Submitted:
02 May 2024
Posted:
03 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
- According to our knowledge, PSO has already been applied for solving the FTP. However, the conducted experiments lack depth in their data analysis, as they predominantly focus on individual problem instances rather than a diverse range of scenarios. Introducing a novel approach, the TrigAC-PSO is applied for the first time for solving the FTP, highlighting exceptional performance across a comprehensive set of instances.
- Nevertheless, the selected problem instances encompass various types of fuzzy numbers such as triangular and trapezoidal fuzzy sets. Moreover, the fuzzy numbers extend beyond conventional representations, encompassing both classic fuzzy numbers and fuzzy generalized numbers, thereby adding depth and complexity to the study. It is the first time that fuzzy generalized numbers are applied to a particle swarm optimization variation.
- The evaluation of results, from each method, is not based entirely on their attainment of the optimal solution. Instead, this study estimates the method’s performance according to the degree of membership in which their solutions approach optimality as determined by membership functions. Once more, the TrigAC-PSO method demonstrates remarkable completeness against other methods.
2. Transportation Problem (TP)
3. Fuzzy Logic Definitions
3.1. Fuzzy Sets and Membership Functions
- i)
- is piecewise continuous.
- ii)
- is convex fuzzy subset.
- iii)
-
where
- .
- .
3.2. Generalized fuzzy numbers
- is continuous.
- for all .
- is strictly increasing on and strictly decreasing on
- for all where .
3.3. Arithmetic Operations
4. Fuzzy Transportation Problem
5. Particle Swarm Optimization (PSO)
- Position, which indicates its location in the search space
- Velocity, which dictates the direction and extent of particles movement
- Its previous best position, which operates as a memory mechanism for the positions that the particle has already “visited”
- is its current position
- is its previous position
- is the velocity in the current iteration
- where represents the velocity of the particle in the current iteration, while is the velocity in the previous iteration.
- denotes the inertia weight, balancing global and local exploitation by incorporating memory of the previous particles direction to prevent major changes in suggested directions.
- and are variables, randomly generated from uniform distribution, in range
- denotes the best position of the particle up to iteration , while is the finest position of the entire swarm up to the same iteration.
- The term is known as the cognitive component, acting as a form of memory storing the particle’s best previous positions. The cognitive component reflects the tendency of the particles to return to their best positions.
- The term is known as the social component. In this context, particles follow the guidance of the swarm’s best position, incorporating knowledge acquired from the swarm.
- and are defined as acceleration coefficients, impacting the efficiency of the PSO method. More precisely, signifies the particle’s confidence in itself while expresses the particle’s confidence in the swarm.
5.1. Trigonometric Acceleration Coefficient – Particle Swarm Optimization (TrigAC-PSO)
- In the initial iteration, the personal acceleration value , is set to 0.5, while the social acceleration value , is set to 3.5.
- In the last iteration of the algorithm, both the personal and social acceleration values are adjusted to 2.
- The inertia weight (w) is dynamic and depends on the current iteration and the maximum number of iterations and is defined by the following equation:
6. Case Studies and Experimental Results
| Algorithm 1: Initialization algorithm |
![]() |

- is the input value.
- μ is the mean of the fuzzy numbers.
- σ is the standard deviation of the fuzzy numbers.
- Ebrahimnejad, so as Thota and Raja’s approach exhibited zero deviation from the optimal solution, establishing it as the preferred method for solving the TP involving fuzzy generalized numbers.
- TrigAC-PSO’s performance in this scenario was exceptional, yet again. This method reached almost the ultimate solution with a deviation rate of 1.71%.
- Kaur and Kuman’s method demonstrated commendable efficiency with a deviation from the optimum standing at 2.89%
- Conversely, the outcomes derived from Mathur’s method exhibited a substantial deviation from the optimal solution, amounting to 20.54%
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deshpande, V.A. An optimal method for obtaining initial basic feasible solution of the transportation problem. In Proceedings of the National Conference on Emerging Trends in Mechanical Engineering Patel College of Engineering & Technology (GCET), Vallabh Vidyanagar (ETME-2009), Vallabh Vidyanagar, India 2010, 20, 21.
