well. |
| Therapeutic effects on cognitive symptoms | Exerts a good therapeutic effect. |
| Movement disturbances | Very reduced |
| Metabolic and cardiac adverse effects | Very rarely and very reduced |
| References | 5 - 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
