Submitted:
03 May 2024
Posted:
06 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Considerations and Available Data about New β-Lactam Agents
2.1. Sulbactam/Durlobactam
2.2. Cefiderocol
3. Place in Therapy of Traditional Agents for Treatment of CRAB
3.1. Polymyxins
3.2. Tetracycline Derivatives
3.3. Fosfomycin
3.4. High-Dose Extended-Infusion Meropenem
3.5. Aminoglycosides
3.6. Rifamycins
3.7. Trimethoprim/Sulfamethoxazole
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii : Emergence of a Successful Pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef] [PubMed]
- Harding, C.M.; Hennon, S.W.; Feldman, M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 2017, 16, 91–102. [Google Scholar] [CrossRef]
- Castanheira, M.; E Mendes, R.; Gales, A.C. Global Epidemiology and Mechanisms of Resistance of Acinetobacter baumannii-calcoaceticus Complex. Clin. Infect. Dis. 2023, 76, S166–S178. [Google Scholar] [CrossRef]
- Shields, R.K.; Paterson, D.L.; Tamma, P.D. Navigating Available Treatment Options for Carbapenem-Resistant Acinetobacter baumannii-calcoaceticus Complex Infections. Clin. Infect. Dis. 2023, 76 (Suppl. 2), S179–S193. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022, 399, 629–655.
- Paul, M.; Carrara, E.; Retamar, P.; Tangden, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; A Bonomo, R.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023, ciad428. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. FDA approves new treatment for pneumonia caused by certain difficult-to-treat bacteria [media release]. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-pneumonia-caused-certain-difficult-treat-bacteria (accessed on 23 May 2023).
- Falcone, M.; Tiseo, G.; Leonildi, A.; Della Sala, L.; Vecchione, A.; Barnini, S.; Farcomeni, A.; Menichetti, F. Cefiderocol- Compared to Colistin-Based Regimens for the Treatment of Severe Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e0214221. [Google Scholar] [CrossRef]
- Russo, A.; Bruni, A.; Gullì, S.; Borrazzo, C.; Quirino, A.; Lionello, R.; Serapide, F.; Garofalo, E.; Serraino, R.; Romeo, F.; et al. Efficacy of cefiderocol- vs colistin-containing regimen for treatment of bacteraemic ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in patients with COVID-19. Int. J. Antimicrob. Agents 2023, 62, 106825–106825. [Google Scholar] [CrossRef]
- Penwell, W.F.; Shapiro, A.B.; Giacobbe, R.A.; Gu, R.-F.; Gao, N.; Thresher, J.; McLaughlin, R.E.; Huband, M.D.; DeJonge, B.L.M.; Ehmann, D.E.; et al. Molecular Mechanisms of Sulbactam Antibacterial Activity and Resistance Determinants in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2015, 59, 1680–1689. [Google Scholar] [CrossRef]
- Kuo, S.-C.; Lee, Y.-T.; Lauderdale, T.-L.Y.; Huang, W.-C.; Chuang, M.-F.; Chen, C.-P.; Su, S.-C.; Lee, K.-R.; Chen, T.-L. Contribution of Acinetobacter-derived cephalosporinase-30 to sulbactam resistance in Acinetobacter baumannii. Front. Microbiol. 2015, 6, 231. [Google Scholar] [CrossRef]
- Durand-Réville, T.F.; Guler, S.; Comita-Prevoir, J.; Chen, B.; Bifulco, N.; Huynh, H.; Lahiri, S.; Shapiro, A.B.; McLeod, S.M.; Carter, N.M.; et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat. Microbiol. 2017, 2, 17104. [Google Scholar] [CrossRef]
- Principe, L.; Di Bella, S.; Conti, J.; Perilli, M.; Piccirilli, A.; Mussini, C.; Decorti, G. Acinetobacter baumannii Resistance to Sulbactam/Durlobactam: A Systematic Review. Antibiotics 2022, 11, 1793. [Google Scholar] [CrossRef]
- Rodvold, K.A.; Gotfried, M.H.; Isaacs, R.D.; O'Donnell, J.P.; Stone, E. Plasma and Intrapulmonary Concentrations of ETX2514 and Sulbactam following Intravenous Administration of ETX2514SUL to Healthy Adult Subjects. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef]
- Kaye KS, Shorr AF, Wunderink RG, et al. Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: a multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect Dis. 2023, 23, 1072–1084.