- Taha, H.A. Operations Research: An Introduction, 8th ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2007. [Google Scholar]
- Amaliah, B.; Fatichah, C.; Suryani, E. A new heuristic method of finding the initial basic feasible solution to solve the transportation problem. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 2298–2307. [Google Scholar] [CrossRef]
- Basirzadeh, H. An approach for solving fuzzy transportation problem. Appl. Math. Sci. 2011, 5, 1549–1566. [Google Scholar]
- Bellman, R.E.; Zadeh, L.A. Decision-making in fuzzy environment. Management Science 1970, 17, B141–B164. [Google Scholar] [CrossRef]
- Chanas, S.; Kuchta, D. A concept of optimal solution of the transportation with Fuzzy cost coefficient. Fuzzy sets and systems 1996, 82, 299–305. [Google Scholar] [CrossRef]
- Ahmed, N.; Khan, A.; Uddin, M. Solution of Mixed Type Transportation Problem: A Fuzzy Approach. 2015, 61, 19–31. [Google Scholar]
- Chakraborty, A.; Chakraborty, M. Cost-time minimization in a transportation problem with fuzzy parameters: a case study. Journal of Transportation Systems Engineering and Information Technology 2010, 10, 53–63. [Google Scholar] [CrossRef]
- Basirzadeh, H. An Approach for Solving Fuzzy Transportation Problem. Applied Mathematical Sciences 2011, 5, 1549–1566. [Google Scholar]
- Gani, A.N. Simplex Type Algorithm for Solving Fuzzy Transportation Problem. Tamsui Oxford Journal of Information and Mathematical Sciences 2011, 27, 89–98. [Google Scholar]
- Shanmugasundari, M.; Ganesan, K. A novel approach for the fuzzy optimal solution of fuzzy transportation problem. International Journal of Engineering Research and Applications 2013, 3, 1416–1421. [Google Scholar]
- Balasubramanian, K.; Subramanian, S. Optimal Solution of Fuzzy Transportation Problems Using Ranking Function. International Journal of Mechanical and Production 2018, 8, 551–558. [Google Scholar] [CrossRef]
- Pandian, P.; Natarajan, G. A new algorithm for finding a fuzzy optimal solution for fuzzy transportation problems. Applied Mathematical Sciences 2010, 4, 79–90. [Google Scholar]
- Gani, A.; Razak, K.A. Two stage fuzzy transportation problem. Journal of Physical Sciences 2006, 10, 63–69. [Google Scholar]
- Malini, S.; Kennedy, F. An approach for Solving Fuzzy Transportation Problem using Octagonal Fuzzy Numbers. 2013, 7, 2661–2673. [Google Scholar] [CrossRef]
- Ekanayake, D.; Ekanayake, U. An Average Based Method for Finding the Basic Feasible Solution for the Fuzzy Transportation Problems. American Journal of Applied Scientific Research 2023, 9, 1–13. [Google Scholar]
- Kaur, A.; Kumar, A. A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers. Applied Soft Computing 2012, 12, 1201–1213. [Google Scholar] [CrossRef]
- Ebrahimnejad, A. A simplified new approach for solving fuzzy transportation problems with generalized trapezoidal fuzzy numbers. Applied Soft Computing 2014, 19, 171–176. [Google Scholar] [CrossRef]
- Chen, S.H. Operations of fuzzy numbers with function principal. Tamkang Journal of Management Sciences 1985, 6, 13–25. [Google Scholar]
- Lin, F.T. Solving the transportation problem with fuzzy coefficients using genetic algorithms. IEEE International Conference on fuzzy systems. 2009, 1468–1473. [Google Scholar]
- Sharmistha, H.J.; Biswapati, J. Application of fuzzy programming techniques to solve solid transportation problem with additional constraints, Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management. 2020, 30, 67–84. [Google Scholar]
