Submitted:
18 May 2024
Posted:
21 May 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Research Objectives
Research Questions
Review Analysis
Conclusion
References
- A.K. Zakaria, “AI applications in the criminal justice system: the next logical step or violation of human rights,” Journal of Law and Emerging Technologies, vol. 3, no. 2, pp. 233–257, Nov. 2023. [CrossRef]
- Aharoni, E., Vincent, G. M., Harenski, C. L., Calhoun, V. D., Sinnott-Armstrong, W., Gazzaniga, M. S., & Kiehl, K. A. (2013). Neuroprediction of future rearrest. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 6223–6228. [CrossRef]
- Alexandre, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B., & Varoquaux, G. (2014b). Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8. [CrossRef]
- Ali, S., Abuhmed, T., El–Sappagh, S., Muhammad, K., Alonso-Moral, J. M., Confalonieri, R., Guidotti, R., Del Ser, J., Díaz-Rodríguez, N., & Herrera, F. (2023). Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Information Fusion, 99, 101805. [CrossRef]
- Anthony W. Flores, Kristin Bechtel, Christopher T. Lowenkamp “False Positives, False Negatives, and False Analyses: A Rejoinder to, United States Courts.” https://www.uscourts.gov/federal-probation-journal/2016/09/false-positives-false-negatives-and-false-analyses-rejoinder.
- Arpita Biswas and Suvam Mukherjee. 2021. Ensuring fairness under prior probability shifts. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. Association for Computing Machinery, New York, NY, USA, 414–424. [CrossRef]
- Ashraf, N.; Mehmood, D.; Obaidat, M.A.; Ahmed, G.; Akhunzada, A. Criminal Behavior Identification Using Machine Learning Techniques Social Media Forensics. Electronics 2022, 11, 3162. [CrossRef]
- Belenguer, L. AI bias: exploring discriminatory algorithmic decision-making models and the application of possible machine-centric solutions adapted from the pharmaceutical industry. AI and ethics 2022, 2(4), 771-787. [CrossRef]
- Blitz, M.J. (2017). Lie Detection, Mind Reading, and Brain Reading. In: Searching Minds by Scanning Brains. Palgrave Studies in Law, Neuroscience, and Human Behavior. Palgrave Macmillan, Cham. [CrossRef]
- Bzdok, D.; Meyer-Lindenberg, A. Machine learning for precision psychiatry: opportunities and challenges. Biol. Psychiatry 2018, 3, 223–230. [CrossRef]
- Catlett, C.; Malik, T.; Goldstein, B.; Giuffrida, J.; Shao, Y.; Panella, A.; Eder, D.N.; Van Zanten, E.; Mitchum, R.M.; Thaler, S.; Foster, I. Plenario: an open data discovery and exploration platform for urban science. IEEE Data(Base) Engineering Bulletin 2014, 37, 27–34. http://sites.computer.org/debull/A14june/p27.pdf.
- Catlett, E. Cesario, D. Talia, and A. Vinci, 2019, ‘‘Spatiotemporal crime predictions in smart cities: A data-driven approach and experiments,’’ Pervas. Mobile Comput., vol. 53, pp. 62–74, Feb. 2019. [CrossRef]
- Caulfield, T., & Murdoch, B. (2017). Genes, cells, and biobanks: Yes, there's still a consent problem. PLoS biology, 15(7), e2002654. [CrossRef]
- Chen, Z. (2023). Ethics and discrimination in artificial intelligence-enabled recruitment practices. Humanities & Social Sciences Communications, 10(1). [CrossRef]
- Cognitive neural prosthetics, Annual Review of Psychology, 61, 169–190. https://ab.harvard.edu/2018arXiv180109808A (accessed January 01, 2018). [CrossRef]
- Coppola, F. Mapping the brain to predict antisocial behavior: new frontiers in neurocriminology, ‘new’challenges for criminal justice. U.C.L. J. Jurisprud. Spec. 2018, 1, 106–110. [CrossRef]
- Raza, D.M.; Victor, D.B. Data mining and region prediction based on crime using random forest,’’ in Proc. Int. Conf. Artif. Intell. Smart Syst. (ICAIS), Mar. 2021, pp. 980–987. [CrossRef]
- Daly, A., Hagendorff, T., Li, H., Mann, M., Marda, V., Wagner, B., Wang, W W., & Witteborn, S. (2019, January 1). Artificial Intelligence, Governance and Ethics: Global Perspectives. [CrossRef]
- Dana Pessach and Erez Shmueli. A review on fairness in machine learning. ACM Computing Surveys (CSUR) 55, 3 (2022), 1–44. [CrossRef]
- Daniel Varona and Juan Luis Suárez. Discrimination, Bias, Fairness, and Trustworthy AI. Applied Sciences 12, 12 (2022), 5826. [CrossRef]
- Davinder Kaur, Suleyman Uslu, Kaley J Rittichier, and Arjan Durresi. 2022. Trust worthy artificial intelligence: a review. ACM Computing Surveys (CSUR) 55, 2 (2022), 1–38. [CrossRef]
- Douglas, T., Pugh, J., Singh, I., Savulescu, J., and Fazel, S. (2017). Risk assessment tools in criminal justice and forensic psychiatry: the need for better data. Eur. Psychiatry 42, 134–137. [CrossRef]
- E. P. Utomo, ‘‘Prediction the crime motorcycles of theft using ARIMAXTFM with single input,’’ in Proc. 3rd Int. Conf. Informat. Comput. (ICIC), Oct. 2018, pp. 1–7.
