Submitted:
06 May 2024
Posted:
07 May 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Materials and Methods
Participants and Eligibility Criteria
Laboratory Measurements
The Assessment of eGFR
The Diagnosis of Diabetes Mellitus Type 2
The Assessment of Muscle Strength
The Assessment of Skeletal Muscle Mass
Statistical Analysis
Results
Discussion
Appendicular Skeletal Muscle Mass and Anthropometric Variables
Hand Grip Strength and Anthropometric Variables
Appendicular Skeletal Muscle Mass and Clinical Variables
HGS and Clinical Variables
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflict of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Bilski, J.; Pierzchalski, P.; Szczepanik, M.; Bonior, J.; Zoladz, J.A. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022, 11, 160. [Google Scholar] [CrossRef] [PubMed]
- Antunes, A.C.; Araújo, D.A.; Veríssimo, M.T.; Amaral, T.F. Sarcopenia and hospitalisation costs in older adults: a cross-sectional study. Nutr. Diet. 2017, 74, 46–50. [Google Scholar] [CrossRef]
- Slee, A.; McKeaveney, C.; Adamson, G.; Davenport, A.; Farrington, K.; Fouque, D.; Kalantar-Zadeh, K.; Mallett, J.; Maxwell, A.P.; Mullan, R.; et al. Estimating the Prevalence of Muscle Wasting, Weakness, and Sarcopenia in Hemodialysis Patients. J. Ren. Nutr. 2020, 30, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, A.; Cuppari, L.; Stenvinkel, P.; Lindholm, B.; Avesani, C.M. Sarcopenia in chronic kidney disease: what have we learned so far? J. Nephrol. 2021, 34, 1347–1372. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, K.; May, C.; Patel, H.P.; Baxter, M.; Sayer, A.A.; Roberts, H. A feasibility study of implementing grip strength measurement into routine hospital practice (GRImP): study protocol. Pilot Feasibility Stud. 2016, 2, 27. [Google Scholar] [CrossRef]
- Lorenzo, A.D.; Andreoli, A. Segmental bioelectrical impedance analysis. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 551–555. [Google Scholar] [CrossRef]
- Sergi, G.; De Rui, M.; Veronese, N.; Bolzetta, F.; Berton, L.; Carraro, S.; Bano, G.; Coin, A.; Manzato, E.; Perissinotto, E.; et al. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin. Nutr. 2015, 34, 667–673. [Google Scholar] [CrossRef]
- Lin, T.Y.; Wu, M.Y.; Chen, H.S.; Hung, S.C.; Lim, P.S. Development and validation of a multifrequency bioimpedance spectroscopy equation to predict appendicular skeletal muscle mass in hemodialysis patients. Clin. Nutr. 2021, 40, 3288–3295. [Google Scholar] [CrossRef]