- Sadeghi-Moghaddam, S.; Hajiaghaei-Keshteli, M.; Mahmoodjanloo, M. New approaches in metaheuristics to solve the fixed charge transportation problem in a fuzzy environment. Neural Comput & Applic 2019, 31 (Suppl 1), 477–497. [Google Scholar] [CrossRef]
- Rajshri, G.; Onkar, C.; Dhawade, N. Optimizing Fuzzy Transportation Problem of Trapezoidal Numbers. 2017, 15–23. [Google Scholar]
- Singh, G.; Singh, A. Extension of particle swarm optimization algorithm for solving transportation problem in fuzzy environment. Applied Soft Computing 2021, 110. [Google Scholar] [CrossRef]
- Aroniadi, C.; Beligiannis, G.N. Applying Particle Swarm Optimization Variations to Solve the Transportation Problem Effectively. Algorithms 2023, 16, 372. [Google Scholar] [CrossRef]
- Kumar, P.S. PSK Method for Solving Intuitionistic Fuzzy Solid Transportation Problems. International Journal of Fuzzy System Applications 2018, 7, 62–99. [Google Scholar] [CrossRef]
- Rosendo, M.; Pozo, A. A hybrid particle swarm optimization algorithm for combinatorial optimization problems. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2017, 22, 387–408. [Google Scholar] [CrossRef]
- 29. Giancarlo de Franca Aguiar; Barbara de Cassia Xavier Cassins Aguiar, Volmir Eugenio Wilhelm. The MOMC method: a new methodology to find initial solution. Applied Mathematical Sciences 2015, 9, 901–914. [CrossRef]
- Farikhin, M.S.; Bayu, S.; Bambang, I. Solving of Fuzzy Transportation Problem Using Fuzzy Analytical Hierarchy Process, Proceedings of the 2nd International Seminar on Science and Technology, Atlantis Press, (ISSTEC 2019), 10-15, 2352-5398. [CrossRef]
- Mathur, N.; Srivastava, P. An Inventive Approach to Optimize Fuzzy Transportation Problem. International Journal of Mathematical, Engineering and Management Sciences 2020, 5, 985–994. [Google Scholar] [CrossRef]
- Bisht, D.; Srivastava, P. One Point Conventional Model to Optimize Trapezoidal Fuzzy Transportation Problem. International Journal of Mathematical, Engineering and Management Sciences 2019, 4, 1251–1263. [Google Scholar] [CrossRef]
- Muhammad, S.; Farikhin; Hariyanto; Soni; Surarso. Bayu Optimal solution of full fuzzy transportation problems using total integral ranking. Journal of Physics: Conference Series 2018, 983, 012075. [Google Scholar] [CrossRef]
- Pandian, P.; Natarajan, G. ; An Appropriate Method for Real Life Fuzzy Transportation Problems. International Journal of Information Sciences and Application 2011, 3, 127–134. [Google Scholar]
- Mathur, N.; Srivastava, P. K.; Paul, A. Trapezoidal fuzzy model to optimize transportation problem. International Journal of Modeling, Simulation, and Scientific Computing 2016, 07, 1650028. [Google Scholar] [CrossRef]
- Singh, R.; Saxena, V. A new ranking based fuzzy approach for fuzzy transportation problem. Computer modelling and new technologies 2017, 21, 16–21. [Google Scholar]
- Srinivasan, R.; Karthikeyan, N.; Renganathan, K.; Vijayan, D.V. Method for solving fully fuzzy transportation problem to transform the materials. Materials Today: Proceedings 2020. [Google Scholar] [CrossRef]
- Hussain, R.; Jayaraman, P. Fuzzy Transportation Problem Using Improved Fuzzy Russells Method. International Journal of Mathematical Trends and Technology 2014, 5, 50–59. [Google Scholar] [CrossRef]
- Kumar, P.S. A Simple Method for Solving Type-2 and Type-4 Fuzzy Transportation Problems. Int. J. Fuzzy Log. Intell. Syst. 2016, 16, 225–237. [Google Scholar] [CrossRef]
