This version is not peer-reviewed.
Submitted:
16 April 2024
Posted:
17 April 2024
You are already at the latest version
A peer-reviewed article of this preprint also exists.
Experiment | |||||
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 |
2 | 2 | 1 | 2 | 2 | 2 |
3 | 3 | 1 | 3 | 3 | 3 |
4 | 1 | 2 | 1 | 2 | 2 |
5 | 2 | 2 | 2 | 3 | 3 |
6 | 3 | 2 | 3 | 1 | 1 |
7 | 1 | 3 | 1 | 3 | 3 |
8 | 2 | 3 | 2 | 1 | 1 |
9 | 3 | 3 | 3 | 2 | 2 |
10 | 1 | 1 | 2 | 1 | 2 |
11 | 2 | 1 | 3 | 2 | 3 |
12 | 3 | 1 | 1 | 3 | 1 |
13 | 1 | 2 | 2 | 2 | 3 |
14 | 2 | 2 | 3 | 3 | 1 |
15 | 3 | 2 | 1 | 1 | 2 |
16 | 1 | 3 | 2 | 3 | 1 |
17 | 2 | 3 | 3 | 1 | 2 |
18 | 3 | 3 | 1 | 2 | 3 |
19 | 1 | 1 | 3 | 1 | 3 |
20 | 2 | 1 | 1 | 2 | 1 |
21 | 3 | 1 | 2 | 3 | 2 |
22 | 1 | 2 | 3 | 2 | 1 |
23 | 2 | 2 | 1 | 3 | 2 |
24 | 3 | 2 | 2 | 1 | 3 |
25 | 1 | 3 | 3 | 3 | 2 |
26 | 2 | 3 | 1 | 1 | 3 |
27 | 3 | 3 | 2 | 2 | 1 |
Experiment | |||||
---|---|---|---|---|---|
1 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
2 | 0.5 | 0.25 | 0.5 | 0.5 | 0.5 |
3 | 0.75 | 0.25 | 0.75 | 0.75 | 0.75 |
4 | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 |
5 | 0.5 | 0.5 | 0.5 | 0.75 | 0.75 |
6 | 0.75 | 0.5 | 0.75 | 0.25 | 0.25 |
7 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 |
8 | 0.5 | 0.75 | 0.5 | 0.25 | 0.25 |
9 | 0.75 | 0.75 | 0.75 | 0.5 | 0.5 |
10 | 0.25 | 0.25 | 0.5 | 0.25 | 0.5 |
11 | 0.5 | 0.25 | 0.75 | 0.5 | 0.75 |
12 | 0.75 | 0.25 | 0.25 | 0.75 | 0.25 |
13 | 0.25 | 0.5 | 0.5 | 0.5 | 0.75 |
14 | 0.5 | 0.5 | 0.75 | 0.75 | 0.25 |
15 | 0.75 | 0.5 | 0.25 | 0.25 | 0.5 |
16 | 0.25 | 0.75 | 0.5 | 0.75 | 0.25 |
17 | 0.5 | 0.75 | 0.75 | 0.25 | 0.5 |
18 | 0.75 | 0.75 | 0.25 | 0.5 | 0.75 |
19 | 0.25 | 0.25 | 0.75 | 0.25 | 0.75 |
20 | 0.5 | 0.25 | 0.25 | 0.5 | 0.25 |
21 | 0.75 | 0.25 | 0.5 | 0.75 | 0.5 |
22 | 0.25 | 0.5 | 0.75 | 0.5 | 0.25 |
23 | 0.5 | 0.5 | 0.25 | 0.75 | 0.5 |
24 | 0.75 | 0.5 | 0.5 | 0.25 | 0.75 |
25 | 0.25 | 0.75 | 0.75 | 0.75 | 0.5 |
26 | 0.5 | 0.75 | 0.25 | 0.25 | 0.75 |
27 | 0.75 | 0.75 | 0.5 | 0.5 | 0.25 |
Experiment | Fitness R | (S/N) | |||||
---|---|---|---|---|---|---|---|
1 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 12.97 | -22.26 |
2 | 0.5 | 0.25 | 0.5 | 0.5 | 0.5 | 11.19 | -20.98 |
3 | 0.75 | 0.25 | 0.75 | 0.75 | 0.75 | 10.56 | -20.47 |
4 | 0.25 | 0.5 | 0.25 | 0.5 | 0.5 | 9.91 | -19.92 |
5 | 0.5 | 0.5 | 0.5 | 0.75 | 0.75 | 9.70 | -19.73 |
6 | 0.75 | 0.5 | 0.75 | 0.25 | 0.25 | 13.86 | -22.83 |
7 | 0.25 | 0.75 | 0.25 | 0.75 | 0.75 | 8.67 | -18.76 |
8 | 0.5 | 0.75 | 0.5 | 0.25 | 0.25 | 15.53 | -23.82 |
9 | 0.75 | 0.75 | 0.75 | 0.5 | 0.5 | 16.81 | -24.51 |
