Submitted:
07 May 2024
Posted:
07 May 2024
You are already at the latest version
Abstract
Keywords:
Introduction
History of NF2 Syndrome
Merlin Protein as a Tumor Suppressor
YAP Protein as a Tumor Inducing Factor
RKIP as a Tumor Suppressor
Treatments for NF2 Syndrome
On-Going Clinical Trials for NF2 Syndrome
Concluding Remarks
Author Contributions
Conflicts of Interest
References
- McClatchey, A.I.; Giovannini, M. Membrane organization and tumorigenesis--the NF2 tumor suppressor, Merlin. Genes Dev 2005, 19, 2265–2277. [Google Scholar] [CrossRef] [PubMed]
- den Bakker, M.A.; Vissers, K.J.; Molijn, A.C.; Kros, J.M.; Zwarthoff, E.C.; van der Kwast, T.H. Expression of the neurofibromatosis type 2 gene in human tissues. J Histochem Cytochem 1999, 47, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Sperfeld, A.D.; Hein, C.; Schröder, J.M.; Ludolph, A.C.; Hanemann, C.O. Occurrence and characterization of peripheral nerve involvement in neurofibromatosis type 2. Brain 2002, 125, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Gürsoy, S.; Erçal, D. Genetic Evaluation of Common Neurocutaneous Syndromes. Pediatr Neurol 2018, 89, 3–10. [Google Scholar] [CrossRef]
- Mota, M.; Shevde, L.A. Merlin regulates signaling events at the nexus of development and cancer. Cell Commun Signal 2020, 18, 63. [Google Scholar] [CrossRef] [PubMed]
- Baser, M.E.; Kuramoto, L.; Joe, H.; Friedman, J.M.; Wallace, A.J.; Gillespie, J.E.; Ramsden, R.T.; Evans, D.G. Genotype-phenotype correlations for nervous system tumors in neurofibromatosis 2: a population-based study. Am J Hum Genet 2004, 75, 231–239. [Google Scholar] [CrossRef]
- Kluwe, L.; Bayer, S.; Baser, M.E.; Hazim, W.; Haase, W.; Fünsterer, C.; Mautner, V.F. Identification of NF2 germ-line mutations and comparison with neurofibromatosis 2 phenotypes. Hum Genet 1996, 98, 534–538. [Google Scholar] [CrossRef]
- Selvanathan, S.K.; Shenton, A.; Ferner, R.; Wallace, A.J.; Huson, S.M.; Ramsden, R.T.; Evans, D.G. Further genotype--phenotype correlations in neurofibromatosis 2. Clin Genet 2010, 77, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.G. Neurofibromatosis type 2 (NF2): a clinical and molecular review. Orphanet J Rare Dis 2009, 4, 16. [Google Scholar] [CrossRef]
- Evans, D.G.R.; Salvador, H.; Chang, V.Y.; Erez, A.; Voss, S.D.; Druker, H.; Scott, H.S.; Tabori, U. Cancer and Central Nervous System Tumor Surveillance in Pediatric Neurofibromatosis 2 and Related Disorders. Clin Cancer Res 2017, 23, e54–e61. [Google Scholar] [CrossRef]
- Painter, S.L.; Sipkova, Z.; Emmanouil, B.; Halliday, D.; Parry, A.; Elston, J.S. Neurofibromatosis Type 2-Related Eye Disease Correlated With Genetic Severity Type. J Neuroophthalmol 2019, 39, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Peyre, M.; Tran, S.; Parfait, B.; Bernat, I.; Bielle, F.; Kalamarides, M. Surgical Management of Peripheral Nerve Pathology in Patients With Neurofibromatosis Type 2. Neurosurgery 2023, 92, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Mulvihill, J.J.; Parry, D.M.; Sherman, J.L.; Pikus, A.; Kaiser-Kupfer, M.I.; Eldridge, R. NIH conference. Neurofibromatosis 1 (Recklinghausen disease) and neurofibromatosis 2 (bilateral acoustic neurofibromatosis). An update. Ann Intern Med 1990, 113, 39–52. [Google Scholar] [CrossRef]