- Rymarz, A.; Szamotulska, K.; Niemczyk, S. Comparison of Skinfold Thicknesses and Bioimpedance Spectroscopy to Dual-Energy X-Ray Absorptiometry for the Body Fat Measurement in Patients With Chronic Kidney Disease. Nutr. Clin. Pract. 2017, 32, 533–538. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Miksza, J.; Yates, T.; Lightfoot, C.J.; Baker, L.A.; Watson, E.L.; Zaccardi, F.; Smith, A.C. Association of sarcopenia with mortality and end-stage renal disease in those with chronic kidney disease: a UK Biobank study. J. Cachexia Sarcopenia Muscle 2021, 12, 586–598. [Google Scholar] [CrossRef]
- Bellafronte, N.T.; De Queirós Mattoso Ono, A.; Chiarello, P.G. Sarcopenic Obesity in Chronic Kidney Disease: Challenges in Diagnosis Using Different Diagnostic Criteria. Med. Princ. Pract. 2021, 30, 477–486. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, M.; Liu, Y.; Xu, H.; Chen, X.; Zheng, H.; Wu, X.; Shen, Z.; Shen, C. Chronic kidney disease: prevalence and association with handgrip strength in a cross-sectional study. BMC Nephrol. 2021, 22, 246. [Google Scholar] [CrossRef] [PubMed]
- Curtis, M.; Swan, L.; Fox, R.; Warters, A.; O'Sullivan, M. Associations between Body Mass Index and Probable Sarcopenia in Community-Dwelling Older Adults. Nutrients 2023, 15, 1505. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Slee, A.; Davenport, A. Body composition and weakness of hand grip strength and pinch strength in patients with chronic kidney disease from different ethnic backgrounds. J. Hum. Nutr. Diet. 2021, 34, 450–455. [Google Scholar] [CrossRef]
- Pinto Pereira, S.M.; Garfield, V.; Farmaki, A.E.; Tomlinson, D.J.; Norris, T.; Fatemifar, G.; Denaxas, S.; Finan, C.; Coope, R. Adiposity and grip strength: a Mendelian randomisation study in UK Biobank. BMC Med. 2022, 20, 201. [Google Scholar] [CrossRef]
- Byambaa, A.; Altankhuyag, I.; Damdinbazar, O.; Jadamba T, Byambasukh O. Anthropometric and Body Circumference Determinants for Hand Grip Strength: A Population-Based Mon-Timeline Study. J. Aging Res. 2023, 2023, 6272743. [Google Scholar] [CrossRef] [PubMed]
- Ong, H.L.; Abdin, E.; Chua, B.Y.; Zhang, Y.; Seow, E.; Vaingankar, J.A.; Chong, S.A.; Subramaniam, M. Hand-grip strength among older adults in Singapore: a comparison with international norms and associative factors. BMC Geriatr. 2017, 17, 176. [Google Scholar] [CrossRef]
- Angst, F.; Drerup, S.; Werle, S.; Herren, D.B.; Simmen, B.R.; Goldhahn, J. Prediction of grip and key pinch strength in 978 healthy subjects. BMC Musculoskelet. Disord. 2010, 11, 94. [Google Scholar] [CrossRef]
- Günther, C.M.; Bürger, A.; Rickert, M.; Crispin, A.; Schulz, C.U. Grip strength in healthy caucasian adults: reference values. J. Hand Surg. Am. 2008, 33, 558–565. [Google Scholar] [CrossRef]