- Giuliano, S.; Sbrana, F.; Tascini, C. Sulbactam–durlobactam for infections caused by Acinetobacter baumannii–calcoaceticus complex. Lancet Infect. Dis. 2023, 23, e274–E274. [Google Scholar] [CrossRef]
- Kaye KS, McLeod SM, O'Donnell JP, Altarac D. Sulbactam-durlobactam for infections caused by Acinetobacter baumannii-calcoaceticus complex - Authors' reply. Lancet Infect Dis. 2023, 23, e275–e276.
- Petropoulou, D.; Siopi, M.; Vourli, S.; Pournaras, S. Activity of Sulbactam-Durlobactam and Comparators Against a National Collection of Carbapenem-Resistant Acinetobacter baumannii Isolates From Greece. Front. Cell. Infect. Microbiol. 2022, 11, 814530. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/.
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef]
- Syed, Y.Y. Cefiderocol: A Review in Serious Gram-Negative Bacterial Infections. Drugs 2021, 81, 1559–1571. [Google Scholar] [CrossRef]
- Kollef, M.; Dupont, H.; Greenberg, D.E.; Viale, P.; Echols, R.; Yamano, Y.; Nicolau, D.P. Prospective role of cefiderocol in the management of carbapenem-resistant Acinetobacter baumannii infections: Review of the evidence. Int. J. Antimicrob. Agents 2023, 62, 106882. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Hackel, M.A.; Takemura, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In Vitro Susceptibility of Gram-Negative Pathogens to Cefiderocol in Five Consecutive Annual Multinational SIDERO-WT Surveillance Studies, 2014 to 2019. Antimicrob. Agents Chemother. 2021, 66, e0199021. [Google Scholar] [CrossRef]
- Poirel L, Sadek M, Nordmann P. Contribution of PER-Type and NDM-Type β-Lactamases to Cefiderocol Resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2021, 65, e0087721.
- Choby, J.E.; Ozturk, T.; Satola, S.W.; Jacob, J.T.; Weiss, D.S. Widespread cefiderocol heteroresistance in carbapenem-resistant Gram-negative pathogens. Lancet Infect. Dis. 2021, 21, 597–598. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. [Google Scholar] [CrossRef]
- Kawaguchi, N.; Katsube, T.; Echols, R.; Wajima, T. Population Pharmacokinetic and Pharmacokinetic/Pharmacodynamic Analyses of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Patients with Pneumonia, Bloodstream Infection/Sepsis, or Complicated Urinary Tract Infection. Antimicrob. Agents Chemother. 2021, 65. [Google Scholar] [CrossRef]
- Dalfino L, Stufano M, Bavaro DF, et al. Effectiveness of First-Line Therapy with Old and Novel Antibiotics in Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii: A Real Life, Prospective, Observational, Single-Center Study. Antibiotics (Basel). 2023, 12, 1048.
- Pascale, R.; Pasquini, Z.; Bartoletti, M.; Caiazzo, L.; Fornaro, G.; Bussini, L.; Volpato, F.; Marchionni, E.; Rinaldi, M.; Trapani, F.; et al. Cefiderocol treatment for carbapenem-resistant Acinetobacter baumannii infection in the ICU during the COVID-19 pandemic: a multicentre cohort study. JAC-Antimicrobial Resist. 2021, 3, dlab174. [Google Scholar] [CrossRef] [PubMed]
- Mazzitelli M, Gregori D, Sasset L, et al. Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic. Microorganisms. 2023, 11, 984.
- Gatti M, Cosentino F, Giannella M, Viale P, Pea F. Clinical efficacy of cefiderocol-based regimens in patients affected by carbapenem-resistant Acinetobacter baumannii infections: a systematic review with meta-analysis. Int J Antimicrob Agents. 2023, 107047.
