Submitted:
10 May 2024
Posted:
10 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
- 6G Network Architecture Evolution and Trends:The paper delineates the anticipated evolution of 6G network architecture, emphasizing design principles like superconvergence, non-IP-based networking protocols, and a 360-degree cybersecurity and privacy-by-engineering design. It envisions a future where the integration of diverse technologies, including quantum communications and artificial intelligence, underpins the fabric of 6G networks.
- Crafting the Future: Unveiling 6G’s Pinnacle Features and Delicate Trade-offs: A detailed examination of the key features unique to 6G, such as high security, secrecy, privacy, affordability, and intelligence, is provided. It also discusses the trade-offs required to achieve these ambitious goals, balancing spectrum efficiency with energy consumption and customization with security.
- 6G Network Performance Parameters and Application Scenarios: This section outlines the technical requirements for 6G networks to support emerging application scenarios. It discusses the enhancement of connectivity density, the expansion of coverage to ubiquitous global service, and the integration of sensing and intelligence at an unprecedented scale.
- Key 6G Technologies: The paper introduces groundbreaking technologies essential for 6G, covering new spectrum opportunities, enhanced wireless interfaces, and advancements in communication paradigms. It highlights how technologies like terahertz communication, optical wireless technology, and dynamic spectrum management will drive 6G innovations.
- 6G Testbeds and Platforms: An overview of existing 6G testbeds is provided, shedding light on the practical aspects of implementing and testing 6G technologies. This section underscores the importance of real-world experimentation in the evolution of 6G standards and applications.
- Technical Challenges for 6G Development: The paper identifies and discusses the myriad technical hurdles that must be overcome to realize the vision of 6G. From the propagation challenges of terahertz waves to the integration of AI in network operations, it lays out a roadmap for addressing these complex issues.
- Critical Non-Technical Considerations for 6G Development: The paper extends its analysis to encompass non-technical obstacles and factors crucial for the effective implementation of 6G. This includes considerations related to regulations, societal impact, and market dynamics that are essential for the technology’s success.
2. 6G Network Architecture, Evolution and Trends
2.1. 6G Network Design Fundamentals:
2.1.1. Superconvergence
2.1.2. Non-IP-Based Networking Protocols
2.1.3. Information-Centric & Intent-Based Networks (ICNs)
2.1.4. 360-Cybersecurity & Privacy-By-Engineering Design
2.1.5. Future-Proofing Emerging Technologies
2.2. Opportunities for Fundamental Change
2.2.1. Removal/Reduction of the Transport Network
2.2.2. Flattened Compute–Storage–Transport
2.2.3. Native Open-Source Support
2.2.4. AI-Native Design Enabling Human–Machine Teaming
2.2.5. Human-Centric Networks
3. Crafting the Future: Unveiling 6G’s Pinnacle Features, and Delicate Trade-Offs
3.1. Key Features of 6G
3.1.1. Enhanced Security, Confidentiality, and Privacy
3.1.2. High Affordability and Full Customization
3.1.3. Reduced Energy Usage and Extended Battery Duration
3.1.4. High Intelligence
3.1.5. Extremely Large Bandwidth
3.2. Trade-Offs and Solutions
3.2.1. Privacy versus Intelligence
3.2.2. Affordability versus Intelligence
3.2.3. Customization versus Intelligence
3.2.4. Security versus Spectral Effectiveness
3.2.5. Energy Efficiency versus Spectral Efficiency
4. 6G Network Performance Parameters and Application Scenarios
4.1. Technical Requirements
- Peak data rate Aiming for a peak data rate of no less than 1 Tb/s [15], represents a substantial advancement, surpassing the capabilities of 5G by a factor of 100. In specific scenarios like Terahertz (THz) wireless backhaul and fronthaul (x-haul), as highlighted in [15], there is an anticipation that the peak data rate could escalate to an impressive 10 Tb/s.
- User-experienced data rate The 5th percentile point in the user throughput cumulative distribution function represents the idea of a user-experienced data rate. Simply put, this represents the minimum data rate that a user can expect to receive at any given time or location with a 95% probability. This metric becomes particularly significant when evaluating perceived performance, especially at the periphery of cellular coverage. It serves as an indicator of network quality, influenced by factors like site density, architectural design, and inter-cell optimization. In the context of 5G implementation in highly populated metropolitan areas, 50 Mbps for uplink and 100 Mbps for downlink are the planned user-perceived rates. Considerable progress is anticipated toward 6G’s potential, with a tenfold improvement in speed over 5G—1 Gbps or faster—as the target. Moreover, 6G is poised to deliver user-experienced data rates reaching up to 10 Gb/s in specific scenarios, such as indoor hotspots. This advancement signifies a considerable leap in data transfer speeds and holds promise for enhanced connectivity experiences.
- Latency The time it takes for information to travel, known as latency, varies depending on the application. However, the minimum latency is currently 25 s, which is a significant improvement compared to 5G (40 times better). Latency is divided into two types: user plane and control plane latency [16]. The latency of the user plane refers to the time it takes for a packet to be sent from the source in a wireless network to its destination under the assumption that a mobile station is active. The minimum acceptable user plane latency in the context of 5G wireless technology is 4 ms for enhanced mobile broadband (eMBB) and 1 ms for ultra-reliable low latency communications (URLLC). The objective is to reduce latency to either 100 ms or 10 ms. Control plane latency refers to the duration it takes for a control plane to transition from an energy-efficient state, such as idle, to one where continuous data transmission commences, such as active. In 5G, the control plane has a minimum delay of 10 ms, which is expected to see significant enhancement in 6G. End-to-end (E2E) delay holds greater significance than over-the-air latency, serving as a comprehensive metric in 6G.
- Mobility The term `mobility’ describes the maximum speed a mobile station may reach while meeting the network’s acceptable Quality of Experience (QoE) requirements. The highest speed that 5G can enable for deployment scenarios involving high-speed trains is 500 km/h. However, 6G aims at a maximum speed of 1000 km/h in the context of systems used by commercial airlines [16].
- Connectivity density in the realm of massive Machine Type Communications (mMTC) serves as a crucial performance metric for assessment. In 5G, given constraints on radio resources, the minimum count of devices with a more lenient Quality of Service (QoS) per square kilometer (km2) is presently established at 106. There are plans to enhance this metric further, aiming for a tenfold improvement to reach 107 devices per km2 in the future [16].
- Energy efficiency Ensuring energy efficiency is crucial for cost-effective mobile networks and minimizing carbon emissions in the realm of green communication. This aspect plays a critical role in societal and economic considerations. Despite the significant improvement in energy efficiency per bit compared to previous generations, the early deployment of 5G networks has faced criticism for its high overall energy consumption. In the upcoming 6G networks, the goal is to increase KPI performance 10 to 100 times than 5G. The goal is to reduce the power consumption in communication while improving energy efficiency per bit [16].
- Peak spectral efficiency is an important KPI for measuring how well radio communication systems are getting better. The standard for peak bandwidth efficiency in 5G is set at 30 bits per second per hertz (bps/Hz) in the downlink and 15 bps/Hz in the upload. For example, using real-world data to guide the development of new 6G radio technologies could lead to three times better frequency efficiency than the 5G infrastructure [16].
- Area traffic capacity represents a metric assessing a network’s aggregate mobile traffic capacity within a defined area, considering elements such as available bandwidth, spectrum efficiency, and network densification. In 5G, the baseline criterion for area traffic capacity is established at 10 megabits per second per square meter (Mbps/(m2)). There are expectations that in certain deployment scenarios, such as indoor hotspots, this capacity could reach up to 1 gigabit per second per square meter (Gbps/(m2) [16].
- Over-the-air latency must fall within the range of 10 to 100 microseconds (s) to accommodate high mobility, equal to or exceeding 1,000 kilometers per hour (). This targeted latency range is essential to ensure acceptable Quality of Experience (QoE) in specific scenarios, such as hyper-High-Speed Rail (HSR) and airline systems [16].
- Reliability denotes the capacity to transmit a specified volume of traffic within a predetermined time frame with a high probability of success, particularly crucial in URLLC scenarios. In 5G networks, reliability is measured by a success probability spanning from 1 to 10−5 when sending a 32-byte data packet within 1 ms, factoring in the channel quality at the coverage edge in an urban macro environment deployment scenario. Expectations for the next-generation system include a significant improvement of at least two orders of magnitude, reaching a success probability of 1−10−7 or 99.99999% [16].
- Signal bandwidth The term Signal bandwidth denotes the highest total system bandwidth that can be accommodated through one or several Radio Frequency (RF) carriers. Within the 5G framework, the bandwidth’s minimum threshold is established at 100 megahertz (MHz). As we progress towards 6G, it is expected that the bandwidth capacity will expand to accommodate up to 1 gigahertz (GHz), particularly for functions within higher frequency ranges. Furthermore, there exists the possibility for even greater bandwidth capabilities in the realms of Terahertz (THz) communications or Optical Wireless Communications [16].
- Positioning accuracy offered by the 5G positioning service surpasses 10 meters. A rising demand for increased precision in positioning is observed, especially in diverse vertical and industrial applications, notably in indoor environments where satellite-based positioning systems may lack adequate coverage. The integration of Terahertz (THz) radio stations, renowned for their capability in high-precision positioning, is projected to elevate the accuracy supported by 6G networks to the centimeter level [16].
- Coverage In the context of 5G technology, Coverage refers to the integrity of radio signal reception within a single base station’s service area. The scope of this service area is gauged by the coupling loss metric, which accounts for the aggregate long-term channel loss between a terminal and a base station, factoring in elements like antenna gains, the attenuation of signal strength over distance, and shadowing from obstacles. As we transition to 6G networks, the concept of coverage is anticipated to expand considerably. This development is expected to achieve a level of coverage that is universally pervasive, transcending terrestrial-only networks to incorporate a three-dimensional (3D) coverage model that integrates terrestrial, satellite, and aerial network systems.