- Thota, S.; Raja, P. New Method for Finding an Optimal Solution of Generalized Fuzzy Transportation Problems (June 15, 2020). Asian Journal of Mathematical Sciences 2020. Available at SSRN: https://ssrn.com/abstract=3813697. [Google Scholar]



| Triangular Fuzzy Numbers | Trapezoidal Fuzzy Numbers | Generalized Trapezoidal Fuzzy Numbers |
|
be two triangular fuzzy numbers then • • |
be two trapezoidal fuzzy numbers then • • |
be two generalized trapezoidal fuzzy numbers then • • |
| No | From Journal | Name | Problem Size | Type | Optimal Solution |
|---|---|---|---|---|---|
| 1 | Ebrahimnejad (2014) | Pr. 01 | 3·3 | Generalized Trapezoidal Fuzzy Number | 64.35 |
| 2 | Kumar and Subramanian (2018) | Pr. 02 | 4·4 | Classic Triangular Fuzzy Number | 853.35 |
| 3 | Farikhin et al. (2020) | Pr. 03 | 3·4 | Classic Triangular Fuzzy Number | 817.17 |
| 4 | Mathur and Srivastava (2020) | Pr. 04 | 3·4 | Generalized Trapezoidal Fuzzy Number | 196 |
| 5 | Srivastava and Bisht (2018) | Pr. 05 | 3·3 | Classic Triangular Fuzzy Number | 166 |
| 6 | Srivastava and Bisht (2018) | Pr. 06 | 3·4 | Classic Triangular Fuzzy Number | 101 |
| 7 | Sam'an et al. (2018) | Pr. 07 | 3·3 | Classic Trapezoidal Fuzzy Number | 1770 |
| 8 | Pandian and Natarajan (2011) | Pr. 08 | 3·4 | Classic Trapezoidal Fuzzy Number | 199 |
| 9 | Mathur et al. (2016) | Pr. 09 | 3·3 | Classic Trapezoidal Fuzzy Number | 155.25 |
| 10 | Singh and Saxena (2017) | Pr. 10 | 3·4 | Classic Trapezoidal Fuzzy Number | 126 |
| 11 | Ekanayake and Ekanayake (2023) | Pr. 11 | 4·4 | Classic Triangular Fuzzy Number | 294 |
| 12 | Ekanayake and Ekanayake (2023) | Pr. 12 | 3·4 | Classic Triangular Fuzzy Number | 65.8 |
| 13 | Ekanayake and Ekanayake (2023) | Pr. 13 | 2·3 | Classic Triangular Fuzzy Number | 7735.5 |
| 14 | Ekanayake and Ekanayake (2023) | Pr. 14 | 4·4 | Classic Triangular Fuzzy Number | 130.68 |
| 15 | Srinivasan et al. (2020) | Pr. 15 | 6·6 | Classic Triangular Fuzzy Number | 2170 |
| 16 | Ekanayake and Ekanayake (2023) | Pr. 16 | 3·3 | Classic Trapezoidal Fuzzy Number | 951.25 |
| 17 | Ekanayake and Ekanayake (2023) | Pr. 17 | 4·3 | Classic Trapezoidal Fuzzy Number | 821.25 |
| 18 | Ekanayake and Ekanayake (2023) | Pr. 18 | 3·4 | Classic Triangular Fuzzy Number | 149 |
| 19 | Ekanayake and Ekanayake (2023) | Pr. 19 | 3·4 | Classic Trapezoidal Fuzzy Number | 67.25 |
| 20 | Hussain and Jayaraman (2014) | Pr. 20 | 3·3 | Classic Triangular Fuzzy Number | 3640.56 |
| 21 | Hussain and Jayaraman (2014) | Pr. 21 | 4·4 | Classic Trapezoidal Fuzzy Number | 3844 |
| 22 | Ekanayake and Ekanayake (2023) | Pr. 22 | 3·3 | Classic Triangular Fuzzy Number | 295.9 |
| 23 | Ekanayake and Ekanayake (2023) | Pr. 23 | 3·3 | Classic Triangular Fuzzy Number | 551.03 |
| 24 | Ebrahimnejad (2014) | Pr. 24 | 4·6 | Generalized Trapezoidal Fuzzy Number | 4300.2 |
| 25 | Kumar (2016) | Pr. 25 | 3·4 | Classic Trapezoidal Fuzzy Number | 68 |
| 26 | Kumar(2016) | Pr. 26 | 3·4 | Classic Trapezoidal Fuzzy Number | 141 |
| 27 | Thota and Raja (2020) | Pr. 27 | 3·3 | Generalized Trapezoidal Fuzzy Number | 91.45 |
| 28 | Thota and Raja (2020) | Pr. 28 | 3·4 | Generalized Trapezoidal Fuzzy Number | 75.6 |
| Pr | NWC | LCM | VAM | MOMC | TrigAC-PSO | Optimal |
|---|---|---|---|---|---|---|
| 01 | 64.35 | 67.6 | 67.6 | 67.6 | 65.1 | 64.35 |
| 02 | 1046.67 | 870.05 | 853.35 | 855 | 853.35 | 853.35 |
| 03 | 861.53 | 894.66 | 817.17 | 1000.67 | 817.17 | 817.17 |
| 04 | 233 | 266.5 | 268 | 266.5 | 196 | 196 |
| 05 | 166 | 190 | 172 | 172 | 166 | 166 |
| 06 | 125 | 120.5 | 101 | 105 | 101 | 101 |
| 07 | 2025 | 1790 | 1770 | 1800 | 1770 | 1770 |