- Holland, K.; Kaye, A.H. Spinal tumors in neurofibromatosis-2: management considerations - a review. J Clin Neurosci 2009, 16, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, K.; Rual, J.F.; Vazquez, A.; Stelzl, U.; Lemmens, I.; Hirozane-Kishikawa, T.; Hao, T.; Zenkner, M.; Xin, X.; Goh, K.I.; et al. An empirical framework for binary interactome mapping. Nat Methods 2009, 6, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Bonetta, L. Protein-protein interactions: Interactome under construction. Nature 2010, 468, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, M.; Praticò, A.D.; Serra, A.; Maiolino, L.; Cocuzza, S.; Caltabiano, R.; Polizzi, A. Early history of neurofibromatosis type 2 and related forms: earliest descriptions of acoustic neuromas, medical curiosities, misconceptions, landmarks and the pioneers behind the eponyms. Childs Nerv Syst 2017, 33, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, S.; Blakeley, J.O.; Langmead, S.; Belzberg, A.J.; Fayad, L.M. Current status and recommendations for imaging in neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis. Skeletal Radiol 2020, 49, 199–219. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.G. Neurofibromatosis type 2: genetic and clinical features. Ear Nose Throat J 1999, 78, 97–100. [Google Scholar] [CrossRef]
- Tysome, J.R.; Axon, P.R.; Donnelly, N.P.; Durie-Gair, J.; Gareth Evans, D.; Ferner, R.E.; Macfarlane, R.; Mannion, R.; Nduka, C.; Morris, K. Current Concepts in Management of Vestibular Schwannomas in Neurofibromatosis Type 2. Current Otorhinolaryngology Reports 2014, 2, 248–255. [Google Scholar] [CrossRef]
- Cho, J.H.; Oh, A.Y.; Park, S.; Kang, S.M.; Yoon, M.H.; Woo, T.G.; Hong, S.D.; Hwang, J.; Ha, N.C.; Lee, H.Y.; et al. Loss of NF2 Induces TGFβ Receptor 1-mediated Noncanonical and Oncogenic TGFβ Signaling: Implication of the Therapeutic Effect of TGFβ Receptor 1 Inhibitor on NF2 Syndrome. Mol Cancer Ther 2018, 17, 2271–2284. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Park, S.; Kim, S.; Kang, S.M.; Woo, T.G.; Yoon, M.H.; Lee, H.; Jeong, M.; Park, Y.H.; Kim, H.; et al. RKIP Induction Promotes Tumor Differentiation via SOX2 Degradation in NF2-Deficient Conditions. Mol Cancer Res 2022, 20, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Chari, D.A.; Vasilijic, S.; Welling, D.B.; Stankovic, K.M. New developments in neurofibromatosis type 2 and vestibular schwannoma. Neurooncol Adv 2021, 3, vdaa153. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Chang, J.W.; Choi, J.Y.; Chang, W.S.; Moon, I.S. Hearing Restoration in Neurofibromatosis Type II Patients. Yonsei Med J 2016, 57, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Ghalavand, M.A.; Asghari, A.; Farhadi, M.; Taghizadeh-Hesary, F.; Garshasbi, M.; Falah, M. The genetic landscape and possible therapeutics of neurofibromatosis type 2. Cancer Cell Int 2023, 23, 99. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.; Giancotti, F.G. Molecular insights into NF2/Merlin tumor suppressor function. FEBS Lett 2014, 588, 2743–2752. [Google Scholar] [CrossRef] [PubMed]
- Petrilli, A.M.; Fernández-Valle, C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 2016, 35, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Hamaratoglu, F.; Willecke, M.; Kango-Singh, M.; Nolo, R.; Hyun, E.; Tao, C.; Jafar-Nejad, H.; Halder, G. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 2006, 8, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.J.; Paez, J.G.; Curto, M.; Yaktine, A.; Pruitt, W.M.; Saotome, I.; O'Bryan, J.P.; Gupta, V.; Ratner, N.; Der, C.J.; et al. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell 2001, 1, 63–72. [Google Scholar] [CrossRef]
- Kissil, J.L.; Wilker, E.W.; Johnson, K.C.; Eckman, M.S.; Yaffe, M.B.; Jacks, T. Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak1. Mol Cell 2003, 12, 841–849. [Google Scholar] [CrossRef]