- Timeliness is identified as a critical time-based performance criterion for future communication systems. This concept is quantified through metrics such as the age of information (AoI) [18], as well as newer variations like age-of-task (AoT) [19] and age-of-synchronization (AoS) [20]. Diverging from the traditional metric of latency, which focuses on the total delay encountered by data packets or service sessions in transit, timeliness emphasizes the relevance of the most recently received data and services to the user. This approach inherently prioritizes newer data or services over older ones, incorporating a record of past states. As a result, this perspective significantly influences and complicates the process of task scheduling within system optimization strategies.
-
Security and privacy When evaluating a network’s resilience, security and privacy play a crucial role in protecting equipment, data, infrastructure and assets. Important things to do to keep mobile networks secure include:
- -
- Confidentiality: Ensuring the security of sensitive information and preventing unauthorised access.
- -
- Integrity: Ensuring the prevention of unauthorised modifications to information.
- -
- Authentication: Verifying the identities of the communication parties.
Dealing with concerns and adhering to privacy regulations like Europe’s General Data Protection Regulation has heightened the importance of privacy. Key Performance Indicators (KPIs), which are quantifiable measurements, offer a practical method for assessing both privacy and security. For instance, one KPI example is the count of security risks identified by algorithms. This metric is valuable for assessing the effectiveness of anomaly detection systems. -
Capital and operating expenditure has a significant impact on a mobile system’s potential to be commercially successful, making it a crucial aspect in determining how affordable mobile services are. There are two primary categories of expenses for a mobile operator:
- -
- Capital Expenditure (CAPEX): This covers the price paid for constructing the infrastructure needed for communication.
- -
- Operational expenditures (OPEX): These include upkeep and running costs.
The network densification has resulted in mobile operators facing pressure from high CAPEX. Additionally, issues such as cyber-attacks, system failures, and performance degradations require manual operations for troubleshooting in mobile networks [16]. As a consequence, mobile carriers must maintain an operational group with a large number of highly qualified network administrators, resulting in a high OPEX. OPEX is currently more than three times higher than CAPEX and continues to rise [21]. In the design of 6G, expenditure will be a key factor to consider.
4.2. Application Scenarios




4.2.1. Human Digital Twin
4.2.2. XR (Extended Reality) Based on Holographic Communication
4.2.3. New Smart City
4.2.4. Emergency Rescue Communication
4.2.5. High Speed Internet Access in The Air
4.2.6. Smart Factory Plus
4.2.7. Cyber Robots and Autonomous Systems
4.2.8. Wireless Tactile Network
5. Key 6G Technologies
5.1. New Spectrum
5.1.1. Millimeter Wave
5.1.2. Terahertz (THz) Technology for 6G Communication Systems
5.1.3. Optical Wireless Technology
5.1.4. Dynamic Spectrum Management
5.2. Improved Wireless Interface
5.2.1. New Modulation
5.2.2. New Channel Coding Technologies
5.2.3. Revolutionizing Access: NOMA
5.2.4. Ultra-Massive MIMO: Enhancing 6G Network Capabilities
5.2.5. Coordinated Multipoint and Cell-Free
5.2.6. In-Band Full-Duplex (IBFD) Technology: Unlocking Enhanced Spectrum Efficiency in 6G
5.2.7. Orbital Angular Momentum (OAM)
5.2.8. Intelligent Reflecting Surfaces
5.2.9. Holographic Radio for Intelligent EM Space in 6G
5.3. Other Perspectives
5.3.1. AI Integration in 6G Networks
5.3.2. Integration of Perception and Communication Networks in 6G: The Role of ISAC
5.3.3. Blockchain Technology in 6G Networks
5.3.4. Semantic Communication in 6G Networks
5.3.5. Energy-Neutral Devices and Back-scattering Communication in 6G Networks
5.3.6. FSO Fronthaul/Backhaul Network
5.3.7. 3D Networking
5.3.8. Quantum Communications
5.3.9. Unmanned Aerial Vehicles (UAVs)
5.3.10. Cell-Free Communications
5.3.11. Integration of Wireless Information and Energy Transfer (WIET)
5.3.12. Integration of Sensing and Communication
5.3.13. Dynamic Network Slicing
5.3.14. Proactive Caching
5.3.15. Edge Computing
6. 6G Testbedss and Platforms
6.1. Experimental Platforms for Sixth-Generation (6G) Communication Channels
6.1.1. Widespread Simulator for 6G Communication Channels
6.1.2. Channel Sounders
6.2. 6G Technologies Testbeds
6.2.1. mmWave Testbeds
6.2.2. THz Testbeds
6.2.3. RIS Testbeds
6.2.4. Integrated Sensing and Communication (ISAC) Testbeds
6.2.5. Cell-Free Systems Testbeds
6.2.6. Optical Wireless Communication (OWC) Testbeds
7. Technical Challenges for 6G Development
7.1. Terahertz Frequency
7.1.1. Significant transmission and absorption by the atmosphere at terahertz frequencies
7.1.2. Coverage and Directional Communication
7.1.3. Broad-Scale Fading Characteristics
7.1.4. Rapid variations in the channel and sporadic connectivity
7.1.5. Processing Power Consumption
7.1.6. Spectrum Regulation
7.2. Implications of Expanding Carrier Bandwidths
7.3. RF Transceiver Challenges and Opportunities

7.4. Power Supply Issue
7.5. Dynamic Network Integration Challenge
7.6. Challenges in Achieving Tactile Internet
7.7. Network Security Challenges
7.8. Difficulties in Managing Resources for Three-Dimensional Networking
7.9. Device Capabilities in 6G
7.10. Spectrum and Interference Administration
8. Critical Non-Technical Considerations for 6G Development
8.1. Dependency on Basic Sciences
8.2. Dependency on Upstream Industries
8.3. Demand-Oriented Research Roadmap
8.4. Business Model and Commercialization
8.5. Health and Psychological Concerns
8.6. Social Factors in Worldwide Connectivity
9. Conclusions
References
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.S. What should 6G be? Nature Electronics 2020, 3, 20–29. [Google Scholar] [CrossRef]
- David, K.; Berndt, H. 6G vision and requirements: Is there any need for beyond 5G? IEEE vehicular technology magazine 2018, 13, 72–80. [Google Scholar] [CrossRef]
- Yastrebova, A.; Kirichek, R.; Koucheryavy, Y.; Borodin, A.; Koucheryavy, A. Future networks 2030: Architecture & requirements. In In Proceedings of the 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT); IEEE, 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C. What will 5G be? IEEE Journal on selected areas in communications 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Patzold, M. 5G is coming around the corner [mobile radio]. IEEE Vehicular Technology Magazine 2019, 14, 4–10. [Google Scholar] [CrossRef]
- Rommel, S.; Raddo, T.R.; Monroy, I.T. Data center connectivity by 6G wireless systems. 2018 photonics in switching and computing (PSC); IEEE, 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Fang, C.; Yao, H.; Wang, Z.; Wu, W.; Jin, X.; Yu, F.R. A survey of mobile information-centric networking: Research issues and challenges. IEEE Communications Surveys & Tutorials 2018, 20, 2353–2371. [Google Scholar]
- Tataria, H.; Shafi, M.; Molisch, A.F.; Dohler, M.; Sjöland, H.; Tufvesson, F. 6G wireless systems: Vision, requirements, challenges, insights, and opportunities. Proceedings of the IEEE 2021, 109, 1166–1199. [Google Scholar] [CrossRef]
- Cashmore, M.; Collins, A.; Krarup, B.; Krivic, S.; Magazzeni, D.; Smith, D. Towards explainable AI planning as a service. arXiv 2019, arXiv:1908.05059. [Google Scholar]
- Chen, L.; Chen, L.; Jordan, S.; Liu, Y.K.; Moody, D.; Peralta, R.; Perlner, R.A.; Smith-Tone, D. Report on post-quantum cryptography; Vol. 12, US Department of Commerce, National Institute of Standards and Technology …, 2016.
- Van Huynh, N.; Hoang, D.T.; Lu, X.; Niyato, D.; Wang, P.; Kim, D.I. Ambient backscatter communications: A contemporary survey. IEEE Communications surveys & tutorials 2018, 20, 2889–2922. [Google Scholar]
- Mao, Q.; Hu, F.; Hao, Q. Deep learning for intelligent wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials 2018, 20, 2595–2621. [Google Scholar]
- Elayan, H.; Amin, O.; Shihada, B.; Shubair, R.M.; Alouini, M.S. Terahertz band: The last piece of RF spectrum puzzle for communication systems. IEEE Open Journal of the Communications Society 2019, 1, 1–32. [Google Scholar] [CrossRef]
- ITU-R. Minimum Requirements Related to Technical Performance for IMT-2020 Radio Interface(s). Technical Report M.2410-0, 2017.
- Boulogeorgos, A.A.A.; Alexiou, A.; Merkle, T.; Schubert, C.; Elschner, R.; Katsiotis, A.; Stavrianos, P.; Kritharidis, D.; Chartsias, P.K.; Kokkoniemi, J.; et al. Terahertz technologies to deliver optical network quality of experience in wireless systems beyond 5G. IEEE Communications Magazine 2018, 56, 144–151. [Google Scholar] [CrossRef]
- Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D. The road towards 6G: A comprehensive survey. IEEE Open Journal of the Communications Society 2021, 2, 334–366. [Google Scholar] [CrossRef]
- Wang, C.X.; You, X.; Gao, X.; Zhu, X.; Li, Z.; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the road to 6G: Visions, requirements, key technologies and testbeds. IEEE Communications Surveys & Tutorials.
