Submitted:
07 May 2024
Posted:
08 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Simulation of PALSAR-3 SLC Data with Two Spectral Bands Based on PALSAR-2 SM1 Mode SLC Data
2.2. Adapting the Split-Spectrum Method to the PALSAR-3 and NISAR L-Band SAR Cases
2.3. Processing Related Aspects
2.3.1. Band-Pass Filtering
2.3.2. Effects of the SLC co-Registration on the Interferogram
2.3.3. Interferogram Filtering and Unwrapping
3. Results Using Simulated PALSAR-3 Data over Osaka
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1. [Google Scholar] [CrossRef]
- Rosen, P.; Hensley, S.; Joughin, I.; Li, F.; Madsen, S.; Rodriguez, E.; Goldstein, R. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Zink, M.; Moreira, A. TanDEM-X mission status: The new topography of the earth takes shape. IEEE IGARSS 2014, pp. 3386-3389.
- Massonet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by SAR interferometry, Nature 1993, 364, 138-142.
- Sato, H.P.; Harp, E.L. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth. Landslides 2009, 6, 153–159. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Myer, D.; Mellors, R.; Shimada, M.; Brooks, B.; Foster, J. Accuracy and Resolution of ALOS Interferometry: Vector Deformation Maps of the Father's Day Intrusion at Kilauea. IEEE Trans. Geosci. Remote. Sens. 2008, 46, 3524–3534. [Google Scholar] [CrossRef]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Delacourt, C.; Allemand, P.; Berthier, E.; Raucoules, D.; Casson, B.; Grandjean, P.; Pambrun, C.; Varel, E. Remote-sensing techniques for analysing landslide kinematics: a review. BSGF - Earth Sci. Bull. 2007, 178, 89–100. [Google Scholar] [CrossRef]
- Strozzi, T.; Ambrosi, C.; Raetzo, H. Interpretation of Aerial Photographs and Satellite SAR Interferometry for the Inventory of Landslides. Remote. Sens. 2013, 5, 2554–2570. [Google Scholar] [CrossRef]
- Joughin, I.; Kwok, R.; Fahnestock, M. Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland, Journal of Glaciology 1996, 42-142.
- Goldstein, R.M.; Engelhardt, H.; Kamb, B.; Frolich, R.M. Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream. Science 1993, 262, 1525–1530. [Google Scholar] [CrossRef] [PubMed]
- Mohr, J.J.; Reeh, N.; Madsen, S.N. Three-dimensional glacial flow and surface elevation measured with radar interferometry. Nature 1998, 391, 273–276. [Google Scholar] [CrossRef]
- Gray, A.L.; Mattar, K.E.; Sofko, G. Influence of ionospheric electron density fluctuations on satellite radar interferometry. Geophys. Res. Lett. 2000, 27, 1451–1454. [Google Scholar] [CrossRef]
- Meyer, F.; Bamler, R.; Jakowski, N.; Fritz, T. The Potential of Low-Frequency SAR Systems for Mapping Ionospheric TEC Distributions. IEEE Geosci. Remote. Sens. Lett. 2006, 3, 560–564. [Google Scholar] [CrossRef]
- Brcic, R.; Parizzi, A.; Eineder, M.; Bamler, R.; Meyer, F. Estimation and compensation of ionospheric delay for SAR interferometry. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 2908–2911. [Google Scholar]
- Brcic, R.; Parizzi, A.; Eineder, M.; Bamler, R.; Meyer, F. Ionospheric effects in SAR interferometry: An analysis and comparison of methods for their estimation. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 1497–1500. [Google Scholar]
- Rosen, P.A.; Hensley, S.; Chen, C. Measurement and mitigation of the ionosphere in L-band Interferometric SAR data. In Proceedings of the 2010 IEEE Radar Conference; IEEE, Washington, DC, USA, 10–14 May 2010; pp. 1459–1463. [Google Scholar]
- Gomba, G.; De Zan, F. Estimation of ionospheric height variations during an aurora event using multiple semi-focusing levels. Procs. International Geoscience and Remote Sensing Symposium (IGARSS) 2015, pp. 4065–4068.
