Submitted:
28 April 2024
Posted:
29 April 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu Y, Tang Y, Jing L, Chen F, Wang P. Remote Sensing-Based Dynamic Monitoring of Immovable Cultural Relics, from Environmental Factors to the Protected Cultural Site: A Case Study of the Shunji Bridge. Sustainability. 2021; 13(11):6042. [CrossRef]
- Koeva M, Luleva M, Maldjanski P. Integrating Spherical Panoramas and Maps for Visualization of Cultural Heritage Objects Using Virtual Reality Technology. Sensors. 2017; 17(4):829. [CrossRef]
- Moise C, Dana Negula I, Mihalache CE, Lazar AM, Dedulescu AL, Rustoiu GT, Inel IC, Badea A. Remote Sensing for Cultural Heritage Assessment and Monitoring: The Case Study of Alba Iulia. Sustainability. 2021; 13(3):1406. [CrossRef]
- Megarry, W.P.; Cooney, G.; Comer, D.C.; Priebe, C.E. Posterior Probability Modeling and Image Classification for Archaeological Site Prospection: Building a Survey Efficacy Model for Identifying Neolithic Felsite Workshops in the Shetland Islands. Remote Sens. 2016, 8, 529. [Google Scholar] [CrossRef]
- Borie, C.; Parcero-Oubiña, C.; Kwon, Y.; Salazar, D.; Flores, C.; Olguín, L.; Andrade, P. Beyond Site Detection: The Role of Satellite Remote Sensing in Analysing Archaeological Problems. A Case Study in Lithic Resource Procurement in the Atacama Desert, Northern Chile. Remote Sens. 2019, 11, 869. [Google Scholar]
- Tapete, D.; Cigna, F. Appraisal of Opportunities and Perspectives for the Systematic Condition Assessment of Heritage Sites with Copernicus Sentinel-2 High-Resolution Multispectral Imagery. Remote Sens. 2018, 10, 561. [Google Scholar] [CrossRef]
- Bai, X.; Du, P.; Guo, S.; Zhang, P.; Lin, C.; Tang, P.; Zhang, C. Monitoring Land Cover Change and Disturbance of the Mount Wutai World Cultural Landscape Heritage Protected Area, Based on Remote Sensing Time-Series Images from 1987 to 2018. Remote Sens. 2019, 11, 1332. [Google Scholar] [CrossRef]
- Elfadaly, A.; Shamseldein, A.; Lasaponara, R. Cultural Heritage Management Using Remote Sensing Data and GIS Techniques around the Archaeological Area of Ancient Jeddah in Jeddah City, Saudi Arabia. Sustainability 2020, 12, 240. [Google Scholar] [CrossRef]
- Tang, P.; Chen, F.; Zhu, X.; Zhou, W. Monitoring Cultural Heritage Sites with Advanced Multi-Temporal InSAR Technique: The Case Study of the Summer Palace. Remote Sens. 2016, 8, 432. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, F.; Guo, H. Differential Radar Interferometry for Structural and Ground Deformation Monitoring: A New Tool for the Conservation and Sustainability of Cultural Heritage Sites. Sustainability 2015, 7, 1712–1729. [Google Scholar] [CrossRef]
- Cigna, F.; Lasaponara, R.; Masini, N.; Milillo, P.; Tapete, D. Persistent Scatterer Interferometry Processing of COSMO-SkyMed StripMap HIMAGE Time Series to Depict Deformation of the Historic Centre of Rome, Italy. Remote Sens. 2014, 6, 12593–12618. [Google Scholar] [CrossRef]
- Lasaponara, R.; Elfadaly, A.; Attia, W. Low cost space technologies for operational change detection monitoring around the archaeological area of Esna‐Egypt. In Lecture Notes in Computer Science, Proceedings of the Computational Science and Its Applications–ICCSA 2016, Beijing, China, 4–7 July 2016; Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C.M., Taniar, D., Apduhan,B.O., Stankova, E., Wang, S., Eds.; Springer: Cham, Germany, 2016; Volume 9787.
- Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring. Remote Sens. 2013, 5, 1045–1065. [Google Scholar] [CrossRef]
- Drahor, M.G. A review of integrated geophysical investigations from archaeological and cultural sites under encroaching urbanisation in ˙Izmir, Turkey. Phys. Chem. Earth 2011, 36, 1294–1309. [Google Scholar] [CrossRef]
- Elfadaly, A.; Attia, W.; Qelichi, M.M.; Murgante, B.; Lasaponara, R. Management of Cultural Heritage Sites Using Remote Sensing Indices and Spatial Analysis Techniques. Surv. Geophys. 2018, 39, 1347–1377. [Google Scholar] [CrossRef]
- Beraldin, J.A.; Picard, M.; El-Hakim, S.F.; Godin, G.; Valzano, V.; Bandiera, A. Combining 3D technologies for cultural heritage interpretation and entertainment. In Electronic Imaging; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; pp. 108–118. [Google Scholar]
- Remondino, F.; Girardi, S.; Gonzo, L.; Rizzi, A. Multiresolution modeling of complex and detailed cultural heritage. In Proceedings of the 9th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST 2008), Braga, Portugal, 2–5 December 2008; pp. 1–8. [Google Scholar]
- Remondino, F.; Rizzi, A.; Agugiaro, G.; Girardi, S.; De Amicis, R.; Magliocchetti, D.; Girardi, G.; Baratti, G. Geomatics and geoinformatics for digital 3D documentation, fruition and valorization of cultural heritage. In Proceedings of the EUROMED 2010 Workshop on Museum Futures: Emerging Technological and Social Paradigms, Lemessos, Cyprus, 8–13 November 2010; pp. 8–13. [Google Scholar]
- Meyer, D.; Fraijo, E.; Lo, E.; Rissolo, D.; Kuester, F. Optimizing UAV systems for rapid survey and reconstruction of large scale cultural heritage sites. In Proceedings of Digital Heritage, Granada, Spain, 28 September–2 October 2015. [Google Scholar]
- Themistocleous, K.; Ioannides, M.; Agapiou, A.; Hadjimitsis, D.G. The methodology of documenting cultural heritage sites using photogrammetry, UAV, and 3D printing techniques: The case study of Asinou church in Cyprus. In Proceedings of the Third International Conference on Remote Sensing and Geoinformation of the Environment, Paphos, Cyprus, 16–19 March 2015. [Google Scholar]
- Rinaudo, F.; Chiabrando, F.; Nex, F.; Piatti, D. New instruments and technologies for cultural heritage survey: Full integration between point clouds and digital photogrammetry. In Digital Heritage; Springer: Berlin/Heidelberg, Germany. pp. 56–70, 2010. [Google Scholar]
- Lisini, G.; Tison, C.; Tupin, F.; Gamba, P. Feature fusion to improve road network extraction in high-resolution SAR images. IEEE Geosci. Remote Sens. Lett. 2006, 3, 217–221. [Google Scholar] [CrossRef]
- Roenholm, P.; Honkavaara, E.; Litkey, P.; Hyyppä, H.; Hyyppä, J. Integration of laser scanning and photogrammetry. In Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, 12–14 September 2007; pp. 355–362. [Google Scholar]
- Fangi, G.; Clini, P.; Fiori, F. Simple and quick digital technique for the safeguard of Cultural Heritage. In The Rustem Pasha Mosque in Istanbul. In Proceedings of the Digital Media and its Application in Cultural Heritage, Amman, Jordan, 5–6 November 2008; pp. 209–217. [Google Scholar]
- Kersten, T.P.; Lindstaedt, M. Image-based low-cost systems for automatic 3D recording and modelling of archaeological finds and objects. In Progress in Cultural Heritage Preservation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–10. [Google Scholar]
- García-Gago, J.; González-Aguilera, D.; Gómez-Lahoz, J.; San José-Alonso, J.I. A photogrammetric and computer vision-based approach for automated 3D architectural modeling and its typological analysis. Remote Sens. 2014, 6, 5671–5691. [Google Scholar] [CrossRef]
- Andretta, M.; Coppola, F.; Modelli, A.; Santopuoli, N.; Seccia, L. Proposal for a new environmental risk assessment methodology in cultural heritage protection. J. Cult. Herit. 2017, 23, 22–32. [Google Scholar] [CrossRef]