- Zaidan, N.; Hornak, J.P.; Reynoso, D. Extensively Drug-Resistant Acinetobacter baumannii Nosocomial Pneumonia Successfully Treated with a Novel Antibiotic Combination. Antimicrob. Agents Chemother. 2021, 65, e0092421. [Google Scholar] [CrossRef] [PubMed]
- Lyu, C.; Zhang, Y.; Liu, X.; Wu, J.; Zhang, J. Clinical efficacy and safety of polymyxins based versus non-polymyxins based therapies in the infections caused by carbapenem-resistant Acinetobacter baumannii: a systematic review and meta-analysis. BMC Infect. Dis. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Seifert, H.; Blondeau, J.; Lucaßen, K.; Utt, E.A. Global update on the in vitro activity of tigecycline and comparators against isolates of Acinetobacter baumannii and rates of resistant phenotypes (2016–2018). J. Glob. Antimicrob. Resist. 2022, 31, 82–89. [Google Scholar] [CrossRef]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 10–39. [Google Scholar] [CrossRef]
- Nang, S.C.; Azad, M.A.K.; Velkov, T.; Zhou, Q. ; Li, J. Rescuing the Last-Line Polymyxins: Achievements and Challenges. Pharmacol. Rev. 2021, 73, 679–728. [Google Scholar] [CrossRef] [PubMed]
- Kassamali, Z.; Jain, R.; Danziger, L.H. An Update on the arsenal for multidrug-resistant Acinetobacter infections: Polymyxin antibiotics. Int. J. Infect. Dis. 2015, 30, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Signoriello, G.; Andini, R.; Mattei, A.; De Cristoforo, M.; Murino, P.; Bassetti, M.; Malacarne, P.; Petrosillo, N.; Galdieri, N.; et al. Colistin and Rifampicin Compared With Colistin Alone for the Treatment of Serious Infections Due to Extensively Drug-Resistant Acinetobacter baumannii: A Multicenter, Randomized Clinical Trial. Clin. Infect. Dis. 2013, 57, 349–358. [Google Scholar] [CrossRef]
- Sirijatuphat, R.; Thamlikitkul, V. Preliminary Study of Colistin versus Colistin plus Fosfomycin for Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrob. Agents Chemother. 2014, 58, 5598–5601. [Google Scholar] [CrossRef]
- Flamm, R.K.; Shortridge, D.; Castanheira, M.; Sader, H.S.; Pfaller, M.A. In Vitro Activity of Minocycline against U.S. Isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus Species Complex, Stenotrophomonas maltophilia, and Burkholderia cepacia Complex: Results from the SENTRY Antimicrobial Surveillance Program, 2014 to 2018. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef]
- Lodise, T.P.; Van Wart, S.; Sund, Z.M.; Bressler, A.M.; Khan, A.; Makley, A.T.; Hamad, Y.; Salata, R.A.; Silveira, F.P.; Sims, M.D.; et al. Pharmacokinetic and Pharmacodynamic Profiling of Minocycline for Injection following a Single Infusion in Critically Ill Adults in a Phase IV Open-Label Multicenter Study (ACUMIN). Antimicrob. Agents Chemother. 2021, 65. [Google Scholar] [CrossRef]
- De Pascale G, Lisi L, Ciotti GMP, et al. Pharmacokinetics of high-dose tigecycline in critically ill patients with severe infections. Ann Intensive Care. 2020, 10, 94.
- Ni, W.; Wang, Y.; Ma, X.; He, Y.; Zhao, J.; Guan, J.; Li, Y.; Gao, Z. In vitro and in vivo efficacy of cefiderocol plus tigecycline, colistin, or meropenem against carbapenem-resistant Acinetobacter baumannii. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1451–1457. [Google Scholar] [CrossRef]
- Falagas ME, Vouloumanou EK, Samonis G, Vardakas KZ. Fosfomycin. Clin Microbiol Rev. 2016, 29, 321–347.