- Kosta, A.; Pappas, N.; Angelakis, V.; et al. Age of information: A new concept, metric, and tool. Foundations and Trends® in Networking 2017, 12, 162–259. [Google Scholar] [CrossRef]
- Song, X.; Qin, X.; Tao, Y.; Liu, B.; Zhang, P. Age based task scheduling and computation offloading in mobile-edge computing systems. 2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW). IEEE, 2019, pp. 1–6. [CrossRef]
- Tang, H.; Wang, J.; Tang, Z.; Song, J. Scheduling to minimize age of synchronization in wireless broadcast networks with random updates. IEEE Transactions on Wireless Communications 2020, 19, 4023–4037. [Google Scholar] [CrossRef]
- Jiang, W.; Strufe, M.; Schotten, H.D. Experimental results for artificial intelligence-based self-organized 5G networks. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE, 2017, pp. 1–6. [CrossRef]
- Alablani, I.A.; Arafah, M.A. An adaptive cell selection scheme for 5G heterogeneous ultra-dense networks. IEEE Access 2021, 9, 64224–64240. [Google Scholar] [CrossRef]
- Sun, W.; Wang, L.; Liu, J.; Kato, N.; Zhang, Y. Movement aware CoMP handover in heterogeneous ultra-dense networks. IEEE Transactions on Communications 2020, 69, 340–352. [Google Scholar] [CrossRef]
- Sharma, S.K.; Wang, X. Toward massive machine type communications in ultra-dense cellular IoT networks: Current issues and machine learning-assisted solutions. IEEE Communications Surveys & Tutorials 2019, 22, 426–471. [Google Scholar]
- Series, M. IMT Vision–Framework and overall objectives of the future development of IMT for 2020 and beyond. Recommendation ITU 2015, 2083. [Google Scholar]
- Nasrallah, A.; Thyagaturu, A.S.; Alharbi, Z.; Wang, C.; Shao, X.; Reisslein, M.; ElBakoury, H. Ultra-low latency (ULL) networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research. IEEE Communications Surveys & Tutorials 2018, 21, 88–145. [Google Scholar]
- Akyildiz, I.F.; Kak, A.; Nie, S. 6G and beyond: The future of wireless communications systems. IEEE access 2020, 8, 133995–134030. [Google Scholar] [CrossRef]
- Zhong, M.; Yang, Y.; Yao, H.; Fu, X.; Dobre, O.A.; Postolache, O. 5G and IoT: Towards a new era of communications and measurements. IEEE Instrumentation & Measurement Magazine 2019, 22, 18–26. [Google Scholar]
- Barneto, C.B.; Turunen, M.; Liyanaarachchi, S.D.; Anttila, L.; Brihuega, A.; Riihonen, T.; Valkama, M. High-accuracy radio sensing in 5G new radio networks: Prospects and self-interference challenge. 2019 53rd Asilomar Conference on Signals, Systems, and Computers. IEEE, 2019, pp. 1159–1163. [CrossRef]
- Lu, Y.; Zheng, X. 6G: A survey on technologies, scenarios, challenges, and the related issues. Journal of Industrial Information Integration 2020, 19, 100158. [Google Scholar] [CrossRef]
- Wang, X.; Kong, L.; Kong, F.; Qiu, F.; Xia, M.; Arnon, S.; Chen, G. Millimeter wave communication: A comprehensive survey. IEEE Communications Surveys & Tutorials 2018, 20, 1616–1653. [Google Scholar]
- Ippolito, L.J. Radio propagation for space communications systems. Proceedings of the IEEE 1981, 69, 697–727. [Google Scholar] [CrossRef]
- Ajorloo, H.; Manzuri-Shalmani, M.T. Modeling beacon period length of the UWB and 60-GHz mmWave WPANs based on ECMA-368 and ECMA-387 standards. IEEE Transactions on Mobile Computing 2012, 12, 1201–1213. [Google Scholar] [CrossRef]
- Nitsche, T.; Cordeiro, C.; Flores, A.B.; Knightly, E.W.; Perahia, E.; Widmer, J.C. IEEE 802.11 ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi. IEEE Communications Magazine 2014, 52, 132–141. [Google Scholar] [CrossRef]
- Han, B.; Wang, L.; Schotten, H.D. A 3D human body blockage model for outdoor millimeter-wave cellular communication. Physical Communication 2017, 25, 502–510. [Google Scholar] [CrossRef]
- Al-samman, A.M.; Azmi, M.H.; Rahman, T.A. A survey of millimeter wave (mm-Wave) communications for 5G: Channel measurement below and above 6 GHz. Recent Trends in Data Science and Soft Computing: Proceedings of the 3rd International Conference of Reliable Information and Communication Technology (IRICT 2018). Springer, 2019, pp. 451–463. [CrossRef]
- Huq, K.M.S.; Busari, S.A.; Rodriguez, J.; Frascolla, V.; Bazzi, W.; Sicker, D.C. Terahertz-enabled wireless system for beyond-5G ultra-fast networks: A brief survey. IEEE network 2019, 33, 89–95. [Google Scholar] [CrossRef]
- Elayan, H.; Amin, O.; Shihada, B.; Shubair, R.M.; Alouini, M.S. Terahertz band: The last piece of RF spectrum puzzle for communication systems. IEEE Open Journal of the Communications Society 2019, 1, 1–32. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, X.; Zhang, B.; Zhang, Y.; Niu, Z.; Kuang, N.; Chen, W.; Li, L.; Li, S. A survey on terahertz communications. China Communications 2019, 16, 1–35. [Google Scholar] [CrossRef]
- Hadi Sarieddeen, N.S.; Al-Naffouri, T.Y.; Alouini, M.S. Next Generation Terahertz Communications: A Rendezvous of Sensing, Imaging, and Localization. IEEE Communications Magazine 2020, 58, 69–75. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, M.; Hua, B.; Lei, M.; Cai, Y.; Zou, Y.; Tian, L.; Li, A.; Huang, Y.; Yu, J.; et al. 6G oriented 100 GbE real-time demonstration of fiber-THz-fiber seamless communication enabled by photonics. 2022 Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2022, pp. 1–3.
- Bariah, L.; Mohjazi, L.; Muhaidat, S.; Sofotasios, P.C.; Kurt, G.K.; Yanikomeroglu, H.; Dobre, O.A. A prospective look: Key enabling technologies, applications and open research topics in 6G networks. IEEE access 2020, 8, 174792–174820. [Google Scholar] [CrossRef]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G networks: Use cases and technologies. IEEE Communications Magazine 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Tavakkolnia, I.; Jagadamma, L.K.; Bian, R.; Manousiadis, P.P.; Videv, S.; Turnbull, G.A.; Samuel, I.D.; Haas, H. Organic photovoltaics for simultaneous energy harvesting and high-speed MIMO optical wireless communications. Light: Science & Applications 2021, 10, 41. [Google Scholar]
- Xu, W.; Zhang, J.; Kim, J.Y.; Huang, W.; Kanhere, S.S.; Jha, S.K.; Hu, W. The design, implementation, and deployment of a smart lighting system for smart buildings. IEEE Internet of Things Journal 2019, 6, 7266–7281. [Google Scholar] [CrossRef]
- Perera, A.; Katz, M.; Godaliyadda, R.; Häkkinen, J.; Strömmer, E. Light-based Internet of Things: Implementation of an optically connected energy-autonomous node. 2021 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2021, pp. 1–7. [CrossRef]
- He, X.; Xie, E.; Islim, M.S.; Purwita, A.A.; McKendry, J.J.; Gu, E.; Haas, H.; Dawson, M.D. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm. Photonics Research 2019, 7, B41–B47. [Google Scholar] [CrossRef]
- Soltani, M.D.; Sarbazi, E.; Bamiedakis, N.; De Souza, P.; Kazemi, H.; Elmirghani, J.M.; White, I.H.; Penty, R.V.; Haas, H.; Safari, M. Safety analysis for laser-based optical wireless communications: A tutorial. Proceedings of the IEEE 2022. [Google Scholar]
- Hamza, A.S.; Deogun, J.S.; Alexander, D.R. Classification framework for free space optical communication links and systems. IEEE Communications Surveys & Tutorials 2018, 21, 1346–1382. [Google Scholar]
- Kazemi, H.; Sarbazi, E.; Soltani, M.D.; Safari, M.; Haas, H. A Tb/s indoor optical wireless backhaul system using VCSEL arrays. 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 2020, pp. 1–6. [CrossRef]
- Yoshida, K.; Manousiadis, P.P.; Bian, R.; Chen, Z.; Murawski, C.; Gather, M.C.; Haas, H.; Turnbull, G.A.; Samuel, I.D. 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link. Nature Communications 2020, 11, 1171. [Google Scholar] [CrossRef]
- Matthews, W.; Ahmed, Z.; Ali, W.; Collins, S. A 3.45 Gigabits/s SiPM-based OOK VLC receiver. IEEE Photonics Technology Letters 2021, 33, 487–490. [Google Scholar] [CrossRef]
- Soltani, M.D.; Purwita, A.A.; Zeng, Z.; Haas, H.; Safari, M. Modeling the random orientation of mobile devices: Measurement, analysis and LiFi use case. IEEE Transactions on Communications 2018, 67, 2157–2172. [Google Scholar] [CrossRef]
- Arfaoui, M.A.; Soltani, M.D.; Tavakkolnia, I.; Ghrayeb, A.; Assi, C.M.; Safari, M.; Haas, H. Measurements-based channel models for indoor LiFi systems. IEEE Transactions on Wireless Communications 2020, 20, 827–842. [Google Scholar] [CrossRef]
- Yesilkaya, A.; Bian, R.; Tavakkolnia, I.; Haas, H. OFDM-based optical spatial modulation. IEEE Journal of Selected Topics in Signal Processing 2019, 13, 1433–1444. [Google Scholar] [CrossRef]
- Eroglu, Y.S.; Anjinappa, C.K.; Guvenc, I.; Pala, N. Slow beam steering and NOMA for indoor multi-user visible light communications. IEEE Transactions on Mobile Computing 2019, 20, 1627–1641. [Google Scholar] [CrossRef]
- Su, N.; Panayirci, E.; Koca, M.; Yesilkaya, A.; Poor, H.V.; Haas, H. Physical layer security for multi-user MIMO visible light communication systems with generalized space shift keying. IEEE Transactions on Communications 2021, 69, 2585–2598. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Hossan, M.T.; Islam, A.; Jang, Y.M. A comparative survey of optical wireless technologies: Architectures and applications. ieee Access 2018, 6, 9819–9840. [Google Scholar] [CrossRef]