10 | 0.25 | 0.25 | 0.5 | 0.25 | 0.5 | 9.32 | -19.39 |
11 | 0.5 | 0.25 | 0.75 | 0.5 | 0.75 | 9.31 | -19.38 |
12 | 0.75 | 0.25 | 0.25 | 0.75 | 0.25 | 7.61 | -17.63 |
13 | 0.25 | 0.5 | 0.5 | 0.5 | 0.75 | 8.28 | -18.36 |
14 | 0.5 | 0.5 | 0.75 | 0.75 | 0.25 | 9.88 | -19.90 |
15 | 0.75 | 0.5 | 0.25 | 0.25 | 0.5 | 10.99 | -20.82 |
16 | 0.25 | 0.75 | 0.5 | 0.75 | 0.25 | 9.03 | -19.12 |
17 | 0.5 | 0.75 | 0.75 | 0.25 | 0.5 | 13.93 | -22.88 |
18 | 0.75 | 0.75 | 0.25 | 0.5 | 0.75 | 11.27 | -21.04 |
19 | 0.25 | 0.25 | 0.75 | 0.25 | 0.75 | 6.84 | -16.70 |
20 | 0.5 | 0.25 | 0.25 | 0.5 | 0.25 | 10.13 | -20.11 |
21 | 0.75 | 0.25 | 0.5 | 0.75 | 0.5 | 9.70 | -19.73 |
22 | 0.25 | 0.5 | 0.75 | 0.5 | 0.25 | 8.26 | -18.34 |
23 | 0.5 | 0.5 | 0.25 | 0.75 | 0.5 | 10.97 | -20.81 |
24 | 0.75 | 0.5 | 0.5 | 0.25 | 0.75 | 10.95 | -20.78 |
25 | 0.25 | 0.75 | 0.75 | 0.75 | 0.5 | 8.28 | -18.36 |
26 | 0.5 | 0.75 | 0.25 | 0.25 | 0.75 | 7.90 | -17.96 |
27 | 0.75 | 0.75 | 0.5 | 0.5 | 0.25 | 21.51 | -26.65 |
Elements | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Level 1 | -19.02 | -19.63 | -19.92 | -20.83 | -21.18 |
Level 2 | -20.62 | -20.17 | -20.95 | -21.03 | -20.82 |
Level 3 | -21.61 | -21.46 | -20.38 | -19.39 | -19.24 |
Optimized values of | Maximum SLL |
---|---|
1.0000 | -13.1526 |
0.8413 | -22.8982 |
0.9322 | |
0.7675 | |
0.6049 | |
0.5715 | |
0.4746 | |
0.4877 |
Elements | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Weights | 1.0000 | 0.8984 | 0.7187 | 0.5015 | 0.3857 |
Elements | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Weights | 1.0000 | 0.9500 | 0.8575 | 0.7317 | 0.5861 | 0.4381 | 0.2988 | 0.2552 |
Elements | Weights | ||
---|---|---|---|
1 | 1.0000 | 7 | 0.5292 |
2 | 0.9717 | 8 | 0.4203 |
3 | 0.9171 | 9 | 0.3182 |
4 | 0.8399 | 10 | 0.2275 |
5 | 0.7454 | 11 | 0.1512 |
6 | 0.6397 | 12 | 0.1262 |
Abbreviation | Algorithm | Performance |
---|---|---|
LM | Levenberg-Marquardt | High convergence rate |
BFG | BFGS Quasi-Newton | Fast convergence |
RP | Resilient Backpropagation | Robust to noise |
BR | Bayesian Regularization | Effective for small data |
SCG | Scaled Conjugate Gradient | Memory efficient |
CGB | Conjugate Gradient with Powell/Beale Restarts | Balanced performance |
CGF | Fletcher-Powell Conjugate Gradient | Stable convergence |
CGP | Polak-Ribiére Conjugate Gradient | Good for sparse data |
OSS | One-Step Secant | Fast convergence |
GDX | Variable Learning Rate Backpropagation | Adaptive learning rate |
GD | Basic Gradient Descent | Simple, easy to implement |
GDM | Gradient Descent with Momentum | Accelerated convergence |
SOM | Self-Organizing Maps (SOMs) |
PSO | Particle Swarm Optimization |