- Guastalegname, M.; Trecarichi, E.M.; Russo, A. Intravenous Fosfomycin: The Underdog Player in the Treatment of Carbapenem-resistant Acinetobacter baumannii Infections. Clin. Infect. Dis. 2023, 77, 1736–1737. [Google Scholar] [CrossRef]
- Russo, A.; Bassetti, M.; Bellelli, V.; Bianchi, L.; Cattaneo, F.M.; Mazzocchetti, S.; Paciacconi, E.; Cottini, F.; Schiattarella, A.; Tufaro, G.; et al. Efficacy of a Fosfomycin-Containing Regimen for Treatment of Severe Pneumonia Caused by Multidrug-Resistant Acinetobacter baumannii: A Prospective, Observational Study. Infect. Dis. Ther. 2020, 10, 187–200. [Google Scholar] [CrossRef]
- Assimakopoulos, S.F.; Karamouzos, V.; Eleftheriotis, G.; Lagadinou, M.; Bartzavali, C.; Kolonitsiou, F.; Paliogianni, F.; Fligou, F.; Marangos, M. Efficacy of Fosfomycin-Containing Regimens for Treatment of Bacteremia Due to Pan-Drug Resistant Acinetobacter baumannii in Critically Ill Patients: A Case Series Study. Pathogens 2023, 12, 286. [Google Scholar] [CrossRef]
- Palombo, M.; Bovo, F.; Amadesi, S.; Gaibani, P. Synergistic Activity of Cefiderocol in Combination with Piperacillin-Tazobactam, Fosfomycin, Ampicillin-Sulbactam, Imipenem-Relebactam and Ceftazidime-Avibactam against Carbapenem-Resistant Gram-Negative Bacteria. Antibiotics 2023, 12, 858. [Google Scholar] [CrossRef]
- Lim, S.M.S.; Heffernan, A.; Naicker, S.; Wallis, S.; Roberts, J.A.; Sime, F.B. Evaluation of Fosfomycin-Sulbactam Combination Therapy against Carbapenem-Resistant Acinetobacter baumannii Isolates in a Hollow-Fibre Infection Model. Antibiotics 2022, 11, 1578. [Google Scholar] [CrossRef]
- Koomanachai, P.; Crandon, J.L.; Kuti, J.L.; Nicolau, D.P. Comparative pharmacodynamics for intravenous antibiotics against Gram-negative bacteria in Europe between 2002 and 2006: a report from the OPTAMA program. Int. J. Antimicrob. Agents 2009, 33, 348–353. [Google Scholar] [CrossRef]
- Bavaro, D.F.; Belati, A.; Diella, L.; Stufano, M.; Romanelli, F.; Scalone, L.; Stolfa, S.; Ronga, L.; Maurmo, L.; Dell’aera, M.; et al. Cefiderocol-Based Combination Therapy for “Difficult-to-Treat” Gram-Negative Severe Infections: Real-Life Case Series and Future Perspectives. Antibiotics 2021, 10, 652. [Google Scholar] [CrossRef] [PubMed]
- Holger, D.J.; Coyne, A.J.K.; Zhao, J.J.; Sandhu, A.; Salimnia, H.; Rybak, M.J. Novel Combination Therapy for Extensively Drug-Resistant Acinetobacter baumannii Necrotizing Pneumonia Complicated by Empyema: A Case Report. Open Forum Infect. Dis. 2022, 9, ofac092. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Novoa, J.M.; Quiros, Y.; Vicente, L.; Morales, A.I.; Lopez-Hernandez, F.J. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 2011, 79, 33–45. [Google Scholar] [CrossRef]
- Najmeddin, F.; Shahrami, B.; Azadbakht, S.; Dianatkhah, M.; Rouini, M.R.; Najafi, A.; Ahmadi, A.; Sharifnia, H.; Mojtahedzadeh, M. Evaluation of Epithelial Lining Fluid Concentration of Amikacin in Critically Ill Patients With Ventilator-Associated Pneumonia. J. Intensiv. Care Med. 2018, 35, 400–404. [Google Scholar] [CrossRef]
- Mohammadi, M.; Khayat, H.; Sayehmiri, K.; Soroush, S.; Sayehmiri, F.; Delfani, S.; Bogdanovic, L.; Taherikalani, M. Synergistic Effect of Colistin and Rifampin Against Multidrug Resistant Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Open Microbiol. J. 2017, 11, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, M.