- Al-Kinani, A.; Wang, C.X.; Zhou, L.; Zhang, W. Optical wireless communication channel measurements and models. IEEE Communications Surveys & Tutorials 2018, 20, 1939–1962. [Google Scholar]
- Marcus, M.; Burtle, J.; Franca, B.; Lahjouji, A.; McNeil, N. Federal communications commission spectrum policy task force. Report of the unlicensed devices and experimental licenses working group 2002. [Google Scholar]
- Akyildiz, I.F.; Kak, A.; Nie, S. 6G and beyond: The future of wireless communications systems. IEEE access 2020, 8, 133995–134030. [Google Scholar] [CrossRef]
- Kliks, A.; Kulacz, L.; Kryszkiewicz, P.; Bogucka, H.; Dryjanski, M.; Isaksson, M.; Koudouridis, G.P.; Tengkvist, P. Beyond 5G: Big data processing for better spectrum utilization. IEEE Vehicular Technology Magazine 2020, 15, 40–50. [Google Scholar] [CrossRef]
- Liang, Y.C.; Zhang, Q.; Larsson, E.G.; Li, G.Y. Symbiotic radio: Cognitive backscattering communications for future wireless networks. IEEE Transactions on Cognitive Communications and Networking 2020, 6, 1242–1255. [Google Scholar] [CrossRef]
- Bhattarai, S.; Park, J.M.J.; Gao, B.; Bian, K.; Lehr, W. An overview of dynamic spectrum sharing: Ongoing initiatives, challenges, and a roadmap for future research. IEEE Transactions on Cognitive Communications and Networking 2016, 2, 110–128. [Google Scholar] [CrossRef]
- Wang, B.; Liu, K.R. Advances in cognitive radio networks: A survey. IEEE Journal of selected topics in signal processing 2010, 5, 5–23. [Google Scholar] [CrossRef]
- Mitola, J. Cognitive radio for flexible mobile multimedia communications. 1999 IEEE International Workshop on Mobile Multimedia Communications (MoMuC’99)(Cat. No. 99EX384). IEEE, 1999, pp. 3–10. [CrossRef]
- Haykin, S. Cognitive radio: brain-empowered wireless communications. IEEE journal on selected areas in communications 2005, 23, 201–220. [Google Scholar] [CrossRef]
- Zhang, K.; Leng, S.; Peng, X.; Pan, L.; Maharjan, S.; Zhang, Y. Artificial intelligence inspired transmission scheduling in cognitive vehicular communications and networks. IEEE internet of Things Journal 2018, 6, 1987–1997. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Liang, Y.C.; Kam, P.Y. Backscatter-NOMA: A symbiotic system of cellular and Internet-of-Things networks. IEEE Access 2019, 7, 20000–20013. [Google Scholar] [CrossRef]
- Long, R.; Liang, Y.C.; Guo, H.; Yang, G.; Zhang, R. Symbiotic radio: A new communication paradigm for passive Internet of Things. IEEE Internet of Things Journal 2019, 7, 1350–1363. [Google Scholar] [CrossRef]
- Sharma, S.K.; Bogale, T.E.; Le, L.B.; Chatzinotas, S.; Wang, X.; Ottersten, B. Dynamic spectrum sharing in 5G wireless networks with full-duplex technology: Recent advances and research challenges. IEEE Communications Surveys & Tutorials 2017, 20, 674–707. [Google Scholar]
- Naparstek, O.; Cohen, K. Deep multi-user reinforcement learning for distributed dynamic spectrum access. IEEE transactions on wireless communications 2018, 18, 310–323. [Google Scholar] [CrossRef]
- Jacob, S.; Menon, V.G.; Joseph, S.; Vinoj, P.; Jolfaei, A.; Lukose, J.; Raja, G. A novel spectrum sharing scheme using dynamic long short-term memory with CP-OFDMA in 5G networks. IEEE Transactions on Cognitive Communications and Networking 2020, 6, 926–934. [Google Scholar] [CrossRef]
- Hu, S.; Liang, Y.C.; Xiong, Z.; Niyato, D. Blockchain and artificial intelligence for dynamic resource sharing in 6G and beyond. IEEE Wireless Communications 2021, 28, 145–151. [Google Scholar] [CrossRef]
- Nitsche, T.; Cordeiro, C.; Flores, A.B.; Knightly, E.W.; Perahia, E.; Widmer, J.C. IEEE 802.11 ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi. IEEE Communications Magazine 2014, 52, 132–141. [Google Scholar] [CrossRef]
- Wei, Z.; Yuan, W.; Li, S.; Yuan, J.; Bharatula, G.; Hadani, R.; Hanzo, L. Orthogonal time-frequency space modulation: A promising next-generation waveform. IEEE wireless communications 2021, 28, 136–144. [Google Scholar] [CrossRef]
- Darwazeh, I.; Ghannam, H.; Xu, T. The first 15 years of SEFDM: A brief survey. 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE, 2018, pp. 1–7. [CrossRef]
- Li, D. Overlapped multiplexing principle and an improved capacity on additive white Gaussian noise channel. IEEE Access 2017, 6, 6840–6848. [Google Scholar] [CrossRef]
- Liu, F.; Masouros, C.; Petropulu, A.P.; Griffiths, H.; Hanzo, L. Joint radar and communication design: Applications, state-of-the-art, and the road ahead. IEEE Transactions on Communications 2020, 68, 3834–3862. [Google Scholar] [CrossRef]
- Basar, E.; Wen, M.; Mesleh, R.; Di Renzo, M.; Xiao, Y.; Haas, H. Index modulation techniques for next-generation wireless networks. IEEE access 2017, 5, 16693–16746. [Google Scholar] [CrossRef]
- Costello, D.J.; Forney, G.D. Channel coding: The road to channel capacity. Proceedings of the IEEE 2007, 95, 1150–1177. [Google Scholar] [CrossRef]
- Gallager, R. Low-density parity-check codes. IRE Transactions on information theory 1962, 8, 21–28. [Google Scholar] [CrossRef]
- Berrou, C.; Glavieux, A.; Thitimajshima, P. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1. Proceedings of ICC’93-IEEE International Conference on Communications. IEEE, 1993, Vol. 2, pp. 1064–1070. [CrossRef]
- Arikan, E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Transactions on information Theory 2009, 55, 3051–3073. [Google Scholar] [CrossRef]
- Shao, S.; Hailes, P.; Wang, T.Y.; Wu, J.Y.; Maunder, R.G.; Al-Hashimi, B.M.; Hanzo, L. Survey of turbo, LDPC, and polar decoder ASIC implementations. IEEE Communications Surveys & Tutorials 2019, 21, 2309–2333. [Google Scholar]
- Kschischang, F.R.; Frey, B.J.; Loeliger, H.A. Factor graphs and the sum-product algorithm. IEEE Transactions on information theory 2001, 47, 498–519. [Google Scholar] [CrossRef]
- Wiberg, N.; Loeliger, H.A.; Kotter, R. Codes and iterative decoding on general graphs. European Transactions on telecommunications 1995, 6, 513–525. [Google Scholar] [CrossRef]
- Fayyaz, U.U.; Barry, J.R. Low-complexity soft-output decoding of polar codes. IEEE Journal on Selected Areas in Communications 2014, 32, 958–966. [Google Scholar] [CrossRef]
- Tal, I.; Vardy, A. List Decoding of Polar Codes. IEEE Trans. Inf. Theory 2015, 1, 2213–2226. [Google Scholar] [CrossRef]
- Afisiadis, O.; Balatsoukas-Stimming, A.; Burg, A. A low-complexity improved successive cancellation decoder for polar codes. 2014 48th Asilomar Conference on Signals, Systems and Computers. IEEE, 2014, pp. 2116–2120. [CrossRef]
- Elkelesh, A.; Ebada, M.; Cammerer, S.; Ten Brink, S. Belief propagation list decoding of polar codes. IEEE Communications Letters 2018, 22, 1536–1539. [Google Scholar] [CrossRef]
- Shen, Y.; Song, W.; Ren, Y.; Ji, H.; You, X.; Zhang, C. Enhanced belief propagation decoder for 5G polar codes with bit-flipping. IEEE Transactions on Circuits and Systems II: Express Briefs 2020, 67, 901–905. [Google Scholar] [CrossRef]
- Bas, J. Defining turbo codes as irregular LDPC codes. ISWCS 2013; The Tenth International Symposium on Wireless Communication Systems. VDE, 2013, pp. 1–2.
- Tong, J.; Wang, X.; Zhang, Q.; Zhang, H.; Wang, J.; Tong, W. Fast polar codes for terabits-per-second throughput communications. 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2023, pp. 1–6. [CrossRef]
- Studer, C.; Benkeser, C.; Belfanti, S.; Huang, Q. Design and implementation of a parallel turbo-decoder ASIC for 3GPP-LTE. IEEE Journal of Solid-State Circuits 2010, 46, 8–17. [Google Scholar] [CrossRef]
- Cui, H.; Ghaffari, F.; Le, K.; Declercq, D.; Lin, J.; Wang, Z. Design of high-performance and area-efficient decoder for 5G LDPC codes. IEEE Transactions on Circuits and Systems I: Regular Papers 2020, 68, 879–891. [Google Scholar] [CrossRef]
- Ren, Y.; Kristensen, A.T.; Shen, Y.; Balatsoukas-Stimming, A.; Zhang, C.; Burg, A. A sequence repetition node-based successive cancellation list decoder for 5G polar codes: Algorithm and implementation. IEEE Transactions on Signal Processing 2022, 70, 5592–5607. [Google Scholar] [CrossRef]
- Cao, S.; Lin, T.; Zhang, S.; Xu, S.; Zhang, C. A reconfigurable and pipelined architecture for standard-compatible LDPC and polar decoding. IEEE Transactions on Vehicular Technology 2021, 70, 5431–5444. [Google Scholar] [CrossRef]
- Condo, C.; Martina, M.; Masera, G. VLSI implementation of a multi-mode turbo/LDPC decoder architecture. IEEE Transactions on Circuits and Systems I: Regular Papers 2012, 60, 1441–1454. [Google Scholar] [CrossRef]
- Fossorier, M.P.; Lin, S. Soft-decision decoding of linear block codes based on ordered statistics. IEEE Transactions on Information Theory 1995, 41, 1379–1396. [Google Scholar] [CrossRef]
- Duffy, K.R.; Li, J.; Médard, M. Capacity-achieving guessing random additive noise decoding. IEEE Transactions on Information Theory 2019, 65, 4023–4040. [Google Scholar] [CrossRef]
- Arıkan, E. From sequential decoding to channel polarization and back again. arXiv 2019, arXiv:1908.09594. [Google Scholar]
- You, X.; Zhang, C.; Sheng, B.; Huang, Y.; Ji, C.; Shen, Y.; Zhou, W.; Liu, J. Spatiotemporal 2-D channel coding for very low latency reliable MIMO transmission. 2022 IEEE Globecom Workshops (GC Wkshps). IEEE, 2022, pp. 473–479.