- Eickhoff, S B., & Langner, R. (2019, November 14). Neuroimaging-based prediction of mental traits: Road to utopia or Or well?. PLoS biology, 17(11), e3000497-e3000497. [CrossRef]
- Eike Petersen, Melanie Ganz, Sune Holm, and Aasa Feragen. 2023. On (assessing) the fairness of risk score models. In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency. 817–829. [CrossRef]
- F. Contini, “Artificial intelligence and the transformation of humans, law and technology interactions in judicial proceedings,” Law, Technology and Humans, vol. 2, no. 1, pp. 4–18, May 2020. [CrossRef]
- F. Lagioia, R. Rovatti, and G. Sartor, “Algorithmic fairness through group parities? The case of COMPAS-SAPMOC,” AI & SOCIETY, vol. 38, no. 2, pp. 459–478, Apr. 2022. [CrossRef]
- Farayola, M M., Tal, I., Bendechache, M., Saber, T., & Connolly, R. (2023, August 29). Fairness of AI in Predicting the Risk of Recidivism: Review and Phase Mapping of AI Fairness Techniques. [CrossRef]
- Felix Petersen, Debarghya Mukherjee, Yuekai Sun, and Mikhail Yurochkin. Postprocessing for individual fairness. Advances in Neural Information Processing Systems 34 (2021), 25944–25955.
- Fellous, J., Sapiro, G., Rossi, A. F., Mayberg, H. S., & Ferrante, M. (2019). Explainable artificial intelligence for neuroscience: behavioral neurostimulation. Frontiers in Neuroscience, 13. [CrossRef]
- Ferrer, X. (2021, August 9). Bias and Discrimination in AI: A Cross-Disciplinary Perspective - IEEE Technology and Society. IEEE Technology and Society. https://technologyandsociety.org/bias-and-discrimination-in-ai-a-cross-disciplinary-perspective/. [CrossRef]
- Flavio du Pin Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and Kush R Varshney. 2018. Data preprocessing for discrimination prevention: Information-theoretic optimization and analysis. IEEE Journal of Selected Topics in Signal Processing 12, 5 (2018), 1106–1119. [CrossRef]
- G.Van Dijck, “Predicting Recidivism Risk Meets AI Act,” European Journal on Criminal Policy and Research, vol. 28, no. 3, pp. 407–423, Jun. 2022. [CrossRef]
- Gaudet, Lyn M. and Kerkmans, Jason and Anderson, Nathaniel and Kiehl, Kent, Can Neuroscience Help Predict Future Antisocial Behavior? (September 29, 2016). Fordham Law Review, Vol. 85, No. 2, 2016, Available at SSRN: https://ssrn.com/abstract=2862083.
- Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. 2017. On fairness and calibration. Advances in neural information processing systems 30 (2017).
- Ghandour, L., Yasmine, R., & El-Kak, F. (2013, July 1). Giving Consent without Getting Informed: A Cross-Cultural Issue in Research Ethics. [CrossRef]
- Greely, H. T., & Farahany, N. A. (2019). Neuroscience and the criminal justice system. Annual Review of Criminology, 2(1), 451–471. [CrossRef]
- H. R. S. A. Shamsi and S. Safei, “Artificial intelligence adoption in predictive policing to predict crime mitigation performance,” International Journal of Sustainable Construction Engineering and Technology, vol. 14, no. 3, Sep. 2023. [CrossRef]
- Hampshire, A., & Sharp, D. J. (2015). Contrasting network and modular perspectives on inhibitory control. Trends in cognitive sciences, 19(8), 445–452. [CrossRef]
- M. Lindquist, W. Thompson, J. Aston , 2017, Handbook of Neuroimaging Data Analysis, New York: Chapman & Hall/CRC, 2017.