- Curto, M.; Cole, B.K.; Lallemand, D.; Liu, C.H.; McClatchey, A.I. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol 2007, 177, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Gladden, A.B.; Hebert, A.M.; Schneeberger, E.E.; McClatchey, A.I. The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell 2010, 19, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cooper, J.; Zhou, L.; Yang, C.; Erdjument-Bromage, H.; Zagzag, D.; Snuderl, M.; Ladanyi, M.; Hanemann, C.O.; Zhou, P.; et al. Merlin/NF2 loss-driven tumorigenesis linked to CRL4(DCAF1)-mediated inhibition of the hippo pathway kinases Lats1 and 2 in the nucleus. Cancer Cell 2014, 26, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Troutman, S.; Fera, D.; Stemmer-Rachamimov, A.; Avila, J.L.; Christian, N.; Persson, N.L.; Shimono, A.; Speicher, D.W.; Marmorstein, R.; et al. A tight junction-associated Merlin-angiomotin complex mediates Merlin's regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell 2011, 19, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Liu, X.; Brat, D.J.; Ye, K. Merlin sumoylation is required for its tumor suppressor activity. Oncogene 2014, 33, 4893–4903. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Sperka, T.; Herrlich, P.; Morrison, H. Tumorigenic transformation by CPI-17 through inhibition of a merlin phosphatase. Nature 2006, 442, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Li, M.; Zhang, F.; Ma, X.; Long, J.; Zhou, H. The conformation change and tumor suppressor role of Merlin are both independent of Serine 518 phosphorylation. Biochem Biophys Res Commun 2017, 493, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Groth, S.; Troutman, S.; Carlstedt, A.; Sperka, T.; Riecken, L.B.; Kissil, J.L.; Jin, H.; Morrison, H. The NF2 tumor suppressor merlin interacts with Ras and RasGAP, which may modulate Ras signaling. Oncogene 2019, 38, 6370–6381. [Google Scholar] [CrossRef] [PubMed]
- Harvey, K.; Tapon, N. The Salvador-Warts-Hippo pathway - an emerging tumour-suppressor network. Nat Rev Cancer 2007, 7, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Striedinger, K.; VandenBerg, S.R.; Baia, G.S.; McDermott, M.W.; Gutmann, D.H.; Lal, A. The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 2008, 10, 1204–1212. [Google Scholar] [CrossRef]
- Lavado, A.; He, Y.; Paré, J.; Neale, G.; Olson, E.N.; Giovannini, M.; Cao, X. Tumor suppressor Nf2 limits expansion of the neural progenitor pool by inhibiting Yap/Taz transcriptional coactivators. Development 2013, 140, 3323–3334. [Google Scholar] [CrossRef] [PubMed]
- Tanahashi, K.; Natsume, A.; Ohka, F.; Motomura, K.; Alim, A.; Tanaka, I.; Senga, T.; Harada, I.; Fukuyama, R.; Sumiyoshi, N.; et al. Activation of Yes-Associated Protein in Low-Grade Meningiomas Is Regulated by Merlin, Cell Density, and Extracellular Matrix Stiffness. J Neuropathol Exp Neurol 2015, 74, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rendueles, M.E.; Ricarte-Filho, J.C.; Untch, B.R.; Landa, I.; Knauf, J.A.; Voza, F.; Smith, V.E.; Ganly, I.; Taylor, B.S.; Persaud, Y.; et al. NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition. Cancer Discov 2015, 5, 1178–1193. [Google Scholar] [CrossRef] [PubMed]