- You, X.; Wang, C.X.; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Huang, Y.; Zhang, C.; Jiang, Y.; Wang, J.; et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Science China Information Sciences 2021, 64, 1–74. [Google Scholar]
- Saito, Y.; Kishiyama, Y.; Benjebbour, A.; Nakamura, T.; Li, A.; Higuchi, K. Non-orthogonal multiple access (NOMA) for cellular future radio access. 2013 IEEE 77th vehicular technology conference (VTC Spring). IEEE, 2013, pp. 1–5. [CrossRef]
- Chen, Y.; Bayesteh, A.; Wu, Y.; Ren, B.; Kang, S.; Sun, S.; Xiong, Q.; Qian, C.; Yu, B.; Ding, Z.; et al. Toward the standardization of non-orthogonal multiple access for next generation wireless networks. IEEE Communications Magazine 2018, 56, 19–27. [Google Scholar] [CrossRef]
- Makki, B.; Chitti, K.; Behravan, A.; Alouini, M.S. A survey of NOMA: Current status and open research challenges. IEEE Open Journal of the Communications Society 2020, 1, 179–189. [Google Scholar] [CrossRef]
- Ding, Z.; Lei, X.; Karagiannidis, G.K.; Schober, R.; Yuan, J.; Bhargava, V.K. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications 2017, 35, 2181–2195. [Google Scholar] [CrossRef]
- Zeng, M.; Nguyen, N.P.; Dobre, O.A.; Poor, H.V. Securing downlink massive MIMO-NOMA networks with artificial noise. IEEE Journal of Selected Topics in Signal Processing 2019, 13, 685–699. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Chen, Y.; Poor, H.V. RIS enhanced massive non-orthogonal multiple access networks: Deployment and passive beamforming design. IEEE Journal on Selected Areas in Communications 2020, 39, 1057–1071. [Google Scholar] [CrossRef]
- Li, X.; Zhao, M.; Zeng, M.; Mumtaz, S.; Menon, V.G.; Ding, Z.; Dobre, O.A. Hardware impaired ambient backscatter NOMA systems: Reliability and security. IEEE Transactions on Communications 2021, 69, 2723–2736. [Google Scholar] [CrossRef]
- Marzetta, T.L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE transactions on wireless communications 2010, 9, 3590–3600. [Google Scholar] [CrossRef]
- Wang, B.; Gao, F.; Jin, S.; Lin, H.; Li, G.Y. Spatial-and frequency-wideband effects in millimeter-wave massive MIMO systems. IEEE Transactions on Signal Processing 2018, 66, 3393–3406. [Google Scholar] [CrossRef]
- Yu, X.; Shen, J.C.; Zhang, J.; Letaief, K.B. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing 2016, 10, 485–500. [Google Scholar] [CrossRef]
- Myers, N.J.; Heath, R.W. InFocus: A spatial coding technique to mitigate misfocus in near-field LoS beamforming. IEEE Transactions on Wireless Communications 2021, 21, 2193–2209. [Google Scholar] [CrossRef]
- Wei, X.; Dai, L. Channel estimation for extremely large-scale massive MIMO: Far-field, near-field, or hybrid-field? IEEE Communications Letters 2021, 26, 177–181. [Google Scholar] [CrossRef]
- Huang, J.; Wang, C.X.; Chang, H.; Sun, J.; Gao, X. Multi-frequency multi-scenario millimeter wave MIMO channel measurements and modeling for B5G wireless communication systems. IEEE Journal on Selected Areas in Communications 2020, 38, 2010–2025. [Google Scholar] [CrossRef]
- He, Z.Q.; Yuan, X. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO. IEEE Wireless Communications Letters 2019, 9, 210–214. [Google Scholar] [CrossRef]
- Jamali, V.; Tulino, A.M.; Fischer, G.; Müller, R.R.; Schober, R. Intelligent surface-aided transmitter architectures for millimeter-wave ultra massive MIMO systems. IEEE open journal of the communications society 2020, 2, 144–167. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Cai, Y.; Hanzo, L. RIS-aided hybrid massive MIMO systems relying on adaptive-resolution ADCs: Robust beamforming design and resource allocation. IEEE Transactions on Vehicular Technology 2021, 71, 3281–3286. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Lin, Y.; Zheng, J.; Ai, B.; Hanzo, L. Cell-free massive MIMO: A new next-generation paradigm. IEEE Access 2019, 7, 99878–99888. [Google Scholar] [CrossRef]
- Ammar, H.A.; Adve, R.; Shahbazpanahi, S.; Boudreau, G.; Srinivas, K.V. User-centric cell-free massive MIMO networks: A survey of opportunities, challenges and solutions. IEEE Communications Surveys & Tutorials 2021, 24, 611–652. [Google Scholar]
- Chen, Z.; Björnson, E. Channel hardening and favorable propagation in cell-free massive MIMO with stochastic geometry. IEEE Transactions on Communications 2018, 66, 5205–5219. [Google Scholar] [CrossRef]
- Wei, X.; Hu, C.; Dai, L. Deep learning for beamspace channel estimation in millimeter-wave massive MIMO systems. IEEE Transactions on Communications 2020, 69, 182–193. [Google Scholar] [CrossRef]
- Albreem, M.A.; Alhabbash, A.H.; Shahabuddin, S.; Juntti, M. Deep learning for massive MIMO uplink detectors. IEEE Communications Surveys & Tutorials 2021, 24, 741–766. [Google Scholar]
- Yu, X.; Lu, A.A.; Gao, X.; Li, G.Y.; Ding, G.; Wang, C.X. HF skywave massive MIMO communication. IEEE Transactions on Wireless Communications 2021, 21, 2769–2785. [Google Scholar] [CrossRef]
- Wu, W.; Gao, X.; Sun, C.; Li, G.Y. Shallow underwater acoustic massive MIMO communications. IEEE Transactions on Signal Processing 2021, 69, 1124–1139. [Google Scholar] [CrossRef]
- You, L.; Li, K.X.; Wang, J.; Gao, X.; Xia, X.G.; Ottersten, B. Massive MIMO transmission for LEO satellite communications. IEEE Journal on Selected Areas in Communications 2020, 38, 1851–1865. [Google Scholar] [CrossRef]
- Li, Q.C.; Niu, H.; Papathanassiou, A.T.; Wu, G. 5G network capacity: Key elements and technologies. IEEE Vehicular Technology Magazine 2014, 9, 71–78. [Google Scholar] [CrossRef]
- Ngo, H.Q.; Ashikhmin, A.; Yang, H.; Larsson, E.G.; Marzetta, T.L. Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications 2017, 16, 1834–1850. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L. Cell-free versus cellular massive MIMO: What processing is needed for cell-free to win? 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2019, pp. 1–5. [CrossRef]
- Bassoy, S.; Farooq, H.; Imran, M.A.; Imran, A. Coordinated multi-point clustering schemes: A survey. IEEE Communications Surveys & Tutorials 2017, 19, 743–764. [Google Scholar]
- Kotzsch, V.; Fettweis, G. Interference analysis in time and frequency asynchronous network MIMO OFDM systems. 2010 IEEE Wireless Communication and Networking Conference. IEEE, 2010, pp. 1–6. [CrossRef]
- O’hara, F.; Moore, G. A high performance CW receiver using feedthru nulling. Microwave Journal 1963, 6, 63–71. [Google Scholar]
- Liu, G.; Yu, F.R.; Ji, H.; Leung, V.C.; Li, X. In-band full-duplex relaying: A survey, research issues and challenges. IEEE Communications Surveys & Tutorials 2015, 17, 500–524. [Google Scholar]
- Liu, W.; Huang, K.; Zhou, X.; Durrani, S. Full-duplex backscatter interference networks based on time-hopping spread spectrum. IEEE Transactions on Wireless Communications 2017, 16, 4361–4377. [Google Scholar] [CrossRef]
- Kolodziej, K.E.; Perry, B.T.; Herd, J.S. In-band full-duplex technology: Techniques and systems survey. IEEE Transactions on Microwave Theory and Techniques 2019, 67, 3025–3041. [Google Scholar] [CrossRef]
- Nawaz, H.; Tekin, I. Double-differential-fed, dual-polarized patch antenna with 90 dB interport RF isolation for a 2.4 GHz in-band full-duplex transceiver. IEEE Antennas and Wireless Propagation Letters 2017, 17, 287–290. [Google Scholar] [CrossRef]
- Komatsu, K.; Miyaji, Y.; Uehara, H. Iterative nonlinear self-interference cancellation for in-band full-duplex wireless communications under mixer imbalance and amplifier nonlinearity. IEEE Transactions on Wireless Communications 2020, 19, 4424–4438. [Google Scholar] [CrossRef]
- Komatsu, K.; Miyaji, Y.; Uehara, H. Theoretical analysis of in-band full-duplex radios with parallel hammerstein self-interference cancellers. IEEE Transactions on Wireless Communications 2021, 20, 6772–6786. [Google Scholar] [CrossRef]
- Chang, M.P.; Blow, E.C.; Lu, M.Z.; Sun, J.J.; Prucnal, P.R. RF characterization of an integrated microwave photonic circuit for self-interference cancellation. IEEE Transactions on Microwave Theory and Techniques 2017, 66, 596–605. [Google Scholar] [CrossRef]
- Wang, D.; Li, P.; Wang, Y.; Li, T.; Yang, F.; Zhou, T.; Rong, L. Photonics-assisted frequency conversion and self-interference cancellation for in-band full-duplex communication. Journal of Lightwave Technology 2021, 40, 607–614. [Google Scholar] [CrossRef]
- Rong, B. 6G: The next horizon: From connected people and things to connected intelligence. IEEE Wireless Communications 2021, 28, 8. [Google Scholar] [CrossRef]
- Chen, S.; Liang, Y.C.; Sun, S.; Kang, S.; Cheng, W.; Peng, M. Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wireless Communications 2020, 27, 218–228. [Google Scholar] [CrossRef]
- You, X.; Wang, C.X.; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Huang, Y.; Zhang, C.; Jiang, Y.; Wang, J.; et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Science China Information Sciences 2021, 64, 1–74. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, S.; He, W.; Yu, X.; Zhang, X. Terahertz orbital angular momentum: Generation, detection and communication. China Communications 2021, 18, 131–152. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, H.; Moretti, M.; Wang, X.; Li, J. Orbital angular momentum waves: Generation, detection, and emerging applications. IEEE Communications Surveys & Tutorials 2019, 22, 840–868. [Google Scholar]
- Yousif, B.B.; Elsayed, E.E. Performance enhancement of an orbital-angular-momentum-multiplexed free-space optical link under atmospheric turbulence effects using spatial-mode multiplexing and hybrid diversity based on adaptive MIMO equalization. IEEE access 2019, 7, 84401–84412. [Google Scholar] [CrossRef]
- Werner, D.H.; Jiang, Z.H. Electromagnetic vortices: wave phenomena and engineering applications; John Wiley & Sons, 2021. [Google Scholar]
- Liu, K.; Cheng, Y.; Li, X.; Gao, Y. Microwave-sensing technology using orbital angular momentum: Overview of its advantages. IEEE Vehicular Technology Magazine 2019, 14, 112–118. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, Y.; Wang, Y.; Guo, K.; Gong, Y.; Guo, Z. Throughput performance of wireless multiple-input multiple-output systems using OAM antennas. IEEE Wireless Communications Letters 2020, 10, 261–265. [Google Scholar] [CrossRef]
- Liang, L.; Cheng, W.; Zhang, W.; Zhang, H. Joint OAM multiplexing and OFDM in sparse multipath environments. IEEE Transactions on Vehicular Technology 2020, 69, 3864–3878. [Google Scholar] [CrossRef]
- ElMossallamy, M.A.; Zhang, H.; Song, L.; Seddik, K.G.; Han, Z.; Li, G.Y. Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities. IEEE Transactions on Cognitive Communications and Networking 2020, 6, 990–1002. [Google Scholar] [CrossRef]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; De Rosny, J.; Tretyakov, S. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE journal on selected areas in communications 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Rahman, M.E.; Munir, M.S.; Shetty, S. An Attention-based AI Model for 3D Beam Prediction in THz Unmanned Aerial Vehicle Communication. Proceedings of the International Conference on Computing, Networking and Communications (ICNC 2024); IEEE,, 2024; pp. 761–766.
