Submitted:
01 May 2024
Posted:
03 May 2024
You are already at the latest version
Abstract
Keywords:
INTRODUCTION
GENETICS, EPIGENETICS AND PRENATAL ENVIRONMENT
EARLY POSTNATAL PERIOD
CHILDHOOD AND ADOLESCENCE
ADULTHOOD
TYPE 2 DIABETES AS CHAOTIC PROCESS
DECLARATION OF COMPETING INTEREST
References
- Federation ID. IDF Diabetes Atlas, 9th edn. 2019.
- Fonseca VA. Defining and Characterizing the Progression of Type 2 Diabetes. 2009;32(suppl 2):S151-S6. [CrossRef]
- DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nature Reviews Disease Primers. 2015;1[1]:15019. [CrossRef]
- Wilmot E, Idris I. Early onset type 2 diabetes: risk factors, clinical impact and management. 2014;5[6]:234-44. [CrossRef]
- Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang D-H, et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. The American Journal of Clinical Nutrition. 2007;86[4]:899-906. [CrossRef]
- McEwen BS, Stellar E. Stress and the Individual: Mechanisms Leading to Disease. Archives of internal medicine. 1993;153[18]:2093-101. [CrossRef]
- Gottlieb DJ, Punjabi NM, Newman AB, Resnick HE, Redline S, Baldwin CM, et al. Association of Sleep Time With Diabetes Mellitus and Impaired Glucose Tolerance. Archives of internal medicine. 2005;165[8]:863-7. [CrossRef]
- Chang SA. Smoking and type 2 diabetes mellitus. Diabetes & metabolism journal. 2012;36[6]:399-403. [CrossRef]
- DeFronzo RA, Abdul-Ghani M. Type 2 Diabetes Can Be Prevented With Early Pharmacological Intervention. 2011;34(Supplement 2):S202-S9. [CrossRef]
- Hallberg SJ, Gershuni VM, Hazbun TL, Athinarayanan SJ. Reversing Type 2 Diabetes: A Narrative Review of the Evidence. Nutrients. 2019;11[4]. [CrossRef]
- Kautzky-Willer A, Harreiter J, Pacini G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocrine reviews. 2016;37[3]:278-316. [CrossRef]
- 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13-s27. [CrossRef]
- Harreiter J, Kautzky-Willer A. Sex and Gender Differences in Prevention of Type 2 Diabetes. Front Endocrinol (Lausanne). 2018;9:220. [CrossRef]
- Tramunt B, Smati S, Grandgeorge N, Lenfant F, Arnal J-F, Montagner A, et al. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia. 2020;63[3]:453-61. [CrossRef]
- Ding EL, Song Y, Malik VS, Liu S. Sex Differences of Endogenous Sex Hormones and Risk of Type 2 DiabetesA Systematic Review and Meta-analysis. JAMA. 2006;295[11]:1288-99. [CrossRef]
- Huebschmann AG, Huxley RR, Kohrt WM, Zeitler P, Regensteiner JG, Reusch JEB. Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia. 2019;62[10]:1761-72. [CrossRef]
- Brown AE, Walker M. Genetics of Insulin Resistance and the Metabolic Syndrome. Current Cardiology Reports. 2016;18[8]:75. [CrossRef]
- Mohlke KL, Boehnke M. Recent advances in understanding the genetic architecture of type 2 diabetes. Human molecular genetics. 2015;24(R1):R85-92. [CrossRef]
- Ng MC, Shriner D, Chen BH, Li J, Chen WM, Guo X, et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS genetics. 2014;10[8]:e1004517. [CrossRef]
- Hara K, Fujita H, Johnson TA, Yamauchi T, Yasuda K, Horikoshi M, et al. Genome-wide association study identifies three novel loci for type 2 diabetes. Human molecular genetics. 2014;23[1]:239-46. [CrossRef]
- Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491[7422]:56-65. [CrossRef]
- Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S, et al. Parental origin of sequence variants associated with complex diseases. Nature. 2009;462[7275]:868-74. [CrossRef]
- Strawbridge RJ, Dupuis J, Prokopenko I, Barker A, Ahlqvist E, Rybin D, et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes. 2011;60[10]:2624-34. [CrossRef]