- Hernández Corona, D.M.; González Heredia, T.; Méndez Del Villar, M.; Pazarin Villaseñor, L.; Yanowsky Escatell, F.G.; Topete Reyes, J.F.; Hernández-García, S. Loss of muscle strength in patients under hemodialysis evaluated by dynamometry in the Mexican population. Nutr. Hosp. 2020, 37, 964–969. [Google Scholar] [CrossRef]
- Hasheminejad, N.; Namdari, M.; Mahmoodi, M.R.; Bahrampour, A.; Azmandian, J. Association of Handgrip Strength With Malnutrition-Inflammation Score as an Assessment of Nutritional Status in Hemodialysis Patients. Iran. J. Kidney Dis. 2016, 10, 30–35. [Google Scholar]
- Hanna, R.M.; Ghobry, L.; Wassef, O.; Rhee, C.M.; Kalantar-Zadeh, K. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 2020, 49, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Birajdar, N.; Anandh, U.; Premlatha, S.; Rajeshwari, G. Hand Grip Strength in Patients on Maintenance Hemodialysis: An Observational Cohort Study from India. Indian J. Nephro.l 2019, 29, 393–397. [Google Scholar] [CrossRef]
- Chen, Z.; Song, C.; Yao, Z.; Sun, J.; Liu, W. Associations between albumin, globulin, albumin to globulin ratio and muscle mass in adults: results from the national health and nutrition examination survey 2011-2014. BMC Geriatr. 2022, 22, 383. [Google Scholar] [CrossRef] [PubMed]
- Panorchan, K.; Nongnuch, A.; El-Kateb, S.; Goodlad, C.; Davenport, A. Changes in muscle and fat mass with haemodialysis detected by multi-frequency bioelectrical impedance analysis. Eur. J. Clin. Nutr. 2015, 69, 1109–1112. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Chang, Y.; Jung, H.S.; Yun, K.E.; Shin, H.; Ryu, S. Relative muscle mass and the risk of incident type 2 diabetes: A cohort study. PLoS One 2017, 12, e0188650. [Google Scholar] [CrossRef]
- Yi, D.; Lee, M.J.; Khang, A.R.; Kang, Y.H. Association between serum uric acid and relative hand grip strength in comparison with metabolic syndrome components. Osteoporos. Sarcopenia 2022, 8, 158–164. [Google Scholar] [CrossRef] [PubMed]
- García-Esquinas, E.; Rodríguez-Artalejo, F. Association between serum uric acid concentrations and grip strength: Is there effect modification by age? Clin. Nutr. 2018, 37, 566–572. [Google Scholar] [CrossRef]
- Huang, C.; Niu, K.; Kobayashi, Y.; Guan, L.; Momma, H.; Cui, Y.; Chujo, M.; Otomo, A.; Guo, H.; Tadaura, H.; et al. An inverted J-shaped association of serum uric acid with muscle strength among Japanese adult men: a cross-sectional study. BMC Musculoskelet. Disord. 2013, 14, 258. [Google Scholar] [CrossRef]
- Gherghina, M.E.; Peride, I.; Tiglis, M.; Neagu, T.P.; Niculae, A.; Checherita, I.A. Uric Acid and Oxidative Stress-Relationship with Cardiovascular, Metabolic, and Renal Impairment. Int. J. Mol. Sci. 2022, 23, 3188. [Google Scholar] [CrossRef] [PubMed]