- Hassani, X. Huang, E. S. Silva, and M. Ghodsi, “A review of data mining applications in crime,” Statistical Analysis and Data Mining, vol. 9, no. 3, pp. 139–154, Apr. 2016. [CrossRef]
- Hayward, K., & Maas, M. M. (2020). Artificial intelligence and crime: A primer for criminologists. Crime, Media, Culture, 17(2), 209–233. [CrossRef]
- Herron, J. A., Thompson, M. C., Brown, T., Chizeck, H., Ojemann, J. G., & Ko, A. L. (2017). Cortical Brain–Computer Interface for Closed-Loop Deep Brain Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(11), 2180–2187. [CrossRef]
- Holzinger A., Malle B., Kieseberg P., Roth P. M., Müller H., Reihs R., et al. (2017b). Toward the Augmented Pathologist: Challenges of Explainable-AI in Digital Pathology. arXiv [Preprints] Available at: https://ui.adsabs.harvard.edu/abs/2017arXiv171206657H (accessed December 01, 2017). [CrossRef]
- Ienca, M. (2017, August 1). Preserving the Right to Cognitive Liberty. https://www.scientificamerican.com/article/preserving-the-right-to-cognitive-liberty/.
- Ienca, M., & Andorno, R. (2017, December 25). Toward new human rights in the age of neuroscience and neurotechnology. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447561/.
- Jackson, B. A., Banks, D., Woods, D., & Dawson, J. C. (2017, January 10). Future-Proofing Justice: Building a research agenda to address the effects of technological change on the protection of constitutional rights. RAND. https://www.rand.org/pubs/research_reports/RR1748.html.
- Janiesch, P. Zschech, and K. Heinrich, ‘‘Machine learning and deep learning,’’ Electron. Mark., vol. 31, no. 3, pp. 685–695, Apr. 2021. [CrossRef]
- Jiaming Zeng, Berk Ustun, and Cynthia Rudin. 2017. Interpretable classification models for recidivism prediction. Journal of the Royal Statistical Society: Series A (Statistics in Society) 180, 3 (2017), 689–722. [CrossRef]
- Jiang, J., Shang, X., Wang, X., Chen, H., Li, W., Wang, Y., & Xu, J. (2021). Nitrous oxide-related neurological disorders: Clinical, laboratory, neuroimaging, and electrophysiological findings. Brain and Behavior, 11(12). [CrossRef]
- Johanson, M., Vaurio, O., Tiihonen, J., & Lähteenvuo, M. (2020). A Systematic Literature Review of Neuroimaging of Psychopathic Traits. Frontiers in Psychiatry, 10. [CrossRef]
- Jones, O D., Bonnie, R J., Casey, B J., Davis, A., Faigman, D L., Hoffman, M B., Montague, R., Morse, S J., Raichle, M E., Richeson, J A., Scott, E S., Steinberg, L., Taylor-Thompson, K., Wagner, A D., & Yaffe, G. (2014, June 1). Law and neuroscience: recommendations submitted to the President's Bioethics Commission. Journal of law and the biosciences, 1(2), 224-236. [CrossRef]
- Kang HW, Kang HB (2017) Prediction of crime occurrence from multimodal data using deep learning. PLoS One 12(4):e0176244. [CrossRef]
- Kanwel, S., Khan, M. I., & Usman, M. (2023). From Bytes to Bars: The Transformative Influence of Artificial Intelligence on Criminal Justice. Qlantic Journal of Social Sciences, 4(4), 84-89. [CrossRef]
- Klein, E., & Ojemann, J G. (2016, June 1). Informed consent in implantable BCI research: identification of research risks and recommendations for development of best practices. Journal of neural engineering, 13(4), 043001-043001. [CrossRef]
- L. Tortora, G. Meynen, J. W. J. Bijlsma, E. Tronci, and S. Ferracuti, “Neuroprediction and A.I. in Forensic Psychiatry and Criminal justice: A Neurolaw perspective,” Frontiers in Psychology, vol. 11, Mar. 2020. [CrossRef]
- L.G. A. Alves, H. V. Ribeiro, and F. A. Rodrigues, ‘‘Crime prediction through urban metrics and statistical learning,’’ Phys. A, Stat. Mech. Appl., vol. 505, pp. 435–443, Sep. 2018. [CrossRef]
- Langlotz C. P., Allen B., Erickson B. J., Kalpathy-Cramer J., Bigelow K., Cook T. S., et al. (2019). A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology 291 781–791. [CrossRef]
- Lavazza, A. (2018, February 19). Freedom of Thought and Mental Integrity: The Moral Requirements for Any Neural Prosthesis. Frontiers in neuroscience, 12. [CrossRef]
- Ligthart SLTJ, ‘Coercive Neuroimaging, Criminal Law, and Privacy: A European Perspective’ (2019) 6 Journal of Law and the Biosciences. [CrossRef]
- Loll, A. Automated Fingerprint Identification Systems (AFIS). In Encyclopedia of Forensic Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 86–91.