- Gomba, G.; Parizzi, A.; De Zan, F.; Eineder, M.; Bamler, R. Toward Operational Compensation of Ionospheric Effects in SAR Interferograms: The Split-Spectrum Method. IEEE Trans. Geosci. Remote. Sens. 2015, 54, 1446–1461. [Google Scholar] [CrossRef]
- Furuya, M.; Suzuki, T.; Maeda, J.; Heki, K. Midlatitude sporadic-E episodes viewed by L-band split-spectrum InSAR. Earth, Planets Space 2017, 69, 175. [Google Scholar] [CrossRef]
- Liao, H.; Meyer, F.J.; Scheuchl, B.; Mouginot, J.; Joughin, I.; Rignot, E. Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions. Remote. Sens. Environ. 2018, 209, 166–180. [Google Scholar] [CrossRef]
- Fattahi, H.; Simons, M.; Agram, P. InSAR Time-Series Estimation of the Ionospheric Phase Delay: An Extension of the Split Range-Spectrum Technique. IEEE Trans. Geosci. Remote. Sens. 2017, 55, 5984–5996. [Google Scholar] [CrossRef]
- Tymofyeyeva, E.; Fialko, Y. Mitigation of atmospheric phase delays in InSAR data, with application to the eastern California shear zone. J. Geophys. Res. Solid Earth 2015, 120, 5952–5963. [Google Scholar] [CrossRef]
- Information on PALSAR-3 Instrument. 2023, https://earth.esa.int/eogateway/documents/20142/2982981/10_191120SARwgcv_tadono. 1910.
- NASA-ISRO SAR (NISAR) Mission Science Users’ Handbook. https://nisar.jpl.nasa.gov/documents/26/NISAR_FINAL_9-6-19.
- Wegmüller, U.; Werner, C.; Frey, O.; Magnard, C.; Strozzi, T. Reformulating the Split-Spectrum Method to Facilitate the Estimation and Compensation of the Ionospheric Phase in SAR Interferograms. Procedia Comput. Sci. 2018, 138, 318–325. [Google Scholar] [CrossRef]
- Wegmuller, U.; Werner, C.; Strozzi, T.; Wiesmann, A. Ionospheric Electron Concentration Effects on SAR and INSAR. In Proceedings of the 2006 IEEE International Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006; pp. 3731–3734. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Gamma Software Information, 2018, at https://www.gamma-rs.ch/software.html.
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote. Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]






| Mode | f0[GHz] | fL[GHz] | fH[GHz] | a | b | c | d | x | z |
| PALSAR-3 28MHz | 1.2330 | 1.2330 | 1.2910 | 11.38 | -10.87 | -10.39 | 10.87 | 0.511 | -10.87 |
| NISAR L 20MHz | 1.2275 | 1.2275 | 1.2950 | 9.85 | -9.34 | -8.85 | 9.34 | 0.513 | -9.34 |
| NISAR L 40MHz | 1.2375 | 1.2375 | 1.2950 | 11.52 | -11.01 | -10.52 | 11.01 | 0.511 | -11.01 |
| PALSAR-1 14MHz | 1.2700 | 1.2653 | 1.2747 | 68.24 | -67.74 | -67.74 | 68.24 | 0.500 | -67.99 |
| PALSAR-1 28MHz | 1.2700 | 1.2607 | 1.2793 | 34.28 | -33.78 | -33.78 | 34.28 | 0.500 | -34.03 |
| PALSAR-2 12MHz | 1.2365 | 1.2325 | 1.2405 | 78.17 | -77.67 | -77.67 | 78.17 | 0.500 | -77.92 |
| PALSAR-2 25MHz | 1.2700 | 1.2617 | 1.2783 | 38.50 | -38.00 | -38.00 | 38.50 | 0.500 | -38.25 |
| PALSAR-2 80MHz | 1.2575 | 1.2310 | 1.2840 | 12.12 | -11.62 | -11.62 | 12.12 | 0.500 | -11.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