FEM | Finite Element Method |
RF | Radio Frequency |
BMU | Best Matching Unit |
IoT | Internet of Things |
DACs | Digital-to-Analog Converters |
ADCs | Analog-to-Digital Converters |
SNR | Signal-to-Noise Ratio |
MSE | Mean Squared Error |
OA | Orthogonal Array |
FDTD | Finite-Difference Time-Domain |
Angles (Degrees) | |||||||
---|---|---|---|---|---|---|---|
-70 | -60 | -50 | -40 | -30 | -20 | -10 | 0 |
84.1463 | 77.4561 | 68.4900 | 58.3565 | 45.5440 | 30.3652 | 15.2609 | 0 |
-106.7147 | -126.6421 | -153.5394 | 173.1063 | 134.6896 | 92.9003 | 46.6549 | 0 |
62.5153 | 29.3031 | -15.5709 | -70.2386 | -134.2522 | 154.4626 | 78.0024 | 0 |
-128.3519 | -174.4535 | 122.4385 | 45.5405 | -44.1573 | -144.8638 | 109.4055 | 0 |
40.8783 | -17.9783 | -99.6457 | 160.2969 | 45.0250 | -83.2515 | 140.8011 | 0 |
- 40.8783 | 17.9783 | 99.6457 | -160.2969 | -45.0250 | 83.2515 | -140.8011 | 0 |
-128.3519 | 174.4535 | -122.4385 | -45.5405 | 44.1573 | 144.8638 | -109.4055 | 0 |
-62.5153 | 29.3031 | 15.5709 | 70.2386 | 134.2522 | -154.4626 | -78.0024 | 0 |
106.7147 | 126.6421 | 153.5394 | -173.1063 | -134.6896 | -92.9003 | -46.6549 | 0 |
-84.1463 | -77.4561 | -68.4900 | -58.3565 | -45.5440 | -30.3652 | -15.2609 | 0 |
Angles (Degrees) | ||||||
---|---|---|---|---|---|---|
10 | 20 | 30 | 40 | 50 | 60 | 70 |
-15.1075 | -31.1920 | -45.4145 | -58.3105 | -69.3280 | -78.4109 | -84.1271 |
-46.2167 | -91.7536 | -135.2755 | -173.9426 | 153.8277 | 126.7011 | 106.7805 |
-77.2720 | -154.1821 | 135.8536 | 70.4664 | 16.0056 | -30.0311 | -63.2958 |
-108.3717 | 144.2690 | 45.0192 | -45.1731 | -121.7617 | -180.7680 | 127.5157 |
-140.4088 | 83.7520 | -43.9049 | -160.8637 | 100.5142 | 18.2899 | -41.5726 |
140.4088 | -83.7520 | 43.9049 | 160.8637 | -100.5142 | -18.2899 | 41.5726 |
108.3717 | -144.2690 | -45.0192 | 45.1731 | 121.7617 | 180.7680 | -127.5157 |
77.2720 | 154.1821 | -135.8536 | -70.4664 | -16.0056 | 30.0311 | 63.2958 |
46.2167 | 91.7536 | 135.2755 | 173.9426 | -153.8277 | -126.7011 | -106.7805 |
15.1075 | 31.1920 | 45.4145 | 58.3105 | 69.3280 | 78.4109 | 84.1271 |
Elements | @ -20dB | @ -25dB | @ -29dB | @ -38dB |
1 | 1.000 | 1.000 | 1.000 | 1.000 |
2 | 0.9383 | 0.8986 | 0.8763 | 0.8551 |
3 | 0.7445 | 0.7188 | 0.6651 | 0.6158 |
4 | 0.6478 | 0.5020 | 0.4240 | 0.3590 |
5 | 0.5906 | 0.3853 | 0.3590 | 0.1672 |
Algorithm 1:Taguchi Antenna Array Optimization Algorithm |
![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Downloads
111
Views
51
Comments
0
Subscription
Notify me about updates to this article or when a peer-reviewed version is published.
© 2025 MDPI (Basel, Switzerland) unless otherwise stated