| 08 | 233 | 223 | 203 | 199 | 199 | 199 |
| 09 | 155.25 | 178.25 | 159.25 | 164.5 | 155.25 | 155.25 |
| 10 | 144.25 | 140 | 130 | 126 | 126 | 126 |
| 11 | 376 | 294 | 294 | 375 | 294 | 294 |
| 12 | 110.67 | 65.8 | 65.8 | 66 | 65.8 | 65.8 |
| 13 | 7736.67 | 7735.5 | 7735.5 | 7736.67 | 7735.5 | 7735.5 |
| 14 | 196 | 130.68 | 130.68 | 130.68 | 130.68 | 130.68 |
| 15 | 4285 | 2.455 | 2.310 | 2620 | 2261 | 2170 |
| 16 | 1035 | 971.25 | 951.25 | 951.25 | 951.25 | 951.25 |
| 17 | 967.5 | 887.5 | 821.25 | 826.25 | 821.25 | 821.25 |
| 18 | 176 | 152 | 149 | 150 | 149 | 149 |
| 19 | 93 | 67.25 | 67.25 | 77 | 67.25 | 67.25 |
| 20 | 5070.33 | 3740.58 | 3644.58 | 3944.34 | 3640.56 | 3640.56 |
| 21 | 4172 | 4172 | 4091 | 3932 | 3844 | 3844 |
| 22 | 486.67 | 339.92 | 295.9 | 340 | 295.9 | 295.9 |
| 23 | 592.67 | 557.71 | 557.71 | 581 | 551.03 | 551.03 |
| 24 | 6549.9 | 7567.8 | 4414.95 | 4452.9 | 4386.45 | 4300.2 |
| 25 | 93 | 73 | 70 | 68 | 68 | 68 |
| 26 | 169 | 148 | 141 | 141 | 141 | 141 |
| 27 | 108.8 | 97.5 | 97.45 | 97.5 | 91.45 | 91.45 |
| 28 | 134.175 | 95 | 75.6 | 95 | 82.5 | 75.6 |
| NWM | LCM | VAM | MOMC | TrigAC-PSO | |
|---|---|---|---|---|---|
| Pr.01 | 0 | 0.05050505 | 0.05050505 | 0.05050505 | 0.011655011 |
| Pr.02 | 0.22654245 | 0.01956993 | 0 | 0.001933556 | 0 |
| Pr.03 | 0.05428491 | 0.094827269 | 0 | 0.224555478 | 0 |
| Pr.04 | 0.18877551 | 0.359693877 | 0.36734694 | 0.359693877 | 0 |
| Pr.05 | 0 | 0.014457831 | 0.03614458 | 0.036144578 | 0 |
| Pr.06 | 0.237623762 | 0.193069306 | 0 | 0.03960396 | 0 |
| Pr.07 | 0.144067796 | 0.011299435 | 0 | 0.016949152 | 0 |
| Pr.08 | 0.170854271 | 0.120603015 | 0.0201005 | 0 | 0 |
| Pr.09 | 0 | 0.148148148 | 0.0257649 | 0.05958132 | 0 |
| Pr.10 | 0.144841269 | 0.111111111 | 0.03174603 | 0 | 0 |
| Pr.11 | 0.278911564 | 0 | 0 | 0.275510204 | 0 |
| Pr.12 | 0.681914893 | 0 | 0 | 0.003039514 | 0 |
| Pr.13 | 0.000151251 | 0 | 0 | 0.000151251 | 0 |
| Pr.14 | 0.499846954 | 0 | 0 | 0 | 0 |
| Pr.15 | 0.974654377 | 0.131336405 | 0.06060606 | 0.207373271 | 0.041935483 |
| Pr.16 | 0.088042049 | 0.021019442 | 0 | 0 | 0 |
| Pr.17 | 0.178082192 | 0.080669711 | 0 | 0.00608828 | 0 |
| Pr.18 | 0.181208054 | 0.020134228 | 0 | 0.006711409 | 0 |
| Pr.19 | 0.382899628 | 0 | 0 | 0.144981413 | 0 |
| Pr.20 | 0.392733535 | 0.027523238 | 0.00110423 | 0.083443207 | 0 |
| Pr.21 | 0.085327784 | 0.085327784 | 0.06425598 | 0.02289282 | 0 |
| Pr.22 | 0.644711051 | 0.148766475 | 0 | 0.149036837 | 0 |
| Pr.23 | 0.075567573 | 0.012122752 | 0.01212275 | 0.054389053 | 0 |
| Pr.24 | 0.501813869 | 0.73852379 | 0.00533696 | 0.035509976 | 0.020057207 |
| Pr.25 | 0.367647059 | 0.073529412 | 0.02941176 | 0 | 0 |
| Pr.26 | 0.177304965 | 0.04964539 | 0 | 0 | 0 |
| Pr.27 | 0.189721159 | 0.06615637 | 0.06560962 | 0.06615637 | 0 |
| Pr.28 | 0.774801587 | 0.256613757 | 0 | 0.256613757 | 0.091269841 |
| Average | 0.27294034 | 0.101237633 | 0.02750198 | 0.075030869 | 0.005889912 |
| No | NWM | LCM | VAM | MOMC | TrigAC-PSO |
|---|---|---|---|---|---|
| Pr. 01 | 1 | 0.9767 | 0.9767 | 0.9767 | 0.995 |
| Pr. 02 | 0.7115 | 0.9985 | 1 | 0.9999 | 1 |
| Pr. 03 | 0.6022 | 0.3488 | 1 | 0.0304 | 1 |
| Pr. 04 | 0.7844 | 0.4699 | 0.4553 | 0.4699 | 1 |
| Pr. 05 | 1 | 0.9137 | 0.9944 | 0.9944 | 1 |
| Pr. 06 | 0.614 | 0.7183 | 1 | 0.9862 | 1 |
| Pr. 07 | 0.7561 | 0.9983 | 1 | 0.9961 | 1 |
| Pr. 08 | 0.8319 | 0.8319 | 0.9949 | 1 | 1 |
| Pr. 09 | 1 | 0.9981 | 0.9697 | 0.9868 | 1 |
| Pr. 10 | 0.7483 | 0.8445 | 0.9862 | 1 | 1 |
| Pr. 11 | 0.6045 | 1 | 1 | 0.6139 | 1 |
| Pr. 12 | 0 | 1 | 1 | 1 | 1 |