- Staimez LR, Deepa M, Ali MK, Mohan V, Hanson RL, Narayan KMV. Tale of two Indians: Heterogeneity in type 2 diabetes pathophysiology. 2019;35[8]:e3192. [CrossRef]
- Ntzani EE, Kavvoura FK. Genetic risk factors for type 2 diabetes: insights from the emerging genomic evidence. Current vascular pharmacology. 2012;10[2]:147-55. [CrossRef]
- Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Human molecular genetics. 2009;18[21]:4046-53. [CrossRef]
- Schellong K, Melchior K, Ziska T, Ott R, Henrich W, Rancourt RC, et al. Hypothalamic insulin receptor expression and DNA promoter methylation are sex-specifically altered in adult offspring of high-fat diet (HFD)-overfed mother rats. The Journal of nutritional biochemistry. 2019;67:28-35. [CrossRef]
- Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE. Maternal Nutrition and Fetal Development. The Journal of Nutrition. 2004;134[9]:2169-72. [CrossRef]
- Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A. Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. American journal of epidemiology. 2007;165[8]:849-57. [CrossRef]
- Catalano PM, Kirwan JP. Maternal factors that determine neonatal size and body fat. Current Diabetes Reports. 2001;1[1]:71-7. [CrossRef]
- Dötsch J. Perinatal programming - myths, fact, and future of research. Molecular and cellular pediatrics. 2014;1[1]:2. [CrossRef]
- Dörner G. Perinatal Hormone Levels and Brain Organization. In: Stumpf W, Grant LD, editors. Anatomical neuroendocrinology. Basel: Karger; 1975. p. 245-52. [CrossRef]
- Plagemann A. Maternal diabetes and perinatal programming. Early Human Development. 2011;87[11]:743-7. [CrossRef]
- Santangeli L, Sattar N, Huda SS. Impact of Maternal Obesity on Perinatal and Childhood Outcomes. Best Practice & Research Clinical Obstetrics & Gynaecology. 2015;29[3]:438-48. [CrossRef]
- Brunton PJ, Sullivan KM, Kerrigan D, Russell JA, Seckl JR, Drake AJ. Sex-specific effects of prenatal stress on glucose homoeostasis and peripheral metabolism in rats. The Journal of endocrinology. 2013;217[2]:161-73. [CrossRef]
- Flory JD, Bierer LM, Yehuda R. Maternal Exposure to the Holocaust and Health Complaints in Offspring. Disease Markers. 2011;30:250470. [CrossRef]
- ABEYSENA C, JAYAWARDANA P, DE A SENEVIRATNE R. Maternal sleep deprivation is a risk factor for small for gestational age: A cohort study. 2009;49[4]:382-7. [CrossRef]
- Nielsen JH, Haase TN, Jaksch C, Nalla A, Søstrup B, Nalla AA, et al. Impact of fetal and neonatal environment on beta cell function and development of diabetes. 2014;93[11]:1109-22. [CrossRef]
- Plagemann A, Harder T, Schellong K, Schulz S, Stupin JH. Early postnatal life as a critical time window for determination of long-term metabolic health. Best Practice & Research Clinical Endocrinology & Metabolism. 2012;26[5]:641-53. [CrossRef]
- Plagemann A, Roepke K, Harder T, Brunn M, Harder A, Wittrock-Staar M, et al. Epigenetic malprogramming of the insulin receptor promoter due to developmental overfeeding. Journal of perinatal medicine. 2010;38[4]:393-400. [CrossRef]
- Plagemann A, Harder T, Brunn M, Harder A, Roepke K, Wittrock-Staar M, et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol. 2009;587(Pt 20):4963-76. [CrossRef]
- Neitzke U, Harder T, Plagemann A. Intrauterine growth restriction and developmental programming of the metabolic syndrome: a critical appraisal. Microcirculation (New York, NY : 1994). 2011;18[4]:304-11. [CrossRef]
- Office of the Surgeon G, Centers for Disease C, Prevention, Office on Women's H. Publications and Reports of the Surgeon General. The Surgeon General's Call to Action to Support Breastfeeding. Rockville (MD): Office of the Surgeon General (US); 2011.