- Figueiredo, R.; Romo, X.; Paupério, E. Flood risk assessment of cultural heritage at large spatial scales: Framework and application to mainland Portugal. J. Cult. Herit. 2020, 43, 163–174. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sens. Environ. 2019, 232, 232. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Lasaponara, R.; Xiang, B.; Zhen, J.; Zhu, L.; Yang, R.; Liu, D.; Liu, C. Auto-extraction of linear archaeological traces of Tuntian Irrigation Canals in Miran Site (China) from Gaofen-1 satellite imagery. Remote Sens. 2018, 10, 718. [Google Scholar] [CrossRef]
- Lopes, A.S.; Macedo, D.V.; Brito, A.; Furtado, V. Assessment of urban cultural-heritage protection zones using a co-visibilityanalysis tool. Comput. Environ. Urban Syst. 2019, 76, 139–149. [Google Scholar] [CrossRef]
- Choi, Y.; Yang, Y.J.; Sohn, H.G. Resilient cultural heritage through digital cultural heritage cube: Two cases in South Korea. J. Cult. Herit. 2021, 48, 36–44. [Google Scholar] [CrossRef]
- Banerjee, R.; Srivastava, P.K. Reconstruction of contested landscape: Detecting land cover transformation hosting cultural heritage sites from Central India using remote sensing. Land Use Policy 2013, 34, 193–203. [Google Scholar] [CrossRef]
- Elfadaly, A.; Eldein, A.S.; Lasaponara, R. Cultural heritage management using remote sensing data and GIS techniques around the archaeological area of Ancient Jeddah in Jeddah City, Saudi Arabia. Sustainability 2019, 12, 240. [Google Scholar] [CrossRef]
- Chetverikov, B. , Babiy L. Determination of boundaries of ancient burial places using the archived aerial and cartographic materials// Modern achievements of geodesic science and industry. – Vol.І(31). – 2016. – P. 111‐114.
- Agapiou, A.; Lysandrou, V.; Alexakis, D.D.; Themistocleous, K.; Cuca, B.; Argyriou, A.; Sarris, A.; Hadjimitsis, D.G. Cultural heritage management and monitoring using remote sensing data and GIS: The case study of Paphos area, Cyprus. Comput. Environ. Urban Syst. 2015, 54, 230–239. [Google Scholar] [CrossRef]
- Aminzadeh, B.; Samani, F. Identifying the boundaries of the historical site of Persepolis using remote sensing. Remote Sens. Environ. 2006, 102, 52–62. [Google Scholar] [CrossRef]
- Tsiafaki, D.; Michailidou, N. Benefits and problems through the application of 3d technologies in archaeology: Recording, visualisation, representation and reconstruction. Sci. Cult. 2015, 1, 37–45. [Google Scholar]
- Hatzopoulos, J.N.; Stefanakis, D.; Georgopoulos, A.; Tapinaki, S.; Pantelis, V.; Liritzis, I. Use of various surveying technologies to 3d digital mapping and modelling of cultural heritage structures for maintenance and restoration purposes: The tholos in DELPHI, GREECE. Mediterr. Archaeol. Archaeom. 2017, 17, 311–336. [Google Scholar]
- Koohmishi, M. , Kaewunruen, S., Chang, L., & Guo, Y. (2024). Advancing railway track health monitoring: Integrating GPR, InSAR and machine learning for enhanced asset management. Automation in Construction, 162, 105378.
- Bianchini Ciampoli, L., Gagliardi, V., Clementini, C., Latini, D., Del Frate, F., & Benedetto, A. (2020). Transport infrastructure monitoring by InSAR and GPR data fusion. Surveys in Geophysics, 41, 371‐394.
- D'Amico, F. , Gagliardi, V., Ciampoli, L. B., & Tosti, F. (2020). Integration of InSAR and GPR techniques for monitoring transition areas in railway bridges. NDT & E International, 115, 102291.
- Chen, F., Guo, H., Tapete, D., Cigna, F., Piro, S., Lasaponara, R., & Masini, N. (2022). The role of imaging radar in cultural heritage: From technologies to applications. International Journal of Applied Earth Observation and Geoinformation, 112, 102907.
- Jiang, A. H. , Chen, F. L., Tang, P. P., Liu, G. L., Liu, W. K., Wang, H. C.,... & Zhao, X. L. (2017, February). Radar remote sensing for archaeology in Hangu Frontier Pass in Xin’an, China. In IOP Conference Series: Earth and Environmental Science (Vol. 57, No. 1, p. 012031). IOP Publishing.
- Chetverikov, B. , Protsyk M. (2023) Analysis of vertical ground displacements of the Lviv Citadel territory based on radar survey data// International Conference of Young Professionals “GeoTerrace-2023” 2-, Lviv, Ukraine. 4 October.














| The name of the characteristic | Parameter |
|---|---|
| Antenna frequency | 400 Hz |
| Data reading interval | 0.15 |
| Transverse step | 0.15 m. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).