- White, S.M.; Avantaggiati, M.L.; Nemazanyy, I.; Di Poto, C.; Yang, Y.; Pende, M.; Gibney, G.T.; Ressom, H.W.; Field, J.; Atkins, M.B.; et al. YAP/TAZ Inhibition Induces Metabolic and Signaling Rewiring Resulting in Targetable Vulnerabilities in NF2-Deficient Tumor Cells. Dev Cell 2019, 49, 425–443. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, Y.; Gu, Y.; Ma, M.; Wang, Y.; Qi, S.; Zeng, Y.; Zhu, R.; Wang, X.; Yu, P.; et al. Stabilization of Motin family proteins in NF2-deficient cells prevents full activation of YAP/TAZ and rapid tumorigenesis. Cell Rep 2021, 36, 109596. [Google Scholar] [CrossRef] [PubMed]
- Escara-Wilke, J.; Yeung, K.; Keller, E.T. Raf kinase inhibitor protein (RKIP) in cancer. Cancer Metastasis Rev 2012, 31, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Yesilkanal, A.E.; Rosner, M.R. Targeting Raf Kinase Inhibitory Protein Regulation and Function. Cancers (Basel) 2018, 10. [Google Scholar] [CrossRef]
- Zaravinos, A.; Bonavida, B.; Chatzaki, E.; Baritaki, S. RKIP: A Key Regulator in Tumor Metastasis Initiation and Resistance to Apoptosis: Therapeutic Targeting and Impact. Cancers (Basel) 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Hagan, S.; Al-Mulla, F.; Mallon, E.; Oien, K.; Ferrier, R.; Gusterson, B.; García, J.J.; Kolch, W. Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin Cancer Res 2005, 11, 7392–7397. [Google Scholar] [CrossRef]
- Yun, J.; Frankenberger, C.A.; Kuo, W.L.; Boelens, M.C.; Eves, E.M.; Cheng, N.; Liang, H.; Li, W.H.; Ishwaran, H.; Minn, A.J.; et al. Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J 2011, 30, 4500–4514. [Google Scholar] [CrossRef]
- Li, H.Z.; Wang, Y.; Gao, Y.; Shao, J.; Zhao, X.L.; Deng, W.M.; Liu, Y.X.; Yang, J.; Yao, Z. Effects of raf kinase inhibitor protein expression on metastasis and progression of human epithelial ovarian cancer. Mol Cancer Res 2008, 6, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Dangi-Garimella, S.; Yun, J.; Eves, E.M.; Newman, M.; Erkeland, S.J.; Hammond, S.M.; Minn, A.J.; Rosner, M.R. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 2009, 28, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Beshir, A.B.; Ren, G.; Magpusao, A.N.; Barone, L.M.; Yeung, K.C.; Fenteany, G. Raf kinase inhibitor protein suppresses nuclear factor-κB-dependent cancer cell invasion through negative regulation of matrix metalloproteinase expression. Cancer Lett 2010, 299, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Figy, C.; Guo, A.; Fernando, V.R.; Furuta, S.; Al-Mulla, F.; Yeung, K.C. Changes in Expression of Tumor Suppressor Gene RKIP Impact How Cancers Interact with Their Complex Environment. Cancers (Basel) 2023, 15. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Tian, B.; Sedivy, J.M.; Wands, J.R.; Kim, M. Loss of Raf kinase inhibitor protein promotes cell proliferation and migration of human hepatoma cells. Gastroenterology 2006, 131, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Choi, G.H.; Jung, Y.; Kim, K.M.; Jang, S.J.; Yu, E.S.; Lee, H.C. Downregulation of Raf-1 kinase inhibitory protein as a sorafenib resistance mechanism in hepatocellular carcinoma cell lines. J Cancer Res Clin Oncol 2018, 144, 1487–1501. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Jianhua, Z.; Kai, W.; Yanhong, H.; Haorun, L. Effects of Raf kinase inhibitor protein on biological characteristics of hepatocellular carcinoma cells and its potential therapeutic effects. iLIVER 2022, 1, 275–282. [Google Scholar] [CrossRef]
- Huang, L.; Dai, T.; Lin, X.; Zhao, X.; Chen, X.; Wang, C.; Li, X.; Shen, H.; Wang, X. MicroRNA-224 targets RKIP to control cell invasion and expression of metastasis genes in human breast cancer cells. Biochem Biophys Res Commun 2012, 425, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Wu, H.; Fu, F.; Yi, W.; Pei, L.; Zhou, M. RKIP suppresses the proliferation and metastasis of breast cancer cell lines through up-regulation of miR-185 targeting HMGA2. Arch Biochem Biophys 2016, 610, 25–32. [Google Scholar] [CrossRef]