- Horta BL, Victora CG, World Health O. Short-term effects of breastfeeding: a systematic review on the benefits of breastfeeding on diarrhoea and pneumonia mortality. Geneva: World Health Organization; 2013 2013.
- Harder T, Bergmann R, Kallischnigg G, Plagemann A. Duration of breastfeeding and risk of overweight: a meta-analysis. American journal of epidemiology. 2005;162[5]:397-403. [CrossRef]
- Horta BL, Loret de Mola C, Victora CG. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta-analysis. Acta paediatrica (Oslo, Norway : 1992). 2015;104[467]:30-7. [CrossRef]
- Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG. Does breastfeeding influence risk of type 2 diabetes in later life? A quantitative analysis of published evidence. The American Journal of Clinical Nutrition. 2006;84[5]:1043-54. [CrossRef]
- Gouveri E, Papanas N, I. Hatzitolios A, Maltezos E. Breastfeeding and Diabetes. Current Diabetes Reviews. 2011;7[2]:135-42. [CrossRef]
- Jovanovic-Peterson L, Fuhrmann K, Hedden K, Walker L, Peterson CM. Maternal milk and plasma glucose and insulin levels: studies in normal and diabetic subjects. Journal of the American College of Nutrition. 1989;8[2]:125-31. [CrossRef]
- van Beusekom CM, Zeegers TA, Martini IA, Velvis HJ, Visser GH, van Doormaal JJ, et al. Milk of patients with tightly controlled insulin-dependent diabetes mellitus has normal macronutrient and fatty acid composition. Am J Clin Nutr. 1993;57[6]:938-43. [CrossRef]
- Innis SM. Impact of maternal diet on human milk composition and neurological development of infants. The American Journal of Clinical Nutrition. 2014;99[3]:734S-41S. [CrossRef]
- Martin CR, Ling PR, Blackburn GL. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients. 2016;8[5]. [CrossRef]
- Sánchez J, Priego T, Palou M, Tobaruela A, Palou A, Picó C. Oral supplementation with physiological doses of leptin during lactation in rats improves insulin sensitivity and affects food preferences later in life. Endocrinology. 2008;149[2]:733-40. [CrossRef]
- Priego T, Sánchez J, Palou A, Picó C. Leptin intake during the suckling period improves the metabolic response of adipose tissue to a high-fat diet. International journal of obesity [2005]. 2010;34[5]:809-19. [CrossRef]
- Palou A, Picó C. Leptin intake during lactation prevents obesity and affects food intake and food preferences in later life. Appetite. 2009;52[1]:249-52. [CrossRef]
- Marousez L, Lesage J, Eberlé D. Epigenetics: Linking Early Postnatal Nutrition to Obesity Programming? Nutrients. 2019;11[12]. [CrossRef]
- Resto M, O'Connor D, Leef K, Funanage V, Spear M, Locke R. Leptin levels in preterm human breast milk and infant formula. Pediatrics. 2001;108[1]:E15. [CrossRef]
- Gila-Diaz A, Arribas SM, Algara A, Martín-Cabrejas MA, López de Pablo Á L, Sáenz de Pipaón M, et al. A Review of Bioactive Factors in Human Breastmilk: A Focus on Prematurity. Nutrients. 2019;11[6]. [CrossRef]
- Sosa-Castillo E, Rodríguez-Cruz M, Moltó-Puigmartí C. Genomics of lactation: role of nutrigenomics and nutrigenetics in the fatty acid composition of human milk. British Journal of Nutrition. 2017;118[3]:161-8. [CrossRef]
- Tsigos C, Chrousos GP. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research. 2002;53[4]:865-71. [CrossRef]