- Garagarza, C.; Flores, A.L.; Valente, A. Influence of Body Composition and Nutrition Parameters in Handgrip Strength: Are There Differences by Sex in Hemodialysis Patients? Nutr. Clin. Pract. 2018, 33, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Thein, M.; Ershler, W.B.; Artz, A.S.; Tecson, J.; Robinson, B.E.; Rothstein, G.; Liede, A.; Gylys-Colwell, I.; Lu, Z.J.; Robbinset, S. Diminished quality of life and physical function in community-dwelling elderly with anemia. Medicine (Baltimore) 2009, 88, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Joosten, E.; Detroyer, E.; Milisen, K. Effect of anaemia on hand grip strength, walking speed, functionality and 1 year mortality in older hospitalized patients. BMC Geriatr. 2016, 16, 153. [Google Scholar] [CrossRef] [PubMed]
- Tseng, S.H.; Lee, W.J.; Peng, L.N.; Lin, M.H.; Chen, L.K. Associations between hemoglobin levels and sarcopenia and its components: Results from the I-Lan longitudinal study. Exp. Gerontol. 2021, 150, 111379. [Google Scholar] [CrossRef]
- Lee, M.R.; Jung, S.M.; Bang, H.; Kim, H.S.; Kim Y.B. Association between muscle strength and type 2 diabetes mellitus in adults in Korea Data from the Korea national health and nutrition examination survey (KNHANES) VI. Medicine (Baltimore) 2018; 97, e10984. [CrossRef]
- Mainous, A.G. 3rd; Tanner, R.J.; Anton, S.D.; Jo, A. Low Grip Strength and Prediabetes in Normal-Weight Adults. J. Am. Board Fam. Med. 2016, 29, 280–282. [Google Scholar] [CrossRef]
- Gürlek Demirci, B.; Sezer, S.; Tutal, E.; Çolak, T.; Uyanık, S.; Haberal, M. Hand-Grip Strength Is Associated With Serum Testosterone and Albumin Levels in Male Kidney Transplant Recipients. Exp. Clin. Transplant. 2018, 16, 75–79. [Google Scholar] [CrossRef]
| Total | Women | Men | Pmen vs women | ||||
| n | mean±SD | n | mean±SD | n | mean±SD | ||
| HGS [kg] | 84 | 25.27±10.09 | 38 | 18.88±5.31 | 46 | 30.55±10.07 | <0.001 |
| ASM (BIS) | 84 | 19.72±4.89 | 38 | 16.90±4.42 | 46 | 22.04±3.97 | <0.001 |
| Age [years] | 84 | 68.71±14.61 | 38 | 66.53±15.27 | 46 | 70.52±13.94 | 0.214 |
| Body mass [kg] | 84 | 82.87±18.88 | 38 | 77.58±20.57 | 46 | 87.25±16.33 | 0.018 |
| NH Weight [kg] | 84 | 82.20±19.04 | 38 | 77.54±21.10 | 46 | 86.04±16.40 | 0.041 |
| Height [cm] | 84 | 164.65±8.57 | 38 | 158.11±6.86 | 46 | 170.07±5.54 | <0.001 |
| BMI [kg/m2] | 84 | 30.45±6.02 | 38 | 30.74±6.66 | 46 | 30.21±5.49 | 0.685 |
| LTM [kg] | 84 | 33.39±8.71 | 38 | 28.80±7.61 | 46 | 37.18±7.74 | <0.001 |
| LTI | 84 | 12.26±2.91 | 38 | 11.53±3.19 | 46 | 12.87±2.55 | 0.037 |
| Fat [kg] | 84 | 35.24±13.17 | 38 | 35.42±14.93 | 46 | 35.09±11.69 | 0.909 |