- Dai, H.; Chen, H.; Liu, W.; You, Y.; Tan, J.; Yang, A.; Lai, X.; Bie, P. Effects of Raf kinase inhibitor protein expression on pancreatic cancer cell growth and motility: an in vivo and in vitro study. J Cancer Res Clin Oncol 2016, 142, 2107–2117. [Google Scholar] [CrossRef]
- Cho, J.H.; Lee, S.J.; Oh, A.Y.; Yoon, M.H.; Woo, T.G.; Park, B.J. NF2 blocks Snail-mediated p53 suppression in mesothelioma. Oncotarget 2015, 6, 10073–10085. [Google Scholar] [CrossRef] [PubMed]
- Chow, H.Y.; Stepanova, D.; Koch, J.; Chernoff, J. p21-Activated kinases are required for transformation in a cell-based model of neurofibromatosis type 2. PLoS One 2010, 5, e13791. [Google Scholar] [CrossRef]
- Chow, H.Y.; Dong, B.; Duron, S.G.; Campbell, D.A.; Ong, C.C.; Hoeflich, K.P.; Chang, L.S.; Welling, D.B.; Yang, Z.J.; Chernoff, J. Group I Paks as therapeutic targets in NF2-deficient meningioma. Oncotarget 2015, 6, 1981–1994. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; You, L.; Cooper, J.; Schiavon, G.; Pepe-Caprio, A.; Zhou, L.; Ishii, R.; Giovannini, M.; Hanemann, C.O.; Long, S.B.; et al. Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell 2010, 140, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.; Xu, Q.; Zhou, L.; Pavlovic, M.; Ojeda, V.; Moulick, K.; de Stanchina, E.; Poirier, J.T.; Zauderer, M.; Rudin, C.M.; et al. Combined Inhibition of NEDD8-Activating Enzyme and mTOR Suppresses NF2 Loss-Driven Tumorigenesis. Mol Cancer Ther 2017, 16, 1693–1704. [Google Scholar] [CrossRef] [PubMed]
- Janse van Rensburg, H.J.; Yang, X. Essential signaling in NF2 loss-related tumours: the therapeutic potential of CRL4(DCAF1) and mTOR combined inhibition. J Thorac Dis 2017, 9, 3533–3536. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.S.; Oblinger, J.L.; Smith, A.E.; Ferrer, M.; Angus, S.P.; Hawley, E.; Petrilli, A.M.; Beauchamp, R.L.; Riecken, L.B.; Erdin, S.; et al. Brigatinib causes tumor shrinkage in both NF2-deficient meningioma and schwannoma through inhibition of multiple tyrosine kinases but not ALK. PLoS One 2021, 16, e0252048. [Google Scholar] [CrossRef]
- Petrilli, A.M.; Fuse, M.A.; Donnan, M.S.; Bott, M.; Sparrow, N.A.; Tondera, D.; Huffziger, J.; Frenzel, C.; Malany, C.S.; Echeverri, C.J.; et al. A chemical biology approach identified PI3K as a potential therapeutic target for neurofibromatosis type 2. Am J Transl Res 2014, 6, 471–493. [Google Scholar]
- Huegel, J.; Dinh, C.T.; Martinelli, M.; Bracho, O.; Rosario, R.; Hardin, H.; Estivill, M.; Griswold, A.; Gultekin, S.; Liu, X.Z.; et al. CUDC907, a dual phosphoinositide-3 kinase/histone deacetylase inhibitor, promotes apoptosis of NF2 Schwannoma cells. Oncotarget 2022, 13, 890–904. [Google Scholar] [CrossRef]
- Stepanova, D.S.; Semenova, G.; Kuo, Y.-M.; Andrews, A.J.; Ammoun, S.; Hanemann, C.O.; Chernoff, J. An Essential Role for the Tumor-Suppressor Merlin in Regulating Fatty Acid Synthesis. Cancer Research 2017, 77, 5026–5038. [Google Scholar] [CrossRef]
- Stepanova, D.S.; Braun, L.; Chernoff, J. A new concept in NF2 pharmacotherapy: targeting fatty acid synthesis. Oncoscience 2018, 5, 126–127. [Google Scholar] [CrossRef] [PubMed]