- Björnson, E.; Sanguinetti, L.; Wymeersch, H.; Hoydis, J.; Marzetta, T.L. Massive MIMO is a reality—What is next?: Five promising research directions for antenna arrays. Digital Signal Processing 2019, 94, 3–20. [Google Scholar] [CrossRef]
- Zong, B.; Fan, C.; Wang, X.; Duan, X.; Wang, B.; Wang, J. 6G technologies: Key drivers, core requirements, system architectures, and enabling technologies. IEEE Vehicular Technology Magazine 2019, 14, 18–27. [Google Scholar] [CrossRef]
- Deng, R.; Di, B.; Zhang, H.; Tan, Y.; Song, L. Reconfigurable holographic surface: Holographic beamforming for metasurface-aided wireless communications. IEEE Transactions on Vehicular Technology 2021, 70, 6255–6259. [Google Scholar] [CrossRef]
- Wan, Z.; Gao, Z.; Gao, F.; Di Renzo, M.; Alouini, M.S. Terahertz massive MIMO with holographic reconfigurable intelligent surfaces. IEEE Transactions on Communications 2021, 69, 4732–4750. [Google Scholar] [CrossRef]
- Konkol, M.R.; Ross, D.D.; Shi, S.; Harrity, C.E.; Wright, A.A.; Schuetz, C.A.; Prather, D.W. High-power photodiode-integrated-connected array antenna. Journal of Lightwave Technology 2017, 35, 2010–2016. [Google Scholar] [CrossRef]
- Jiang, W.; Schotten, H.D. Multi-antenna fading channel prediction empowered by artificial intelligence. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall). IEEE, 2018, pp. 1–6. [CrossRef]
- Jiang, W.; Strufe, M.; Schotten, H.D. A SON decision-making framework for intelligent management in 5G mobile networks. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). IEEE, 2017, pp. 1158–1162. [CrossRef]
- Jiang, W.; Schotten, H.D. Deep learning for fading channel prediction. IEEE Open Journal of the Communications Society 2020, 1, 320–332. [Google Scholar] [CrossRef]
- Jiang, W.; Strufe, M.; Schotten, H.D. Experimental results for artificial intelligence-based self-organized 5G networks. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE, 2017, pp. 1–6. [CrossRef]
- Huang, H.; Song, Y.; Yang, J.; Gui, G.; Adachi, F. Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Transactions on Vehicular Technology 2019, 68, 3027–3032. [Google Scholar] [CrossRef]
- Jiang, W.; Schotten, H.D. Neural network-based fading channel prediction: A comprehensive overview. IEEE Access 2019, 7, 118112–118124. [Google Scholar] [CrossRef]
- Jiang, W.; Schotten, H.D. Recurrent neural networks with long short-term memory for fading channel prediction. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). IEEE, 2020, pp. 1–5. [CrossRef]
- Jiang, W.; Strufe, M.; Schotten, H.D. Intelligent network management for 5G systems: The SELFNET approach. 2017 European conference on networks and communications (EuCNC). IEEE, 2017, pp. 1–5. [CrossRef]
- Letaief, K.B.; Chen, W.; Shi, Y.; Zhang, J.; Zhang, Y.J.A. The roadmap to 6G: AI empowered wireless networks. IEEE communications magazine 2019, 57, 84–90. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, F.; Jing, X.; Mu, J. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges. IEEE Network 2021, 35, 158–167. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rahman, M.L.; Wu, K.; Huang, X.; Guo, Y.J.; Chen, S.; Yuan, J. Enabling joint communication and radar sensing in mobile networks—A survey. IEEE Communications Surveys & Tutorials 2021, 24, 306–345. [Google Scholar]
- Mealey, R.M. A method for calculating error probabilities in a radar communication system. IEEE Transactions on Space Electronics and Telemetry 1963, 9, 37–42. [Google Scholar] [CrossRef]
- Sturm, C.; Wiesbeck, W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proceedings of the IEEE 2011, 99, 1236–1259. [Google Scholar] [CrossRef]
- Zhang, J.A.; Liu, F.; Masouros, C.; Heath, R.W.; Feng, Z.; Zheng, L.; Petropulu, A. An overview of signal processing techniques for joint communication and radar sensing. IEEE Journal of Selected Topics in Signal Processing 2021, 15, 1295–1315. [Google Scholar] [CrossRef]
- Chiriyath, A.R.; Paul, B.; Jacyna, G.M.; Bliss, D.W. Inner bounds on performance of radar and communications co-existence. IEEE Transactions on Signal Processing 2015, 64, 464–474. [Google Scholar] [CrossRef]
- Kumari, P.; Choi, J.; González-Prelcic, N.; Heath, R.W. IEEE 802.11 ad-based radar: An approach to joint vehicular communication-radar system. IEEE Transactions on Vehicular Technology 2017, 67, 3012–3027. [Google Scholar] [CrossRef]
- Tschorsch, F.; Scheuermann, B. Bitcoin and beyond: A technical survey on decentralized digital currencies. IEEE Communications Surveys & Tutorials 2016, 18, 2084–2123. [Google Scholar]
- Dai, H.N.; Zheng, Z.; Zhang, Y. Blockchain for Internet of Things: A survey. IEEE Internet of Things Journal 2019, 6, 8076–8094. [Google Scholar] [CrossRef]
- Xie, J.; Yu, F.R.; Huang, T.; Xie, R.; Liu, J.; Liu, Y. A survey on the scalability of blockchain systems. IEEE network 2019, 33, 166–173. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Pathirana, P.N.; Ding, M.; Seneviratne, A. Blockchain for 5G and beyond networks: A state of the art survey. Journal of Network and Computer Applications 2020, 166, 102693. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, Y.; Niyato, D.; Wang, P.; Han, Z. When mobile blockchain meets edge computing. IEEE Communications Magazine 2018, 56, 33–39. [Google Scholar] [CrossRef]
- Shi, G.; Xiao, Y.; Li, Y.; Xie, X. From semantic communication to semantic-aware networking: Model, architecture, and open problems. IEEE Communications Magazine 2021, 59, 44–50. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. The Bell system technical journal 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. A mathematical model of communication. Urbana, IL: University of Illinois Press 1949, 11, 11–20. [Google Scholar]
- Barwise, J.; Perry, J. Situations and attitudes. The Journal of Philosophy 1981, 78, 668–691. [Google Scholar] [CrossRef]
- Floridi, L. Outline of a theory of strongly semantic information. Minds and machines 2004, 14, 197–221. [Google Scholar] [CrossRef]
- Bao, J.; Basu, P.; Dean, M.; Partridge, C.; Swami, A.; Leland, W.; Hendler, J.A. Towards a theory of semantic communication. 2011 IEEE Network Science Workshop. IEEE, 2011, pp. 110–117. [CrossRef]
- Zhong, Y.; Zhang, R. Information ecology and semantic information theory. Documentation, information & knowledge 2017, 6, 4–11. [Google Scholar]
- Zhong, Y. A theory of semantic information. China communications 2017, 14, 1–17. [Google Scholar] [CrossRef]
- O’shea, T.; Hoydis, J. An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking 2017, 3, 563–575. [Google Scholar] [CrossRef]
- Güler, B.; Yener, A.; Swami, A. The semantic communication game. IEEE Transactions on Cognitive Communications and Networking 2018, 4, 787–802. [Google Scholar] [CrossRef]
- Xie, H.; Qin, Z.; Li, G.Y.; Juang, B.H. Deep learning enabled semantic communication systems. IEEE Transactions on Signal Processing 2021, 69, 2663–2675. [Google Scholar] [CrossRef]
- Xie, H.; Qin, Z. A lite distributed semantic communication system for Internet of Things. IEEE Journal on Selected Areas in Communications 2020, 39, 142–153. [Google Scholar] [CrossRef]
- Dahl, G.E.; Yu, D.; Deng, L.; Acero, A. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Transactions on audio, speech, and language processing 2011, 20, 30–42. [Google Scholar] [CrossRef]
- Kimionis, J.; Bletsas, A.; Sahalos, J.N. Increased range bistatic scatter radio. IEEE Transactions on Communications 2014, 62, 1091–1104. [Google Scholar] [CrossRef]
- Stockman, H. Communication by means of reflected power. Proceedings of the IRE 1948, 36, 1196–1204. [Google Scholar] [CrossRef]
- Kimionis, J.; Georgiadis, A.; Daskalakis, S.N.; Tentzeris, M.M. A printed millimetre-wave modulator and antenna array for backscatter communications at gigabit data rates. Nature Electronics 2021, 4, 439–446. [Google Scholar] [CrossRef]