| Rel Fat [%] | 84 | 41.64±8.53 | 38 | 44.24±9.52 | 46 | 39.49±7.00 | 0.010 |
| FTI | 84 | 17.65±6.40 | 38 | 19.02±7.18 | 46 | 16.53±5.50 | 0.075 |
| Total | Women | Men | Pmen vs women | ||||
| n | % | n | % | n | % | ||
| Serum albumin [g/dL] | |||||||
| < 3.9 | 9 | 11.1% | 3 | 8.3% | 6 | 13.3% | 0.722 |
| 3.9 - 4.9 | 72 | 88.9% | 33 | 91.7% | 39 | 86.7% | |
| Hemoglobin [g/dL] | |||||||
| < 11.0 | 16 | 19.5% | 8 | 21.1% | 8 | 18.2% | 0.744 |
| 11.0 - 18.0 | 66 | 80.5% | 30 | 78.9% | 36 | 81.8% | |
| eGFR [mL/min/1.73 m2] | |||||||
| ≤ 29 | 62 | 73.8% | 28 | 73.7% | 34 | 73.9% | 0.981 |
| 30-44 | 22 | 26.2% | 10 | 26.3% | 12 | 26.1% | |
| Serum creatinine [ULN] | |||||||
| <1.5 | 18 | 21.4% | 15 | 39.5% | 3 | 6.5% | 0.001 |
| 1.5 - 2.0 | 31 | 36.9% | 14 | 36.8% | 17 | 37.0% | |
| 2.0 - 3.0 | 27 | 32.1% | 6 | 15.8% | 21 | 45.7% | |
| > 3.0 | 8 | 9.5% | 3 | 7.9% | 5 | 10.9% | |
| Serum urea [ULN] | 0.012 | ||||||
| ≤ 1 | 3 | 4.2% | 0 | 0.0% | 3 | 7.7% | |
| 1 - 1.5 | 20 | 27.8% | 11 | 33.3% | 9 | 23.1% | |
| 1.5 - 2 | 22 | 30.6% | 15 | 45.5% | 7 | 17.9% | |
| 2 - 2.5 | 16 | 22.2% | 3 | 9.1% | 13 | 33.3% | |
| > 2.5 | 11 | 15.3% | 4 | 12.1% | 7 | 17.9% | |
| Serum uric acid [mg/dl] | 0.032 | ||||||
| K: 2.4 - 5.7, M: 3.4 - 7.0 | 29 | 37.7% | 9 | 25.0% | 20 | 48.8% | |
| K: >5.7, M: >7.0 | 48 | 62.3% | 27 | 75.0% | 21 | 51.2% | |
| OH [L] | |||||||
| < -1.0 | 9 | 10.7% | 4 | 10.5% | 5 | 10.9% | 0.006 |
| -1.0 - 1.0 | 47 | 56.0% | 28 | 73.7% | 19 | 41.3% | |
| > 1.0 | 28 | 33.3% | 6 | 15.8% | 22 | 47.8% | |
| Rel OH [%] | |||||||
| <-7.0 | 8 | 9.5% | 4 | 10.5% | 4 | 8.7% | 0.017 |
| -7.0-7.0 | 52 | 61.9% | 29 | 76.3% | 23 | 50.0% | |
| >7.0 | 24 | 28.6% | 5 | 13.2% | 19 | 41.3% | |
| Diabetes mellitus type 2 | |||||||
| No | 63 | 75.0% | 28 | 73.7% | 35 | 76.1% | 0.800 |
| Yes | 21 | 25.0% | 10 | 26.3% | 11 | 23.9% | |
| Appendicular skeletal muscle mass | Hand grip strength | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Total | Women | Men | Total | Women | Men | |||||||||||||
| n | r | p-value | n | r | p-value | n | r | p-value | n | r | p-value | n | r | p-value | n | r | p-value | |
| Body mass [kg] | 84 | 0.903 | <0.001 | 38 | 0.949 | <0.001 | 46 | 0.922 | <0.001 | 84 | 0.319 | 0.003 | 38 | 0.468 | 0.003 | 46 | 0.109 | 0.472 |
| NH Weight | 84 | 0.882 | <0.001 | 38 | 0.950 | <0.001 | 46 | 0.897 | <0.001 | 84 | 0.315 | 0.004 | 38 | 0.449 | 0.005 | 46 | 0.147 | 0.330 |
| Height [cm] | 84 | 0.694 | <0.001 | 38 | 0.640 | <0.001 | 46 | 0.421 | 0.004 | 84 | 0.666 | <0.001 | 38 | 0.548 | <0.001 | 46 | 0.452 | 0.002 |
| BMI [kg/m2] | 84 | 0.701 | <0.001 | 38 | 0.879 | <0.001 | 46 | 0.826 | <0.001 | 84 | 0.048 | 0.666 | 38 | 0.352 | 0.030 | 46 | -0.036 | 0.814 |