| Pr. 13 | 0.998 | 1 | 1 | 0.998 | 1 |
| Pr. 14 | 0.2271 | 1 | 1 | 1 | 1 |
| Pr. 15 | 0 | 0.1311 | 0.6147 | 0.006 | 0.987 |
| Pr. 16 | 0.9947 | 0.9951 | 1 | 1 | 1 |
| Pr. 17 | 0.9974 | 0.9709 | 1 | 0.9995 | 1 |
| Pr. 18 | 0.4868 | 0.9911 | 1 | 0.9999 | 1 |
| Pr. 19 | 0.7559 | 1 | 1 | 0.9692 | 1 |
| Pr. 20 | 0.4762 | 0.9924 | 0.9999 | 0.9665 | 1 |
| Pr. 21 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 1 |
| Pr. 22 | 0.9718 | 0.9921 | 1 | 0.992 | 1 |
| Pr. 23 | 0.9093 | 0.9967 | 0.9967 | 0.9514 | 1 |
| Pr. 24 | 0 | 0 | 0.9995 | 0.993 | 0.9999 |
| Pr. 25 | 0.2235 | 0.9893 | 1 | 1 | 1 |
| Pr. 26 | 0.259 | 0.975 | 1 | 1 | 1 |
| Pr. 27 | 0.019 | 0.9998 | 0.9998 | 0.9997 | 1 |
| Pr. 28 | 0 | 0 | 1 | 0 | 0.993 |
| Average | 0.606125 | 0.826146 | 0.963846 | 0.854621 | 0.999103571 |
|
Ranking function for two classical fuzzy numbers [7] |
Ranking function for generalized trapezoidal fuzzy numbers [18] |
|
• Let a triangular fuzzy number then, • Let a trapezoidal fuzzy number then, |
• Let and be two generalized trapezoidal fuzzy numbers and . Then and |
| Pr. | Ekanayake Optimal Solution | TrigAC-PSO Optimal Solution | Ekanayake Membership Value | TrigAC-PSO Membership Value |
|---|---|---|---|---|
| Pr. 02 | (400, 845, 1315) | (400, 845, 1315) | 1 | 1 |
| Pr. 11 | (144, 285, 453) | (144, 285, 453) | 1 | 1 |
| Pr. 12 | (20, 89, 89) | (20, 89, 89) | 1 | 1 |
| Pr. 13 | (5960, 7620, 9630) | (5960, 7620, 9630) | 1 | 1 |
| Pr. 14 | (64, 124, 206) | (64, 124, 206) | 1 | 1 |
| Pr. 16 | (370, 735, 1145, 1595) | (370, 715, 1085, 1635) | 0.9951 | 1 |
| Pr. 17 | (400, 640, 875, 1370) | (400, 640, 875, 1370) | 1 | 1 |
| Pr. 18 | (105, 150, 195) | (104, 149, 194) | 0.9999 | 1 |
| Pr. 22 | (148, 322, 418) | (148, 322, 418) | 1 | 1 |
| Pr. 23 | (347, 566, 760) | (347, 554, 752) | 0.995 | 1 |
| Pr. 25 | (12, 55, 88, 117) | (12, 55, 88, 117) | 1 | 1 |
| Pr. 26 | (52, 106, 176, 230) | (52, 106, 176, 230) | 1 | 1 |
| Pr. | Ebrahimnejad | Thota and Raja | Kaur and Kuman | Mathur et al. | TrigAC-PSO |
|---|---|---|---|---|---|
| Pr. 01 | (117, 205, 352, 613; 0.2) | (117, 205, 35, 613; 0.2) | (147, 220, 382, 603; 0.2) | (197, 240, 382, 643; 0.2) | (147, 220, 382, 553; 0.2) |
| Pr. 04 | (315, 810, 1220, 1575; 0.2) | (318, 813, 1220, 1582; 0.2) | (315, 810, 1220, 1575; 0.2) | (415, 970, 1460, 1865; 0.2) | (315, 810, 1220, 1575; 0.2) |
| Pr. 24 | (5148, 6475, 7802, 9244; 0.6) | (5148, 6475, 7802, 9244; 0.6) | (5307, 6794, 7.872, 9460; 0.6) | (5307, 6794, 7.872, 9460; 0.6) | (3170.4, 4052.4, 4717.2, 5628; 0.6) |
| Pr. 27 | (376, 436, 474, 543; 0.2) | (376, 436, 474, 543; 0.2) | (413, 459, 506, 572; 0.2) | (411, 455, 509, 563; 0.2) | (404, 460, 502, 559; 0.2) |
| Pr.28 | (294, 348, 408, 462; 0.2) | (294, 348, 408, 462; 0.2) | (294, 348, 408, 462; 0.2) | (294, 348, 408, 462; 0.2) | (294, 348, 408, 462; 0.2) |
| Pr. | Ebrahimnejad | Thota and Raja | Kaur and Kuman | Mathur et al. | TrigAC-PSO |
|---|---|---|---|---|---|
| Pr.01 | 0 | 0 | 0.0505 | 0.136 | 0.0117 |
| Pr.04 | 0 | 0.0028 | 0 | 0.2015 | 0 |
| Pr.24 | 0 | 0 | 0.0278 | 0.0278 | 0.0213 |
| Pr.27 | 0 | 0 | 0.0662 | 0.6617 | 0.0524 |
| Pr.28 | 0 | 0 | 0 | 0 | 0 |
| Average | 0 | 0.00056 | 0.0289 | 0.2054 | 0.01708 |
| Pr. | 20 Particles | 35 Particles | 50 Particles | Optimal |
|---|---|---|---|---|
| 01 | 65.1 | 65.1 | 65.1 | 64.35 |
| 02 | 853.35 | 853.35 | 853.35 | 853.35 |
| 03 | 817.17 | 817.17 | 817.17 | 817.17 |
| 04 | 200.5 | 196 | 196 | 196 |
| 05 | 166 | 166 | 166 | 166 |
| 06 | 101 | 101 | 101 | 101 |
| 07 | 1770 | 1770 | 1770 | 1770 |
| 08 | 199 | 199 | 199 | 199 |