- Zawawi, Z.B.; Huang, Y.; Clerckx, B. Multiuser wirelessly powered backscatter communications: Nonlinearity, waveform design, and SINR-energy tradeoff. IEEE Transactions on Wireless Communications 2018, 18, 241–253. [Google Scholar] [CrossRef]
- Duan, R.; Jäntti, R.; Yiğitler, H.; Ruttik, K. On the achievable rate of bistatic modulated rescatter systems. IEEE Transactions on Vehicular Technology 2017, 66, 9609–9613. [Google Scholar] [CrossRef]
- Fasarakis-Hilliard, N.; Alevizos, P.N.; Bletsas, A. Coherent detection and channel coding for bistatic scatter radio sensor networking. IEEE Transactions on Communications 2015, 63, 1798–1810. [Google Scholar] [CrossRef]
- Kashyap, S.; Björnson, E.; Larsson, E.G. On the feasibility of wireless energy transfer using massive antenna arrays. IEEE Transactions on Wireless Communications 2016, 15, 3466–3480. [Google Scholar] [CrossRef]
- Yang, G.; Ho, C.K.; Guan, Y.L. Multi-antenna wireless energy transfer for backscatter communication systems. IEEE Journal on Selected Areas in Communications 2015, 33, 2974–2987. [Google Scholar] [CrossRef]
- Mishra, D.; Larsson, E.G. Optimal channel estimation for reciprocity-based backscattering with a full-duplex MIMO reader. IEEE Transactions on Signal Processing 2019, 67, 1662–1677. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, J.; Ji, Y.; Bai, L.; Sun, X. Network topology reconfiguration for FSO-based fronthaul/backhaul in 5G+ wireless networks. IEEE Access 2018, 6, 69426–69437. [Google Scholar] [CrossRef]
- Douik, A.; Dahrouj, H.; Al-Naffouri, T.Y.; Alouini, M.S. Hybrid radio/free-space optical design for next generation backhaul systems. IEEE Transactions on Communications 2016, 64, 2563–2577. [Google Scholar] [CrossRef]
- Bag, B.; Das, A.; Ansari, I.S.; Prokeš, A.; Bose, C.; Chandra, A. Performance analysis of hybrid FSO systems using FSO/RF-FSO link adaptation. IEEE Photonics Journal 2018, 10, 1–17. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, Y.; Cheng, J.; Hossain, M.J.; Leung, V.C. Fronthauling for 5G LTE-U ultra dense cloud small cell networks. IEEE Wireless Communications 2016, 23, 48–53. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Hasan, M.K.; Shahjalal, M.; Hossan, M.T.; Jang, Y.M. Optical wireless hybrid networks: Trends, opportunities, challenges, and research directions. IEEE Communications Surveys & Tutorials 2020, 22, 930–966. [Google Scholar]
- Pan, C.; Yi, J.; Yin, C.; Yu, J.; Li, X. Joint 3D UAV placement and resource allocation in software-defined cellular networks with wireless backhaul. IEEE Access 2019, 7, 104279–104293. [Google Scholar] [CrossRef]
- Mozaffari, M.; Kasgari, A.T.Z.; Saad, W.; Bennis, M.; Debbah, M. Beyond 5G with UAVs: Foundations of a 3D wireless cellular network. IEEE Transactions on Wireless Communications 2018, 18, 357–372. [Google Scholar] [CrossRef]
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.S. What should 6G be? Nature Electronics 2020, 3, 20–29. [Google Scholar] [CrossRef]
- Huang, T.; Yang, W.; Wu, J.; Ma, J.; Zhang, X.; Zhang, D. A survey on green 6G network: Architecture and technologies. IEEE access 2019, 7, 175758–175768. [Google Scholar] [CrossRef]
- Tariq, F.; Khandaker, M.R.; Wong, K.K.; Imran, M.A.; Bennis, M.; Debbah, M. A speculative study on 6G. IEEE Wireless Communications 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Chen, X.; Zhang, Z. Wireless information and energy transfer in interference aware massive MIMO systems. 2014 IEEE Global Communications Conference. IEEE, 2014, pp. 2556–2561. [CrossRef]
- Kobayashi, M.; Caire, G.; Kramer, G. Joint state sensing and communication: Optimal tradeoff for a memoryless case. 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018, pp. 111–115. [CrossRef]
- Shen, X.; Gao, J.; Wu, W.; Lyu, K.; Li, M.; Zhuang, W.; Li, X.; Rao, J. AI-assisted network-slicing based next-generation wireless networks. IEEE Open Journal of Vehicular Technology 2020, 1, 45–66. [Google Scholar] [CrossRef]
- Yi, C.; Huang, S.; Cai, J. An incentive mechanism integrating joint power, channel and link management for social-aware D2D content sharing and proactive caching. IEEE Transactions on Mobile Computing 2017, 17, 789–802. [Google Scholar] [CrossRef]
- Nasimi, M.; Habibi, M.A.; Han, B.; Schotten, H.D. Edge-assisted congestion control mechanism for 5G network using software-defined networking. 2018 15th International symposium on wireless communication systems (ISWCS). IEEE, 2018, pp. 1–5. [CrossRef]
- Habibi, M.A.; Han, B.; Nasimi, M.; Kuruvatti, N.P.; Fellan, A.; Schotten, H.D. Towards a fully virtualized, cloudified, and slicing-aware RAN for 6G mobile networks. In 6G Mobile Wireless Networks; Springer, 2021; pp. 327–358. [Google Scholar]
- ENI, E.G. Experiential Networked Intelligence (ENI) Requirements, version 2.1. 1; ETSI: Sophia Antipolis, France, 2019. [Google Scholar]
- Wang, C.X.; Lv, Z.; Gao, X.; You, X.; Hao, Y.; Haas, H. Pervasive wireless channel modeling theory and applications to 6G GBSMs for all frequency bands and all scenarios. IEEE Transactions on Vehicular Technology 2022, 71, 9159–9173. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Wang, C.X.; Sun, J.; Xiao, H. 5G millimeter wave channel sounders, measurements, and models: Recent developments and future challenges. IEEE Communications Magazine 2018, 57, 138–145. [Google Scholar] [CrossRef]
- Nielsen, J.O.; Fan, W.; Eggers, P.C.; Pedersen, G.F. A channel sounder for massive MIMO and mmWave channels. IEEE Communications Magazine 2018, 56, 67–73. [Google Scholar] [CrossRef]
- Roh, W.; Seol, J.Y.; Park, J.; Lee, B.; Lee, J.; Kim, Y.; Cho, J.; Cheun, K.; Aryanfar, F. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE communications magazine 2014, 52, 106–113. [Google Scholar] [CrossRef]
- Raghavan, V.; Partyka, A.; Sampath, A.; Subramanian, S.; Koymen, O.H.; Ravid, K.; Cezanne, J.; Mukkavilli, K.; Li, J. Millimeter-wave MIMO prototype: Measurements and experimental results. IEEE Communications Magazine 2018, 56, 202–209. [Google Scholar] [CrossRef]
- Anjos, E.V.; SalarRahimi, M.; Bressner, T.A.; Takhighani, P.; Lahuerta-Lavieja, A.; Elsakka, A.; Siebenga, J.S.; Volski, V.; Fager, C.; Schreurs, D.; et al. FORMAT: A reconfigurable tile-based antenna array system for 5G and 6G millimeter-wave testbeds. IEEE Systems Journal 2022, 16, 4489–4500. [Google Scholar] [CrossRef]
- Chung, M.; Liu, L.; Johansson, A.; Gunnarsson, S.; Nilsson, M.; Ying, Z.; Zander, O.; Samanta, K.; Clifton, C.; Koimori, T.; et al. LuMaMi28: Real-time millimeter-wave massive MIMO systems with antenna selection. arXiv 2021, arXiv:2109.03273. [Google Scholar]
- Cai, Y.; Zhu, M.; Liang, S.; Zhang, J.; Lei, M.; Hua, B.; Wang, P.; Tian, L.; Zou, Y.; Li, A.; et al. Demonstration of real-time photonics-assisted mm-wave communication based on Ka-band large-scale phased-array antenna and automatic beam tracking technique. Optical Fiber Communication Conference. Optica Publishing Group, 2022, pp. M3Z–12.
- Sen, P.; Pados, D.A.; Batalama, S.N.; Einarsson, E.; Bird, J.P.; Jornet, J.M. The TeraNova platform: An integrated testbed for ultra-broadband wireless communications at true Terahertz frequencies. Computer Networks 2020, 179, 107370. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, J.; Yu, J.; You, X. Demonstration of record-high 352-Gbps terahertz wired transmission over hollow-core fiber at 325 GHz, 2022.
- Zhang, J.; Zhu, M.; Hua, B.; Lei, M.; Cai, Y.; Zou, Y.; Tian, L.; Li, A.; Huang, Y.; Yu, J.; et al. 6G oriented 100 GbE real-time demonstration of fiber-THz-fiber seamless communication enabled by photonics. 2022 Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2022, pp. 1–3.