| LTM [kg] | 84 | 0.664 | <0.001 | 38 | 0.505 | 0.001 | 46 | 0.594 | <0.001 | 84 | 0.490 | <0.001 | 38 | 0.212 | 0.200 | 46 | 0.348 | 0.018 |
| LTI | 84 | 0.433 | <0.001 | 38 | 0.273 | 0.097 | 46 | 0.500 | <0.001 | 84 | 0.238 | 0.029 | 38 | 0.007 | 0.968 | 46 | 0.221 | 0.141 |
| Fat [kg] | 84 | 0.614 | <0.001 | 38 | 0.799 | <0.001 | 46 | 0.653 | <0.001 | 84 | 0.103 | 0.350 | 38 | 0.392 | 0.015 | 46 | 0.013 | 0.932 |
| Rel Fat | 84 | 0.090 | 0.415 | 38 | 0.344 | 0.034 | 46 | 0.227 | 0.129 | 84 | -0.146 | 0.185 | 38 | 0.196 | 0.238 | 46 | -0.080 | 0.596 |
| FTI | 84 | 0.449 | <0.001 | 38 | 0.723 | <0.001 | 46 | 0.593 | <0.001 | 84 | -0.058 | 0.599 | 38 | 0.319 | 0.051 | 46 | -0.063 | 0.677 |
| ASM (BIS) [kg] | 84 | 0.501 | <0.001 | 38 | 0.531 | 0.001 | 46 | 0.188 | 0.210 | |||||||||
| Appendicular skeletal muscle mass | Hand grip strength | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Total | Women | Men | Total | Women | Men | |||||||||||||
| n | mean±SD | p-value | n | mean±SD | p-value | n | mean±SD | p-value | n | mean±SD | p-value | n | mean±SD | p-value | n | mean±SD | p-value | |
| Serum albumin [g/dL] | ||||||||||||||||||
| < 3.9 | 9 | 22.56±5.36 | 0.073 | 3 | 23.16±6.82 | 0.011 | 6 | 22.26±5.20 | 0.896 | 9 | 23.61±5.54 | 0.603 | 3 | 20.33±1.15 | 0.642 | 6 | 25.25±6.23 | 0.185 |
| 3.9 - 4.9 | 72 | 19.44±4.81 | 33 | 16.38±3.95 | 39 | 22.02±3.89 | 72 | 25.49±10.55 | 33 | 18.77±5.69 | 39 | 31.17±10.42 | ||||||
| Hemoglobin [g/dL] | ||||||||||||||||||
| < 11.0 | 16 | 18.99±5.79 | 0.580 | 8 | 17.63±6.07 | 0.605 | 8 | 20.35±5.55 | 0.221 | 16 | 23.34±7.19 | 0.413 | 8 | 21.00±6.28 | 0.209 | 8 | 25.69±7.66 | 0.125 |
| 11.0 - 18.0 | 66 | 19.75±4.68 | 30 | 16.7±3.98 | 36 | 22.29±3.61 | 66 | 25.67±10.74 | 30 | 18.32±4.99 | 36 | 31.81±10.41 | ||||||
| eGFR [mL/min/1.73 m2] | ||||||||||||||||||
| ≤ 29 | 62 | 19.39±4.78 | 0.304 | 28 | 16.73±4.45 | 0.694 | 34 | 21.58±3.89 | 0.185 | 62 | 24.28±9.49 | 0.131 | 28 | 18.23±5.35 | 0.212 | 34 | 29.26±9.30 | 0.146 |
| 30 -4 4 | 22 | 20.64±5.17 | 10 | 17.38±4.53 | 12 | 23.36±4.06 | 22 | 28.07±11.38 | 10 | 20.70±5.02 | 12 | 34.21±11.66 | ||||||
| Serum creatinine [ULN] | ||||||||||||||||||
| < 1.5 | 18 | 17.90±4.55 | 0.138 | 15 | 17.03±3.81 | 0.971 | 3 | 22.27±6.34 | 0.191 | 18 | 21.28±6.31 | 0.105 | 15 | 19.47±4.93 | 0.786 | 3 | 30.33±4.51 | 0.741 |
| 1.5 - 2.0 | 31 | 19.40±5.14 | 14 | 17.15±5.64 | 17 | 21.26±3.95 | 31 | 24.40±11.48 | 14 | 17.75±4.63 | 17 | 29.88±12.62 | ||||||
| 2.0 - 3.0 | 27 | 20.53±4.04 | 6 | 16.11±1.71 | 21 | 21.80±3.60 | 27 | 27.59±9.28 | 6 | 19.25±6.01 | 21 | 29.98±8.72 | ||||||