-F.; Durante-Mangoni, E.; Fortunato, R.; Utili, R.; Zarrilli, R. Comparative activities of colistin, rifampicin, imipenem and sulbactam/ampicillin alone or in combination against epidemic multidrug-resistant Acinetobacter baumannii isolates producing OXA-58 carbapenemases. Int. J. Antimicrob. Agents 2007, 30, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, Y.; Xiang, K.; Li, D.; Liu, H. Combined Rifampin and Sulbactam Therapy for Multidrug-Resistant Acinetobacter Baumannii Ventilator-Associated Pneumonia in Pediatric Patients. J. Anesthesia Perioper. Med. 2018, 5, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Trebosc, V.; Kemmer, C.; Lociuro, S.; Gitzinger, M.; Dale, G.E. Rifabutin for infusion (BV100) for the treatment of severe carbapenem-resistant Acinetobacter baumannii infections. Drug Discov. Today 2021, 26, 2099–2104. [Google Scholar] [CrossRef]
- Falagas, M.E.; Vardakas, K.Z.; Roussos, N.S. Trimethoprim/sulfamethoxazole for Acinetobacter spp.: A review of current microbiological and clinical evidence. Int. J. Antimicrob. Agents 2015, 46, 231–241. [Google Scholar] [CrossRef]
- Raz-Pasteur A, Liron Y, Amir-Ronen R, et al. Trimethoprim-sulfamethoxazole vs. colistin or ampicillin-sulbactam for the treatment of carbapenem-resistant Acinetobacter baumannii: A retrospective matched cohort study. J Glob Antimicrob Resist. 2019, 17, 168–172.
- Russo, A.; Gullì, S.P.; D'Avino, A.; Borrazzo, C.; Carannante, N.; Dezza, F.C.; Covino, S.; Polistina, G.; Fiorentino, G.; Trecarichi, E.M. Intravenous fosfomycin for treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii: a multicenter clinical experience. Int J Antimicrob Agents 2024, 107190. [Google Scholar] [CrossRef]
| ESCMID guidelines (April 2022) | IDSA guidance (July 2023) | |
| Combination antibiotic regimen | For severe and high-risk CRAB infection | For moderate-severe CRAB infection |
| Ampicillin/sulbactam | For patients with CRAB susceptible to sulbactam and HAP/VAP (1 g sulbactam component q6h) |
Back-bone treatment for all CRAB infection (6-9 g sulbactam component daily) |
| Polymyxins | Either colistin or polymyxin B: for patients with CRAB resistant to sulbactam susceptible to polymyxins; in combination with one other in-vitro active agent for severe, susceptible to polymyxins, CRAB infection |
Polymyxin B in combination with at least one other agent for the treatment of CRAB infections (Colistin only for CRAB UTIs) |
| Tetracycline derivatives | High-dose tigecycline: for patients with CRAB resistant to sulbactam susceptible to tigecycline; in combination with one other in-vitro active agent for severe, susceptible to tigecycline, CRAB infection |
High-dose minocycline (preferred option) or high-dose tigecycline in combination with at least one other agent for the treatment of CRAB infections |
| Cefiderocol | Not recommended | In combination with at least one other agent for the treatment of CRAB infections refractory to other antibiotics (or when the use of other antibiotics is precluded) |
| Aminoglycosides | In combination with one other in-vitro active agent for severe, susceptible to aminoglycosides, CRAB infection | Not recommended |
| High-dose extended- infusion meropenem | In combination with one other in-vitro active agent for severe CRAB infections with a meropenem MIC <8 mg/L | Not recommended |
|
Pascale et al. [32] multicentre (Jan 2020-Apr 2021) |
Mazzitelli et al. [33] single-centre (Aug 2020-Jul 2022) |
Falcone et al. [10] single-centre (Jan 2020-Aug 2021) |
Russo et al. [11] single-centre (Mar 2020-Aug 2022) |
|
|
Population: antibiotic-based regimen groups |
107 patients: 42 CFD 65 COL |
111 patients: 60 CFD 51 COL |
124 patients: 47 CFD 77 COL |
73 patients: 19 CFD 54 COL |
| Covid-19 coinfection | 100% | 32% | 38,7% | 100% |
| Site of infection | BSI (58%) LRTI (41%) Others (1%) |
BSI (47,7%) Pneumonia (52,3%) |
BSI (57,4%) VAP (25,5%) Others (17%) |
VAP and concomitant BSI (100%) |