| 09 | 155.25 | 155.25 | 155.25 | 155.25 |
| 10 | 126 | 126 | 126 | 126 |
| 11 | 294 | 294 | 294 | 294 |
| 12 | 65.8 | 65.8 | 65.8 | 65.8 |
| 13 | 7735.5 | 7735.5 | 7735.5 | 7735.5 |
| 14 | 130.68 | 130.68 | 130.68 | 130.68 |
| 15 | 2327 | 2330 | 2261 | 2170 |
| 16 | 951.25 | 951.25 | 951.25 | 951.25 |
| 17 | 821.25 | 821.25 | 821.25 | 821.25 |
| 18 | 149 | 149 | 149 | 149 |
| 19 | 67.25 | 67.25 | 67.25 | 67.25 |
| 20 | 3640.56 | 3640.56 | 3640.56 | 3640.56 |
| 21 | 3844 | 3844 | 3844 | 3844 |
| 22 | 295.9 | 295.9 | 295.9 | 295.9 |
| 23 | 551.03 | 551.03 | 551.03 | 551.03 |
| 24 | 4389.6 | 4386.45 | 4399.35 | 4392 |
| 25 | 68 | 68 | 68 | 68 |
| 26 | 141 | 141 | 141 | 141 |
| 27 | 96.25 | 96.25 | 96.25 | 96.25 |
| 28 | 82.5 | 82.5 | 82.5 | 75.6 |
| Pr. | 20 Particles | 35 Particles | 50 particles |
|---|---|---|---|
| 01 | 0.95 | 1 | 1 |
| 02 | 1 | 1 | 1 |
| 03 | 0.95 | 1 | 0.95 |
| 04 | 0.05 | 0 | 0.05 |
| 05 | 1 | 1 | 1 |
| 06 | 0.15 | 0.75 | 0.9 |
| 07 | 0.4 | 0.6 | 0.7 |
| 08 | 1 | 0.75 | 0.9 |
| 09 | 1 | 1 | 1 |
| 10 | 0.7 | 0.75 | 0.9 |
| 11 | 0.8 | 0.95 | 0.95 |
| 12 | 0.45 | 0.6 | 0.8 |
| 13 | 1 | 1 | 1 |
| 14 | 0.85 | 0.9 | 0.95 |
| 15 | 0 | 0 | 0 |
| 16 | 1 | 1 | 1 |
| 17 | 0.35 | 0.727273 | 0.55 |
| 18 | 0.9 | 1 | 0.95 |
| 19 | 0.75 | 0.95 | 1 |
| 20 | 0.65 | 0.65 | 0.7 |
| 21 | 0.2 | 0.2 | 0.2 |
| 22 | 1 | 1 | 0.95 |
| 23 | 1 | 1 | 1 |
| 24 | 0 | 0 | 0 |
| 25 | 0.55 | 0.85 | 0.9 |
| 26 | 0.75 | 1 | 0.8 |
| 27 | 0.05 | 0.05 | 0 |
| 28 | 1 | 1 | 1 |
| Average | 0.6607143 | 0.74026 | 0.755357 |
| 20 particles | 35 particles | 50 particles | ||
|---|---|---|---|---|
| Mean | 65.225 | 65.1 | 65.1 | |
| St.Dev | 0.559016994 | 0 | 0 | |
| Pr.01 | Min | 65.1 | 65.1 | 65.1 |
| Max | 67.6 | 65.1 | 65.1 | |
| CV% | 0.857059401 | 0 | 0 | |
| Mean | 853.35 | 853.35 | 853.35 | |
| St.Dev | 0 | 0 | 0 | |
| Pr.02 | Min | 853.35 | 853.35 | 853.35 |
| Max | 853.35 | 853.35 | 853.35 | |
| CV% | 0 | 0 | 0 | |
| Mean | 817.659 | 817.17 | 817.49 | |
| St.Dev | 2.186874482 | 0 | 1.431083506 | |
| Pr.03 | Min | 817.17 | 817.17 | 817.17 |
| Max | 826.95 | 817.17 | 823.57 | |
| CV% | 0.267455563 | 0 | 0.175058228 | |
| Mean | 204.285 | 203.225 | 200.765 | |
| St.Dev | 3.305700817 | 3.247002666 | 1.578898683 | |
| Pr.04 | Min | 200.5 | 196 | 196 |
| Max | 210.2 | 210.1 | 203.4 | |
| CV% | 1.618180883 | 1.597737811 | 0.786441204 | |
| Mean | 166 | 166 | 166 | |
| St.Dev | 0 | 0 | 0 | |
| Pr.05 | Min | 166 | 166 | 166 |
| Max | 166 | 166 | 166 | |
| CV% | 0 | 0 | 0 | |
| Mean | 102.575 | 101.45 | 101.2 | |
| St.Dev | 0.712205618 | 0.809483266 | 0.615587011 | |
| Pr.06 | Min | 101 | 101 | 101 |
| Max | 103 | 103 | 103 | |
| CV% | 0.694326705 | 0.79791352 | 0.608287561 | |
| Mean | 1818.4125 | 1809.3875 | 1782.35 | |
| St.Dev | 76.91593476 | 69.08406754 | 26.25888321 | |
| Pr.07 | Min | 1770 | 1770 | 1770 |
| Max | 2020 | 2020 | 1870 | |
| CV% | 4.229839751 | 3.818091345 | 1.473273106 | |
| Mean | 199 | 200.5 | 199.6 | |
| St.Dev | 0 | 2.66556995 | 1.846761034 | |
| Pr.08 | Min | 199 | 199 | 199 |
| Max | 199 | 205 | 205 | |
| CV% | 0 | 1.329461322 | 0.925230979 | |
| Mean | 155.25 | 155.25 | 155.25 | |
| St.Dev | 0 | 0 | 0 | |
| Pr.09 | Min | 155.25 | 155.25 | 155.25 |
| Max | 155.25 | 155.25 | 155.25 | |
| CV% | 0 | 0 | 0 | |
| Mean | 126.3 | 126.25 | 126.1 | |
| St.Dev | 0.470162346 | 0.444261658 | 0.307793506 | |
| Pr.10 | Min | 126 | 126 | 126 |
| Max | 127 | 127 | 127 | |
| CV% | 0.37225839 | 0.351890422 | 0.24408684 | |
| Mean | 294.55 | 295.35 | 295.4 | |