- Casaluce, F.; Sgambato, A.; Maione, P.; Sacco, P.C.; Santabarbara, G.; Gridelli, C. Selumetinib for the treatment of non-small cell lung cancer. Expert Opin Investig Drugs 2017, 26, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.M.; Wolters, P.L.; Dombi, E.; Baldwin, A.; Whitcomb, P.; Fisher, M.J.; Weiss, B.; Kim, A.; Bornhorst, M.; Shah, A.C.; et al. Selumetinib in Children with Inoperable Plexiform Neurofibromas. N Engl J Med 2020, 382, 1430–1442. [Google Scholar] [CrossRef] [PubMed]
- Bush, M.L.; Oblinger, J.; Brendel, V.; Santarelli, G.; Huang, J.; Akhmametyeva, E.M.; Burns, S.S.; Wheeler, J.; Davis, J.; Yates, C.W.; et al. AR42, a novel histone deacetylase inhibitor, as a potential therapy for vestibular schwannomas and meningiomas. Neuro Oncol 2011, 13, 983–999. [Google Scholar] [CrossRef] [PubMed]
- Burns, S.S.; Akhmametyeva, E.M.; Oblinger, J.L.; Bush, M.L.; Huang, J.; Senner, V.; Chen, C.S.; Jacob, A.; Welling, D.B.; Chang, L.S. Histone deacetylase inhibitor AR-42 differentially affects cell-cycle transit in meningeal and meningioma cells, potently inhibiting NF2-deficient meningioma growth. Cancer Res 2013, 73, 792–803. [Google Scholar] [CrossRef] [PubMed]
- Welling, D.B.; Collier, K.A.; Burns, S.S.; Oblinger, J.L.; Shu, E.; Miles-Markley, B.A.; Hofmeister, C.C.; Makary, M.S.; Slone, H.W.; Blakeley, J.O.; et al. Early phase clinical studies of AR-42, a histone deacetylase inhibitor, for neurofibromatosis type 2-associated vestibular schwannomas and meningiomas. Laryngoscope Investig Otolaryngol 2021, 6, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Forde, P.M.; Rudin, C.M. Crizotinib in the treatment of non-small-cell lung cancer. Expert Opin Pharmacother 2012, 13, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Prabhash, K.; Noronha, V.; Joshi, A.; Desai, S. Crizotinib: A comprehensive review. South Asian J Cancer 2013, 2, 91–97. [Google Scholar] [CrossRef]
- Roberts, P.J. Clinical use of crizotinib for the treatment of non-small cell lung cancer. Biologics 2013, 7, 91–101. [Google Scholar] [CrossRef]
- Kovacs, R.J.; Flaker, G.C.; Saxonhouse, S.J.; Doherty, J.U.; Birtcher, K.K.; Cuker, A.; Davidson, B.L.; Giugliano, R.P.; Granger, C.B.; Jaffer, A.K.; et al. Practical management of anticoagulation in patients with atrial fibrillation. J Am Coll Cardiol 2015, 65, 1340–1360. [Google Scholar] [CrossRef]
- Keedy, V.L.; Bauer, T.M.; Clarke, J.M.; Hurwitz, H.; Baek, I.; Ha, I.; Ock, C.-Y.; Nam, S.Y.; Kim, M.; Park, N.; et al. Association of TGF-β responsive signature with anti-tumor effect of vactosertib, a potent, oral TGF-β receptor type I (TGFBRI) inhibitor in patients with advanced solid tumors. Journal of Clinical Oncology 2018, 36, 3031–3031. [Google Scholar] [CrossRef]
| NCT1 (or KCT2) numbers | Treatment (Inhibitors) |
Stage (site) |
Enrollment estimated (persons) | Study type | /Study Start (Year-Month) /Primary completion (estimated) /Study completion (estimated) |
|---|---|---|---|---|---|
| NCT03095248 | Selumetinib (MEK inhibitor) |
Phase II (USA) |
34 | Interventional | 2017-05 /2024-06 /2025-06 |
| NCT05130866 | REC-2282 (HDAC inhibitor) |
Phase II/III (USA) |
92 | Interventional | 2022-06 /2027-01 2027-07 |
| NCT04283669 | Crizotinib (ALK and ROS1 inhibitor) |
Phase II (USA) |
19 | Interventional | 2020-02 /2025-08 /2025-12 |
| NCT04374305 | Brigatinib (ALK & EGFR inhibitor) Neratinib (HER tyrosine kinase 3 inhibitor) |
Phase II (USA) |
100 | Interventional | 2020-06 /2029-12 /2030-12 |
| KCT (pending) | PRG-N-01 (TbR1/RKIP PPI inhibitors) |
Phase I/II (South Korea) |
I: 36 II: 30 |
Interventional | 2024-05 /2028-06 /2028-12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