| Patients received CFD in combination | 0 | 30 (50%) | 33 (70%) | 19 (100%) |
| Main agents co-administered with CFD | / | TGC (18/30) MEM (13/30) FOS (8/30) |
TGC (21/33) FOS (8/33) |
FOS (7/19) FOS + TGC (7/19) TGC (1/19) |
|
28-30 day all-cause mortality: CFD group vs COL group |
23 (55%) vs 38 (58%) (p-value: 0,7) |
26 (51%) vs 22 (37%) (p-value: 0,13) |
16 (34%) vs 43 (56%) (p-value: 0.018) |
6 (31.5%) vs 53 (98%) (p-value <0.001) |
| Potential role | Evidences (or available data) | Limits | Studies to be prioritized | |
|---|---|---|---|---|
|
Sulbactam/ durlobactam |
Back-bone agent in combination treatment | RCT: non-inferior to COL (both co-administered with IPM-CLN) [17] |
Efficacy as monotherapy not known | RCTs finding the best partner-agent |
| Cefiderocol | Back-bone agent in combination treatment | Metanalysis: lower risk of mortality rate compared to COL-based regimen [34] | Unsatisfactory efficacy as monotherapy when compared to COL [22] and MEM [23] | -RCTs confirming the role as back-bone agent; -RCTs finding the best partner-agent |
| Polymyxins | COL (or PB): alternative agent (when no other options are available) | Large clinical experience as back-bone agent [36]. (Data on combination with NBLs are missing) |
-Nefrotoxicity [40]; -suboptimal lung penetration [38]; - suboptimal plasma concentrations [38]. |
Accelerate studies on safer polymyxin with lung improved activity |
| Tetracycline derivatives | High-dose TGC (or MNC): partner-agent in combination treatment |
TGC + CFD: -in-vitro synergism [47]; (one of the most frequently used combination in observational studies [34]) |
Suboptimal exposures in serum, lung and urine [5] | RCTs comparing TGC and FOS as partner-agent |
| Fosfomycin | Partner-agent in combination treatment | -Retrospective study: associated with 30-day survival in combination with CFD [11]; -In-vitro synergism with CFD [52] and SUL [53];(the most commonly used agent in combination with CFD in observational studies [34]) |
-Data coming from the observational study included regimens of more than 2 agents [11] -AB is intrinsically resistant to the drug [48]; |
RCTs comparing TGC and FOS as partner-agent |
|
High-dose extended- infusion meropenem |
Partner-agent in PDR-CRAB infections (to be spared in treatment of strains sensitives to NBLs) |
In-vitro synergism against CFD-resistant strains [47]. (Combined with SUL-DUR: a single case report of PDR-CRAB cured, with in-vitro synergistic effect [56]) |
-Suboptimal cumulative fraction of response [54]; -possible increase in side effects rate if co-administered with other BLs |
-In-vitro studies on synergism with NBLs; -Clinical studies on PDR-CRAB infections |
| Amino-glycosides | Alternative partner-agent for few selected cases | Currently recommended as a combination treatment for susceptible CRAB isolates [7]. (Data on combination with NBLs are missing) |
-Resistance rate among CRAB isolates > 80%; -suboptimal concentration in lung [37]; - high rate side effects [57] |
/ |
| Rifamycins | Alternative partner-agent | RFM + SUL: -in-vitro synergism [60];(a case series on 12 pediatric patients reported clinical efficacy in VAP due to XDR-AB [61]) |
Synergism seems to depend by rifampicin MICs, but MICs data are scant [59] | -Accelerate clinical studies on rifabutin iv formulation; -in-vitro studies on synergism between RFM and NBLs |
|
Trimethoprim/ sulfamethoxazole |
Alternative partner-agent | (Successfully administered in combination with CFD in sporadic cases [11]) | Resistance rate among CRAB isolates > 80% [63] | In-vitro studies on synergism with NBLs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).