- Lu Zhang, Yongkai Wu, and Xintao Wu. 2016. A causal framework for discovering and removing direct and indirect discrimination. arXiv preprint arXiv:1611.07509 (2016). [CrossRef]
- Lum, K., & Isaac, W. (2016). To predict and serve? Significance, 13(5), 14–19. [CrossRef]
- M. Saraiva, I. Matijosaitiene, S. Mishra, and A. Amante, ‘‘Crime prediction and monitoring in Porto, Portugal, using machine learning, spatial and text analytics,’’ ISPRS Int. J. Geo-Inf., vol. 11, no. 7, p. 400, Jul. 2022. [CrossRef]
- Mark MacCarthy. 2017. Standards of fairness for disparate impact assessment of big data algorithms. Cumb. L. Rev. 48 (2017), 67. [CrossRef]
- McClendon L, Meghanathan N (2015) Using machine learning algorithms to analyze crime data. Mach Lear Appl Int J 2(1):1–12. [CrossRef]
- Meijer and M. Wessels, ‘‘Predictive policing: Review of benefits and drawbacks,’’ Int. J. Public Admin., vol. 42, no. 12, pp. 1031–1039, Sep. 2019. [CrossRef]
- Meynen, G. (2019). Forensic psychiatry and neurolaw: Description, developments, and debates. International Journal of Law and Psychiatry, 65, 101345. [CrossRef]
- Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian. 2015. Certifying and removing disparate impact. In proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. 259–268. [CrossRef]
- Mingyang Wan, Daochen Zha, Ninghao Liu, and Na Zou. 2023. In-processing modeling techniques for machine learning fairness: A survey. ACM Transactions on Knowledge Discovery from Data 17, 3 (2023), 1–27. [CrossRef]
- Mirabella, G., & Lebedev, M. А. (2017). Interfacing to the brain's motor decisions. Journal of neurophysiology, 117(3), 1305–1319. [CrossRef]
- Morse, S. J. (n.d.). Neuroprediction: new technology, old problems. Penn Carey Law: Legal Scholarship Repository. https://scholarship.law.upenn.edu/faculty_scholarship/1619/.
- Mugdha Dwivedi, “The Tomorrow of Criminal Law: Investigating the Application of Predictive Analytics and AI in the Field of Criminal Justice” 11 International Journal of Creative Research Thoughts a499-a501 (2023).
- Muñoz, J M. (2023, March 17). Achieving cognitive liberty. https://www.science.org/doi/10.1126/science.adf8306.
- Neil Shah, Nandish Bhagat, Manan Shah, “Crime forecasting: a machine learning and computer vision approach to crime prediction and prevention”, Visual Computing for Industry, Biomedicine and Art, vol. 4:9, 2021. [CrossRef]
- Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. 2021. A survey on bias and fairness in machine learning. ACM Com puting Surveys (CSUR) 54, 6 (2021), 1–35. [CrossRef]
- Northpointe Inc., Dieterich, W., Ph. D., Mendoza, C., M. S., & Brennan, T., Ph. D. (2016). COMPAS Risk Scales: Demonstrating accuracy equity and predictive parity performance of the COMPAS risk scales in Broward County. https://go.volarisgroup.com/rs/430-MBX-989/images/ProPublica_Commentary_Final_070616.pdf.
- Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M., Ruggieri, S., Turini, F., Papadopoulos, S., Krasanakis, E., Kompatsiaris, I., Kinder-Kurlanda, K., Wagner, C., Karimi, F., Fernández, M., Alani, H., Berendt, B., Kruegel, T., Heinze, C., . . . Staab, S. (2020, February 3). Bias in data-driven artificial intelligence systems—An introductory survey. [CrossRef]
- Ombao H., Lindquist M., Thompson W., Aston J. (2017). Handbook of Neuroimaging Data Analysis. New York: Chapman and Hall/CRC.
- Poldrack, R A., Monahan, J., Imrey, P B., Reyna, V F., Raichle, M E., Faigman, D L., & Buckholtz, J W. (2018, February 1). Predicting Violent Behavior: What Can Neuroscience Add?. Trends in cognitive sciences, 22(2), 111-123. [CrossRef]
- Rebers, S., Aaronson, N K., Leeuwen, F E V., & Schmidt, M K. (2016, February 6). Exceptions to the rule of informed consent for research with an intervention. BMC medical ethics, 17(1). [CrossRef]
- Redish, A. D., Gordon, J. A., et al., (2016). Breakdowns and Failure Modes: An Engineer’s View. In Strüngmann Forum Reports (Vol. 20). MIT Press. https://archives.esforum.de/publications/sfr20/chaps/SFR20_02%20Redish%20and%20Gordon.pdf. [CrossRef]
- Richard A Berk, Arun Kumar Kuchibhotla, and Eric Tchetgen Tchetgen. 2023. Fair Risk Algorithms. Annual Review of Statistics and Its Application 10 (2023), 165–187. [CrossRef]
- Rudin, “Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead,” Nature Machine Intelligence, vol. 1, no. 5, pp. 206–215, May 2019. [CrossRef]
- S. Goel, R. Shroff, J. Skeem, and C. Slobogin, ‘‘The accuracy, equity, and jurisprudence of criminal risk assessment,’’ in Research Handbook on Big Data Law. Cheltenham, U.K.: Edward Elgar Publishing, 2021, pp. 9–28. [CrossRef]
- S. Hossain, A. Abtahee, I. Kashem, M. M. Hoque, and I. H. Sarker, ‘‘Crime prediction using spatiotemporal data,’’ in Computing Science, Communication and Security. Gujarat, India: Springer, 2020, pp. 277–289. [CrossRef]
- S. Kim, P. Joshi, P. S. Kalsi, and P. Taheri, ‘‘Crime analysis through machine learning,’’ in Proc. IEEE 9th Annu. Inf. Technol., Electron. Mobile Commun. Conf. (IEMCON), Nov. 2018, pp. 415–420. [CrossRef]
- Schultze-Kraft, M., Birman, D., Rusconi, M., Allefeld, C., Görgen, K., Dähne, S., Blankertz, B., & Haynes, J. D. (2016). The point of no return in vetoing self-initiated movements. Proceedings of the National Academy of Sciences of the United States of America, 113(4), 1080–1085. [CrossRef]
- Shah, U S., Dave, I., Malde, J., Mehta, J., & Kodeboyina, S. (2021, April 2). Maintaining Privacy in Medical Imaging with Federated Learning, Deep Learning, Differential Privacy, and Encrypted Computation. [CrossRef]
- Shams, R A., Zowghi, D., & Bano, M. (2023, January 1). Challenges and Solutions in AI for All. [CrossRef]
- Sidra Kanwel, Muhammad Imran Khan, et al., “Ginal Research Article Open Access from Bytes to Bars: The Transformative Influence of Artificial Intelligence on Criminal Justice” 4 JOURNAL of LEGAL STUDIES and RESEARCH, the Law Brigade (Publishing) Group 84-89 (2023).