- Sadeghimahalli F, Zardooz H, Golchoobian R. Early postnatal hypothalamic-pituitary-adrenal axis activity and reduced insulin sensitivity in adult rats %J Endocrine Regulations. 2019;53[4]:213-20. [CrossRef]
- Zardooz H, Sadeghimahalli F, Khodagholi F. Early postnatal stress impairs insulin secretion in response to psychological stress in adult rats. Journal of Endocrinological Investigation. 2021;44[2]:277-86. [CrossRef]
- de Vries A, Holmes MC, Heijnis A, Seier JV, Heerden J, Louw J, et al. Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. The Journal of clinical investigation. 2007;117[4]:1058-67. [CrossRef]
- Pedersen JM, Mortensen EL, Christensen DS, Rozing M, Brunsgaard H, Meincke RH, et al. Prenatal and early postnatal stress and later life inflammation. Psychoneuroendocrinology. 2018;88:158-66. [CrossRef]
- Maniam J, Antoniadis C, Morris MJ. Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes. 2014;5[73]. [CrossRef]
- Wüst S, Entringer S, Federenko IS, Schlotz W, Hellhammer DH. Birth weight is associated with salivary cortisol responses to psychosocial stress in adult life. Psychoneuroendocrinology. 2005;30[6]:591-8. [CrossRef]
- Miller AL, Clifford C, Sturza J, Rosenblum K, Vazquez DM, Kaciroti N, et al. Blunted cortisol response to stress is associated with higher body mass index in low-income preschool-aged children. Psychoneuroendocrinology. 2013;38[11]:2611-7. [CrossRef]
- Shah GS, Shah LR, Thapa A. Clinical profile and outcome of neonates admitted to the Neonatal Intensive Care Unit (NICU) at BPKIHS: A need for advanced neonatal care: Qatar Med J. 2017 Feb 14;2017[1]:74. [CrossRef]
- Appleton J, Russell CG, Laws R, Fowler C, Campbell K, Denney-Wilson E. Infant formula feeding practices associated with rapid weight gain: A systematic review. 2018;14[3]:e12602. [CrossRef]
- Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet (London, England). 2017;390[10113]:2627-42. [CrossRef]
- Zimmermann E, Bjerregaard LG, Gamborg M, Vaag AA, Sørensen TIA, Baker JL. Childhood body mass index and development of type 2 diabetes throughout adult life—A large-scale danish cohort study. 2017;25[5]:965-71. [CrossRef]
- Bjerregaard LG, Jensen BW, Ängquist L, Osler M, Sørensen TIA, Baker JL. Change in Overweight from Childhood to Early Adulthood and Risk of Type 2 Diabetes. 2018;378[14]:1302-12. [CrossRef]
- Boullier M, Blair M. Adverse childhood experiences. Paediatrics and Child Health. 2018;28[3]:132-7. [CrossRef]
- Stoltenborgh M, van Ijzendoorn MH, Euser EM, Bakermans-Kranenburg MJ. A global perspective on child sexual abuse: meta-analysis of prevalence around the world. Child maltreatment. 2011;16[2]:79-101. [CrossRef]
- Bellis MA, Hughes K, Leckenby N, Perkins C, Lowey H. National household survey of adverse childhood experiences and their relationship with resilience to health-harming behaviors in England. BMC medicine. 2014;12:72-. [CrossRef]
- Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V, et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. American journal of preventive medicine. 1998;14[4]:245-58. [CrossRef]
- Huffhines L, Noser A, Patton SR. The Link Between Adverse Childhood Experiences and Diabetes. Current Diabetes Reports. 2016;16[6]:54. [CrossRef]
- Miller GE, Chen E, Parker KJ. Psychological stress in childhood and susceptibility to the chronic diseases of aging: moving toward a model of behavioral and biological mechanisms. Psychological bulletin. 2011;137[6]:959-97. [CrossRef]
- Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature. 2008;454[7203]:463-9. [CrossRef]
- Kiecolt-Glaser JK. Stress, food, and inflammation: psychoneuroimmunology and nutrition at the cutting edge. Psychosomatic medicine. 2010;72[4]:365-9. [CrossRef]
- Danese A, McEwen BS. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiology & Behavior. 2012;106[1]:29-39. [CrossRef]
- Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105[2]:141-50. [CrossRef]
- Aminoff MJ, Boller F, Swaab DF. We spend about one-third of our life either sleeping or attempting to do so. Handbook of clinical neurology. 2011;98:vii. [CrossRef]
- Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK. Sleep Restriction for 1 Week Reduces Insulin Sensitivity in Healthy Men. 2010;59[9]:2126-33. [CrossRef]
- Kim D, Hoyos CM, Mokhlesi B, Pamidi S, Jun JC. Editorial: Metabolic Health in Normal and Abnormal Sleep. 2020;11[131]. [CrossRef]
- Matricciani L, Olds T, Petkov J. In search of lost sleep: Secular trends in the sleep time of school-aged children and adolescents. Sleep Medicine Reviews. 2012;16[3]:203-11. [CrossRef]
- Carskadon MA, Harvey K, Duke P, Anders TF, Litt IF, Dement WC. Pubertal changes in daytime sleepiness. Sleep. 1980;2[4]:453-60. [CrossRef]
- Chattu VK, Manzar MD, Kumary S, Burman D, Spence DW, Pandi-Perumal SR. The Global Problem of Insufficient Sleep and Its Serious Public Health Implications. Healthcare (Basel, Switzerland). 2018;7[1]. [CrossRef]
- Keyes KM, Maslowsky J, Hamilton A, Schulenberg J. The Great Sleep Recession: Changes in Sleep Duration Among US Adolescents, 1991–2012. 2015;135[3]:460-8. [CrossRef]
- Chaput J-P. Is sleep deprivation a contributor to obesity in children? Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity. 2016;21[1]:5-11. [CrossRef]
- Dutil C, Chaput JP. Inadequate sleep as a contributor to type 2 diabetes in children and adolescents. Nutrition & Diabetes. 2017;7[5]:e266-e. [CrossRef]
- Chaput JP, St-Onge MP. Increased food intake by insufficient sleep in humans: are we jumping the gun on the hormonal explanation? Front Endocrinol (Lausanne). 2014;5:116. [CrossRef]
- Spaeth AM, Dinges DF, Goel N. Effects of Experimental Sleep Restriction on Weight Gain, Caloric Intake, and Meal Timing in Healthy Adults. Sleep. 2013;36[7]:981-90. [CrossRef]
- Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, et al. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proceedings of the National Academy of Sciences of the United States of America. 2013;110[14]:5695-700. [CrossRef]
- Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, et al. Diet, Lifestyle, and the Risk of Type 2 Diabetes Mellitus in Women. 2001;345[11]:790-7. [CrossRef]
- Schienkiewitz A, Schulze MB, Hoffmann K, Kroke A, Boeing H. Body mass index history and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)–Potsdam Study. The American Journal of Clinical Nutrition. 2006;84[2]:427-33. [CrossRef]
- Deurenberg P, Deurenberg-Yap M, Guricci S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. 2002;3[3]:141-6. [CrossRef]
- Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nature Reviews Endocrinology. 2012;8[4]:228-36. [CrossRef]