| > 3.0 | 8 | 22.24±6.35 | 3 | 16.64±6.54 | 5 | 25.60±3.40 | 8 | 29.81±11.70 | 3 | 20.50±10.33 | 5 | 35.40±9.05 | ||||||
| Serum urea [ULN] | ||||||||||||||||||
| ≤ 1 | 3 | 23.97±2.83 | 0.408 | 0 | - | 0.706 | 3 | 23.97±2.83 | 0.833 | 3 | 50.33±8.08 | <0.001 | 0 | - | 0.937 | 3 | 50.33±8.08 | 0.003 |
| 1 - 1.5 | 20 | 19.42±5.06 | 11 | 16.49±3.07 | 9 | 23.00±4.77 | 20 | 23.18±7.43 | 11 | 20.00±4.88 | 9 | 27.06±8.39 | ||||||
| 1.5 - 2 | 22 | 19.06±5.46 | 15 | 17.76±5.30 | 7 | 21.85±5.06 | 22 | 23.84±10.85 | 15 | 18.80±6.46 | 7 | 34.64±10.71 | ||||||
| 2 - 2.5 | 16 | 21.16±3.68 | 3 | 19.67±5.65 | 13 | 21.51±3.31 | 16 | 25.88±8.93 | 3 | 18.00±1.00 | 13 | 27.69±8.96 | ||||||
| > 2.5 | 11 | 20.59±5.46 | 4 | 16.38±5.03 | 7 | 22.99±4.29 | 11 | 24.73±8.02 | 4 | 19.00±6.98 | 7 | 28.00±6.97 | ||||||
| Serum uric acid [mg/dL] | ||||||||||||||||||
| K: 2.4 - 5.7; M: 3.4 - 7.0 | 29 | 19.72±5.15 | 0.965 | 9 | 15.79±5.66 | 0.395 | 20 | 21.48±3.88 | 0.263 | 29 | 28.24±11.15 | 0.039 | 9 | 18.94±5.70 | 0.937 | 20 | 32.43±10.49 | 0.266 |
| K: > 5.7; M: > 7.0 | 48 | 19.77±5.06 | 27 | 17.30±4.14 | 21 | 22.95±4.35 | 48 | 23.34±9.11 | 27 | 19.11±5.32 | 21 | 28.79±10.14 | ||||||
| OH [L] | ||||||||||||||||||
| < -1.0 | 9 | 25.00±3.71 | <0.001 | 4 | 23.27±4.87 | 0.006 | 5 | 26.38±2.07 | 0.026 | 9 | 29.61±11.37 | 0.121 | 4 | 20.50±7.94 | 0.715 | 5 | 36.90±7.86 | 0.298 |
| -1.0 - 1.0 | 47 | 18.13±4.61 | 28 | 16.09±3.77 | 19 | 21.14±4.12 | 47 | 23.37±10.12 | 28 | 18.46±4.75 | 19 | 30.61±11.62 | ||||||
| > 1.0 | 28 | 20.67±4.30 | 6 | 16.41±4.10 | 22 | 21.83±3.63 | 28 | 27.07±9.19 | 6 | 19.75±6.74 | 22 | 29.07±8.84 | ||||||
| Rel OH [%] | ||||||||||||||||||
| < -7.0 | 8 | 24.74±3.88 | 0.003 | 4 | 23.27±4.87 | 0.005 | 4 | 26.22±2.36 | 0.086 | 8 | 28.19±11.26 | 0.536 | 4 | 20.50±7.94 | 0.695 | 4 | 35.88±8.68 | 0.374 |
| -7.0 - 7.0 | 52 | 18.69±4.73 | 29 | 16.36±3.99 | 23 | 21.61±3.95 | 52 | 24.39±10.19 | 29 | 18.91±5.26 | 23 | 31.30±10.78 | ||||||
| > 7.0 | 24 | 20.26±4.52 | 5 | 14.90±1.96 | 19 | 21.68±3.89 | 24 | 26.21±9.63 | 5 | 17.40±3.91 | 19 | 28.53±9.38 | ||||||
| Diabetes mellitus type 2 | ||||||||||||||||||
| No | 63 | 19.23±4.37 | 0.118 | 28 | 16.71±4.12 | 0.674 | 35 | 21.25±3.46 | 0.014 | 63 | 25.95±10.51 | 0.288 | 28 | 19.43±5.63 | 0.295 | 35 | 31.17±10.65 | 0.465 |
| Yes | 21 | 21.16±6.08 | 10 | 17.41±5.37 | 11 | 24.57±4.59 | 21 | 23.24±8.60 | 10 | 17.35±4.18 | 11 | 28.59±8.12 | ||||||
| Coefficient | 95%CI | p-value | |
| Height [cm] | 0.405 | 0.122;0.688 | 0.006 |
| Age [years] | -0.231 | -0.353;-0.109 | <0.001 |
| Gender [men] | 8.981 | 3.960;14.002 | 0.001 |
| Uric acid [mg/dL] | -1.078 | -2.110;-0.045 | 0.041 |
| OH [L] | -0.805 | -1.579;-0.032 | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