- Sommaggio, P., Mazzocca, M., Gerola, A., & Ferro, F. (2017, November 1). Cognitive liberty. A first step toward a human neuro-rights declaration. BioLaw Journal - Rivista di BioDiritto, 11(3), 27-45. [CrossRef]
- Soto, J. M. D., & Borbón, D. (2022). Neurorights vs. neuroprediction and lie detection: The imperative limits to criminal law. Frontiers in Psychology, 13. [CrossRef]
- Srinivasan, R., & Chander, A. (2021, July 26). Biases in AI systems. [CrossRef]
- T. Chandrakala, S. Nirmala Sugirtha Rajini, K. Dharmarajan, K. Selvam, Development of Crime and Fraud Prediction using Data Mining Approaches. International Journal of Advanced Research in Engineering and Technology, 11(12), 2020, pp. 1450-1470. http://www.iaeme.com/IJARET/issues.asp?JType=IJARET&VType=11&IType=12. [CrossRef]
- Taylor, “Justice by Algorithm: The limits of AI in criminal Sentencing,” Criminal Justice Ethics, vol. 42, no. 3, pp. 193–213, Sep. 2023. [CrossRef]
- U. Islam et al., “Investigating the effectiveness of novel support vector neural network for anomaly detection in digital forensics data,” Sensors, vol. 23, no. 12, p. 5626, Jun. 2023. [CrossRef]
- Umbach, R., Berryessa, C. M., & Raine, A. (2015). Brain imaging research on psychopathy: Implications for punishment, prediction, and treatment in youth and adults. Journal of Criminal justice, 43(4), 295–306. [CrossRef]
- V. Ingilevich and S. Ivanov, ‘‘Crime rate prediction in the urban environment using social factors,’’ Proc. Comput. Sci., vol. 136, pp. 472–478, Jan. 2018. [CrossRef]
- V. Mandalapu, L. Elluri, P. Vyas, and N. Roy, “Crime Prediction using Machine Learning and Deep Learning: A Systematic review and Future Directions,” IEEE Access, vol. 11, pp. 60153–60170, Jan. 2023. [CrossRef]
- Varun VM, “Role of Artificial Intelligence in Improving the Criminal justice System in India” 6 JOURNAL of LEGAL STUDIES and RESEARCH, the Law Brigade (Publishing) Group 63-69 (2023).
- Vu M. T., Adali T., Ba D., Buzsaki G., Carlson D., Heller K., et al. (2018). A shared vision for machine learning in neuroscience. J. Neurosci. 38 1601–1607. [CrossRef]
- W. Safat, S. Asghar, and S. A. Gillani, ‘‘Empirical analysis for crime prediction and forecasting using machine learning and deep learning techniques,’’ IEEE Access, vol. 9, pp. 70080–70094, 2021. [CrossRef]
- Z. J. Fernando, R. Rosmanila, L. Ratna, A. Cholidin, and B. P. Nunna, 2023, “The role of Neuroprediction and Artificial intelligence in the Future of Criminal Procedure Support Science: A New Era in Neuroscience and Criminal justice,” Yuridika, vol. 38, no. 3, pp. 593–620, Sep. 2023. [CrossRef]
- Zhuang Y, Almeida M, Morabito M, Ding W (2017) Crime hot spot forecasting: a recurrent model with spatial and temporal information. Paper presented at the IEEE international conference on big knowledge. IEEE, Hefei 9-10 August 2017.
| 1 | AI-Artificial Intelligence |
| 2 | ML-Machine Learning |
| 3 | HMI- Human Machine Interface |
| 4 | GRRS- General Recidivism Risk Assessment Scale |
| 5 | VRRS- Violent Recidivism Risk Assessment Scale |
| 6 | XAI-Explainable Artificial Intelligence |
| 7 | BMI- Brain Machine Interface |
| 8 | MPVA-Multi-Voxel Pattern Analysis |
| 9 | fMRI-Functional Magnetic Resonance Imaging |
| 10 | CNN- Convolutional Neural Network |
| 11 | NLP- Natural Language Processing |
| 12 | BCI- Brain Computer Interface |
| 13 | ASPD- Antisocial Personality Disorders |
| 14 | ARIMAX-Autoregressive Integrated Moving Average with Explanatory Variable |
| 15 | ARIMA-Autoregressive Integrated Moving Average |
| 16 | RF- Random Forest |
| 17 | RMSE- Root Mean square Error |
| 18 | CDR- Crime Dense Region |
| 19 | LR- Linear Regression |
| 20 | LOR- Least Outstanding Requests |
| 21 | R2- the coefficient of determination |
| 23 | RFR- Random Forest Regressor |
| 23 | RNN- Recurrent Neural Networks |
| 24 | NSVNN- Novel Support Vector Neural Network |
| 25 | DBN-Deep Belief Network |
| 26 | DNNs-Deep Neural Networks |
| 27 | WEKA-Waikato Environment for Knowledge Analysis |
| 28 | GIG0- Garbage In, Garbage Out. |
| 29 | RIRO- Rubbish In, Rubbish Out. |
| 30 | COMPAS-Correctional Offender Management Profiling for Alternative Sanctions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