| St.Dev | 1.234376041 | 6.037383539 | 6.260990337 | |
| Pr.11 | Min | 294 | 294 | 294 |
| Max | 298 | 321 | 322 | |
| CV% | 0.419071818 | 2.044145434 | 2.119495713 | |
| Mean | 69.535 | 67.64 | 66.72 | |
| St.Dev | 6.309080757 | 2.312073574 | 1.887800168 | |
| Pr.12 | Min | 65.8 | 65.8 | 65.8 |
| Max | 94.5 | 70.4 | 70.4 | |
| CV% | 9.073244779 | 3.418204574 | 2.829436702 | |
| Mean | 7735.5 | 7735.5 | 7735.5 | |
| St.Dev | 0 | 0 | 0 | |
| Pr.13 | Min | 7735.5 | 7735.5 | 7735.5 |
| Max | 7735.5 | 7735.5 | 7735.5 | |
| CV% | 0 | 0 | 0 | |
| Mean | 132.418 | 132.3165 | 131.4825 | |
| St.Dev | 4.483441582 | 5.065924631 | 3.588889104 | |
| Pr.14 | Min | 130.68 | 130.68 | 130.68 |
| Max | 147.39 | 148.71 | 146.73 | |
| CV% | 3.385824874 | 3.828641652 | 2.729556484 | |
| Mean | 2703.45 | 2738.7 | 2445.35 | |
| St.Dev | 251.6408207 | 400.1072356 | 138.7706457 | |
| Pr.15 | Min | 2327 | 2330 | 2261 |
| Max | 3275 | 3585 | 2795 | |
| CV% | 9.308136665 | 14.60938532 | 5.674878675 | |
| Mean | 951.25 | 951.25 | 951.25 | |
| St.Dev | 0 | 0 | 0 | |
| Pr.16 | Min | 951.25 | 951.25 | 951.25 |
| Max | 951.25 | 951.25 | 951.25 | |
| CV% | 0 | 0 | 0 | |
| Mean | 829.9 | 826.775 | 823.8125 | |
| St.Dev | 15.6005651 | 11.11983174 | 3.498002249 | |
| Pr.17 | Min | 821.25 | 821.25 | 821.25 |
| Max | 878 | 868 | 834.75 | |
| CV% | 1.879812641 | 1.344964681 | 0.424611456 | |
| Mean | 149.45 | 149 | 149.15 | |
| St.Dev | 1.468081455 | 0 | 0.670820393 | |
| Pr.18 | Min | 149 | 149 | 149 |
| Max | 155 | 149 | 152 | |
| CV% | 0.98232282 | 0 | 0.449762248 | |
| Mean | 68.1 | 67.4 | 67.25 | |
| St.Dev | 2.684507208 | 0.670820393 | 0 | |
| Pr.19 | Min | 67.25 | 67.25 | 67.25 |
| Max | 79 | 70.25 | 67.25 | |
| CV% | 3.942007647 | 0.995282483 | 0 | |
| Mean | 3641.096 | 3641.297 | 3641.029 | |
| St.Dev | 0.801645676 | 1.265647743 | 0.786771551 | |
| Pr.20 | Min | 3640.56 | 3640.56 | 3640.56 |
| Max | 3643.24 | 3644.58 | 3643.24 | |
| CV% | 0.022016604 | 0.034758157 | 0.021608494 | |
| Mean | 3896.4125 | 3896.4125 | 3896.4125 | |
| St.Dev | 53.85245896 | 53.85245896 | 53.85245896 | |
| Pr.21 | Min | 3844 | 3844 | 3844 |
| Max | 4020 | 4020 | 4020 | |
| CV% | 1.382103639 | 1.382103639 | 1.382103639 | |
| Mean | 295.9 | 298.6665 | 295.9 | |
| St.Dev | 0 | 12.37216412 | 0 | |
| Pr.22 | Min | 295.9 | 295.9 | 295.9 |
| Max | 295.9 | 351.23 | 295.9 | |
| CV% | 0 | 4.142467977 | 0 | |
| Mean | 551.03 | 551.03 | 551.03 | |
| St.Dev | 0 | 0 | 0 | |
| Pr.23 | Min | 551.03 | 551.03 | 551.03 |
| Max | 551.03 | 551.03 | 551.03 | |
| CV% | 0 | 0 | 0 | |
| Mean | 4518.15 | 4465.515 | 4446.8775 | |
| St.Dev | 106.2485727 | 59.47704135 | 43.52466474 | |
| Pr.24 | Min | 4389.6 | 4386.45 | 4399.35 |
| Max | 4857.3 | 4629 | 4580.55 | |
| CV% | 2.351594629 | 1.331918969 | 0.978769142 | |
| Mean | 70.4 | 68.15 | 68.2 | |
| Var | 4.159959514 | 0.366347549 | 0.695852374 | |
| Pr.25 | Min | 68 | 68 | 68 |
| Max | 82 | 69 | 71 | |
| CV% | 5.909033401 | 0.537560599 | 1.020311399 | |
| Mean | 143.5 | 141 | 143.2 | |
| St.Dev | 4.442616583 | 0 | 4.583724066 | |
| Pr.26 | Min | 141 | 141 | 141 |
| Max | 151 | 141 | 155 | |
| CV% | 3.095900058 | 0 | 3.200924627 | |
| Mean | 96.19 | 96.13 | 96.55 | |
| St.Dev | 1.198420012 | 1.343052297 | 0.53311399 | |
| Pr.27 | Min | 91.45 | 91.45 | 96.25 |
| Max | 97.45 | 97.45 | 97.45 | |
| CV% | 1.245888359 | 1.397120875 | 0.552163635 | |
| Mean | 82.5 | 82.5 | 82.5 | |
| St.Dev | 0 | 0 | 0 | |
| Pr.28 | Min | 82.5 | 82.5 | 82.5 |
| Max | 82.5 | 82.5 | 82.5 | |
| CV% | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