- Boulogeorgos, A.A.A.; Alexiou, A.; Merkle, T.; Schubert, C.; Elschner, R.; Katsiotis, A.; Stavrianos, P.; Kritharidis, D.; Chartsias, P.K.; Kokkoniemi, J.; Juntti, M.; Lehtomaki, J.; Teixeira, A.; Rodrigues, F. Terahertz Technologies to Deliver Optical Network Quality of Experience in Wireless Systems Beyond 5G. IEEE Communications Magazine 2018, 56, 144–151. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, S.; Di, B.; Tan, Y.; Di Renzo, M.; Debbah, M.; Han, Z.; Poor, H.V.; Song, L. Intelligent omni-surfaces for full-dimensional wireless communications: Principles, technology, and implementation. IEEE Communications Magazine 2022, 60, 39–45. [Google Scholar] [CrossRef]
- Araghi, A.; Khalily, M.; Safaei, M.; Bagheri, A.; Singh, V.; Wang, F.; Tafazolli, R. Reconfigurable intelligent surface (RIS) in the sub-6 GHz band: Design, implementation, and real-world demonstration. IEEE Access 2022, 10, 2646–2655. [Google Scholar] [CrossRef]
- Amri, M.M.; Tran, N.M.; Choi, K.W. Reconfigurable intelligent surface-aided wireless communications: Adaptive beamforming and experimental validations. IEEE Access 2021, 9, 147442–147457. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Wang, M.; Yang, X.; Tan, J.; Bi, S.; Xu, S.; Yang, F.; Chen, Z.; Di Renzo, M.; et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results. IEEE access 2020, 8, 45913–45923. [Google Scholar] [CrossRef]
- Li, O.; He, J.; Zeng, K.; Yu, Z.; Du, X.; Liang, Y.; Wang, G.; Chen, Y.; Zhu, P.; Tong, W.; et al. Integrated sensing and communication in 6G a prototype of high resolution THz sensing on portable device. 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). IEEE, 2021, pp. 544–549. [CrossRef]
- Xu, T.; Liu, F.; Masouros, C.; Darwazeh, I. An experimental proof of concept for integrated sensing and communications waveform design. IEEE Open Journal of the Communications Society 2022, 3, 1643–1655. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, Y.; Hu, Y.; Xu, G.; Zhang, J.C. Distributed FD-MIMO (D-FD-MIMO): from concept to field test. 2022 IEEE Radio and Wireless Symposium (RWS). IEEE, 2022, pp. 86–89. [CrossRef]
- Callebaut, G.; Van Mulders, J.; Ottoy, G.; Delabie, D.; Cox, B.; Stevens, N.; Van der Perre, L. Techtile–open 6g r&d testbed for communication, positioning, sensing, wpt and federated learning. 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). IEEE, 2022, pp. 417–422. [CrossRef]
- Wang, D.; Zhang, C.; Du, Y.; Zhao, J.; Jiang, M.; You, X. Implementation of a cloud-based cell-free distributed massive MIMO system. IEEE Communications Magazine 2020, 58, 61–67. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, Z.; Li, J.; Ge, D.; Chen, Z.; Vellekoop, I.M.; Koonen, A. Wide-coverage beam-steered 40-Gbit/s non-line-of-sight optical wireless connectivity for Industry 4.0. Journal of Lightwave technology 2020, 38, 6801–6806. [Google Scholar] [CrossRef]
- Haas, H.; Yin, L.; Chen, C.; Videv, S.; Parol, D.; Poves, E.; Alshaer, H.; Islim, M.S. Introduction to indoor networking concepts and challenges in LiFi. Journal of Optical Communications and Networking 2020, 12, A190–A203. [Google Scholar] [CrossRef]
- Matsuda, K.; Binkai, M.; Koshikawa, S.; Yoshida, T.; Sano, H.; Konishi, Y.; Suzuki, N. Field demonstration of real-time 14 Tb/s 220 m FSO transmission with class 1 eye-safe 9-aperture transmitter. Optical Fiber Communication Conference. Optica Publishing Group, 2021, pp. F3C–2. [CrossRef]
- Dochhan, A.; Poliak, J.; Surof, J.; Richerzhagen, M.; Kelemu, H.F.; Calvo, R.M. 13.16 Tbit/s free-space optical transmission over 10.45 km for geostationary satellite feeder-links. Photonic Networks; 20th ITG-Symposium. VDE, 2019, pp. 1–3.
- Lain, J.K.; Yang, Z.D.; Xu, T.W. Experimental DCO-OFDM optical camera communication systems with a commercial smartphone camera. IEEE Photonics Journal 2019, 11, 1–13. [Google Scholar] [CrossRef]
- Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Di Renzo, M.; Debbah, M. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends. IEEE Wireless Communications 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Kato, N.; Mao, B.; Tang, F.; Kawamoto, Y.; Liu, J. Ten challenges in advancing machine learning technologies toward 6G. IEEE Wireless Communications 2020, 27, 96–103. [Google Scholar] [CrossRef]
- Katz, M.; Pirinen, P.; Posti, H. Towards 6G: Getting ready for the next decade. 2019 16th international symposium on wireless communication systems (ISWCS). IEEE, 2019, pp. 714–718.
- Nayak, S.; Patgiri, R. 6G communication: Envisioning the key issues and challenges. arXiv 2020, arXiv:2004.04024. [Google Scholar] [CrossRef]
- Yan, L.; Han, C.; Yuan, J. Hybrid precoding for 6G terahertz communications: Performance evaluation and open problems. 2020 2nd 6G Wireless Summit (6G SUMMIT). IEEE, 2020, pp. 1–5. [CrossRef]
- Mumtaz, S.; Jornet, J.M.; Aulin, J.; Gerstacker, W.H.; Dong, X.; Ai, B. Terahertz communication for vehicular networks. IEEE Transactions on Vehicular Technology 2017, 66. [Google Scholar]
- Series, M. Passive and active antenna systems for base stations of IMT systems 2015.
- Elmeadawy, S.; Shubair, R.M. 6G wireless communications: Future technologies and research challenges. 2019 international conference on electrical and computing technologies and applications (ICECTA). IEEE, 2019, pp. 1–5. [CrossRef]
- Gui, G.; Liu, M.; Tang, F.; Kato, N.; Adachi, F. 6G: Opening new horizons for integration of comfort, security, and intelligence. IEEE Wireless Communications 2020, 27, 126–132. [Google Scholar] [CrossRef]
- Yang, P.; Xiao, Y.; Xiao, M.; Li, S. 6G wireless communications: Vision and potential techniques. IEEE network 2019, 33, 70–75. [Google Scholar] [CrossRef]
- Yao, H.; Wang, L.; Wang, X.; Lu, Z.; Liu, Y. The space-terrestrial integrated network: An overview. IEEE Communications Magazine 2018, 56, 178–185. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open Journal of the Communications Society 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Dohler, M.; Heath, R.W.; Lozano, A.; Papadias, C.B.; Valenzuela, R.A. Is the PHY layer dead? IEEE Communications Magazine 2011, 49, 159–165. [Google Scholar] [CrossRef]
- Raghavan, V.; Li, J. Evolution of physical-layer communications research in the post-5G era. IEEE access 2019, 7, 10392–10401. [Google Scholar] [CrossRef]
- David, K.; Berndt, H. 6G vision and requirements: Is there any need for beyond 5G? IEEE vehicular technology magazine 2018, 13, 72–80. [Google Scholar] [CrossRef]
- Drake, F. Mobile phone masts: protesting the scientific evidence. Public understanding of science 2006, 15, 387–410. [Google Scholar] [CrossRef]
- Philbeck, I. Connecting the unconnected: Working together to achieve connect 2020 agenda targets. Special session of the Broadband Commission and the World Economic Forum at Davos Annual Meeting, 2017.



| KPI Name | Definition and Context | 5G | 6G | Improvement (Times) |
|---|---|---|---|---|
| Peak data rate | The highest attainable data transfer rate per user or, device under optimal circumstances. | 20 Gbps [25] | 1 Tbps | 50 Times |
| User perceived data rate | User-perceived data rate refers to the speed at which data is sent and may be accessed by a mobile user or device throughout the whole service area. | 100 Mbps [25] | 10 Gbps | 100 Times |
| Latency | The amount of time a packet takes to go from its source to its destination is known as its latency. | 1 ms [25] | 0.1 ms | 10 Times |
| Delay jitter | Variability in the time it takes for packets to reach the destination, causing fluctuations in transmission delay. | 1 ms [26] | 1 μs | 1000 Times |
| Area traffic capacity | Aggregate data transfer capacity provided within a specified geographical region. | 10 Mbps/m2 | 10 Gbps/m2 | 1000 Times |
| Connection density | The collective count of connected and/or reachable devices within a defined area. | 106 devices/km2 [25] | 108 devices/km2 | 100 Times |
| Coverage | The proportion of network service availability across a given area. | 10% | 99% | 10 Times |
| Spectrum efficiency | The mean data transfer rate per spectrum allocation and per cellular unit. | 30 bps/Hz [27] | ≥90 bps/Hz | ≥3 Times |
| Network energy efficiency | Refers to the ratio of data bits delivered or received by users to the quantity of energy used per unit. | 107 bit/J | 109 bit/J | 100 Times |
| Cost efficiency | Refers to the relationship between the value obtained from a user’s data use and the cost of the data traffic involved. | 10 Gb/$ | 500 Gb/$ | 50 Times |
| Mobility | Refers to the maximum attainable velocity at which a certain level of service quality (QoS) can be maintained, while ensuring smooth transitions between different radio nodes. | 500 km/h [25] | 1000 km/h | 2 Times |
| Battery life | The amount of time an IoT device’s battery will last. | 10 years [28] | 20 years | 2 Times |
| Reliability | The rate of successful packet reception within a defined upper delay threshold. | 99.999% | >99.99999% | >100 Times |
| Positioning | The precision of positioning for both indoor and outdoor environments. | 1 m & 10 m | 10 cm & 1 m | 10 Times |
| Sensing/Imaging resolution | The process of sensing and capturing visual information at a high level of detail. | 1 m [29] | 1 mm | 1000 Times |
| Security capacity | The transmission rate of reliable data under the risk of being intercepted by other parties. | Low | High | – |
| Intelligence level | The smart level of the information method. | Low | High | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