- Lear SA, Humphries KH, Kohli S, Chockalingam A, Frohlich JJ, Birmingham CL. Visceral adipose tissue accumulation differs according to ethnic background: results of the Multicultural Community Health Assessment Trial (M-CHAT). The American Journal of Clinical Nutrition. 2007;86[2]:353-9. [CrossRef]
- Dallman MF, Pecoraro N, Akana SF, la Fleur SE, Gomez F, Houshyar H, et al. Chronic stress and obesity: A new view of “comfort food”. 2003;100[20]:11696-701. [CrossRef]
- Dungan KM, Braithwaite SS, Preiser JC. Stress hyperglycaemia. Lancet (London, England). 2009;373[9677]:1798-807. [CrossRef]
- Surwit RS, Schneider MS. Role of stress in the etiology and treatment of diabetes mellitus. Psychosomatic medicine. 1993;55[4]:380-93. [CrossRef]
- Munck A, Guyre PM, Holbrook NJ. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine reviews. 1984;5[1]:25-44. [CrossRef]
- Yan YX, Xiao HB, Wang SS, Zhao J, He Y, Wang W, et al. Investigation of the Relationship Between Chronic Stress and Insulin Resistance in a Chinese Population. Journal of epidemiology. 2016;26[7]:355-60. [CrossRef]
- Morris T, Moore M, Morris F. Stress and Chronic Illness: the Case of Diabetes. Journal of Adult Development. 2011;18[2]:70-80. [CrossRef]
- Cox DJ, Gonder-Frederick L. Major developments in behavioral diabetes research. Journal of consulting and clinical psychology. 1992;60[4]:628-38. [CrossRef]
- Roberts CJ, Campbell IC, Troop N. Increases in Weight during Chronic Stress are Partially Associated with a Switch in Food Choice towards Increased Carbohydrate and Saturated Fat Intake. 2014;22[1]:77-82. [CrossRef]
- Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus: A review. International journal of health sciences. 2017;11[2]:65-71.
- Hall MH, Casement MD, Troxel WM, Matthews KA, Bromberger JT, Kravitz HM, et al. Chronic Stress is Prospectively Associated with Sleep in Midlife Women: The SWAN Sleep Study. Sleep. 2015;38[10]:1645-54. [CrossRef]
- Kouvonen A, Vahtera J, Oksanen T, Pentti J, Väänänen AKP, Heponiemi T, et al. Chronic workplace stress and insufficient physical activity: a cohort study. 2013;70[1]:3-8. [CrossRef]
- Bartolomucci A, Palanza P, Costoli T, Savani E, Laviola G, Parmigiani S, et al. Chronic psychosocial stress persistently alters autonomic function and physical activity in mice. Physiology & Behavior. 2003;80[1]:57-67. [CrossRef]
- Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. 2012;109[16]:5995-9. [CrossRef]
- Lorenz EN. Deterministic Nonperiodic Flow %J Journal of Atmospheric Sciences. 1963;20[2]:130-41. [CrossRef]
- Buijsse B, Simmons RK, Griffin SJ, Schulze MB. Risk Assessment Tools for Identifying Individuals at Risk of Developing Type 2 Diabetes. Epidemiologic Reviews. 2011;33[1]:46-62. [CrossRef]
- Mead MN. Nutrigenomics: the genome--food interface. Environmental health perspectives. 2007;115[12]:A582-9. [CrossRef]
- Li L, Gao K, Zhao J, Feng T, Yin L, Wang J, et al. Glucagon gene polymorphism modifies the effects of smoking and physical activity on risk of type 2 diabetes mellitus in Han Chinese. Gene. 2014;534[2]:352-5. [CrossRef]
- da Estrela C, McGrath J, Booij L, Gouin J-P. Heart Rate Variability, Sleep Quality, and Depression in the Context of Chronic Stress. Annals of Behavioral Medicine. 2020. [CrossRef]
- Beccuti G, Pannain S. Sleep and obesity. Current opinion in clinical nutrition and metabolic care. 2011;14[4]:402-12. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
