Submitted:
16 April 2024
Posted:
17 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Moderate Intensification and Low Opportunity Cost
3. Regenerative Livestock Farming: Principles and Practices
3.1. Soils, Plants, Animals and People: the Foundations of Regeneration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Monteiro, C. A., et al. (2015). Dietary guidelines to nourish humanity and the planet in the twenty-first century. A blueprint from Brazil. Public Health Nutrition, 18(13), 2311–2322. [CrossRef]
- Rivera, J. A., et al. (2024). Perspective: Mexico’s Experience in Building a Toolkit for Obesity and Noncommunicable Diseases Prevention. Advances in Nutrition, 100180. [CrossRef]
- Instituto Colombiano de Bienestar Familiar - ICBF. (2020). Guías Alimentarias Basadas en Alimentos para la población colombiana mayor de 2 años. Bogotá: ICBF; FAO.
- Kovalskys, I., et al. (2019). Latin American consumption of major food groups: Results from the ELANS study. Plos One, 14(12), e0225101. [CrossRef]
- Camargo, M. C., Feliu, A., Stern, M. C., Villarreal-Garza, C., Ferreccio, C., Espina, C., et al. (2023). The Latin America and the Caribbean Code Against Cancer: an opportunity for empowerment and progress. The Lancet Regional Health - Americas, 28, 100644. [CrossRef]
- Organisation for Economic Co-operation and Development - OECD. Food and Agriculture Organization of the United Nations - FAO. (2023). Meat consumption. Perspectivas Agrícolas OCDE-FAO. Paris: OCDE Publishing.
- FAO. (2023). FAO Regional Office for Latin America and the Caribbean. Recuperado de https://www.fao.org/americas/priorities/produccion-pecuaria/ar/. Acesso em: 20 abr. 2023.
- World Economic Forum. (2020). How soon will we be eating lab-grown meat?. White Paper. Disponível em: https://www.weforum.org/agenda/2020/10/will-we-eat-lab-grown-meat-world-food-day/.
- Thilsted, S.H.; Elouafi, I. (2023). The world is precariously dependent on just a handful of staple food crops – we must diversify. The Thelegraph. Disponível em: https://www.telegraph.co.uk/global-health/climate-and-people/underused-foods-could-help-end-scourge-of-malnutrition/.
- Singh, R.K. et al. (2022) Potential of underutilized crops to introduce the nutritional diversity and achieve zero hunger. Funct Integr Genomics, 22, 1459–1465. [CrossRef]
- Krug, A.S. et al. (2023). The next era of crop domestication starts now. Proc Natl Acad Sci, 120(14), e2205769120. [CrossRef]
- Köberle, AC, et al. (2023). Livestock intensification and the role of finance in the Food System Transformation in Brazil. Food System Economics Commission. Available in: https://foodsystemeconomics.org/wp-content/uploads/Koberle-et-al.-2023.pdf.
- Baxter, T.; Garnett, T. (2022). Primed for power: a short cultural history of protein. TABLE, University of Oxford, Swedish University of Agricultural Sciences and Wageningen University and Research. [CrossRef]
- Congio, G. F. S., Bannink, A., & Mogollón, O. L. M. (2021). Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: A meta-analysis. Journal of Cleaner Production, 312. [CrossRef]
- FAOSTAT. (2021). Livestock Patterns: base de dados. Recuperado de https://www.fao.org/faostat/en/#data/EK. Acesso em: 23 jan. 2024.
- Matte, A., Waquil, P. D. (2020). Productive changes in Brazilian Pampa: impacts, vulnerabilities and coping strategies. Natural Hazards (Dordrecht. Online), 101, 1-28. [CrossRef]
- Matte, A.; Waquil, P. D. (2021). Changes in markets for lamb in livestock family farming in Brazil. Small Ruminant Research, 205, 106535. [CrossRef]
- Giz – Deutsche Gesellschaft Für Internationale Zusammenarbeit. (2020). Cadenas sostenibles ante un clima cambiante: la ganadería en Colombia. Eschborn, Alemania: Ministerio Federal Alemán de Medio Ambiente, Protección de la Naturaleza y Seguridad Nuclear (BMU).
- FAO. (2014). Agricultura Familiar en América Latina y el Caribe: recomendaciones de política. Santiago: Food And Agriculture Organization.
- Waquil, P. D. et al. (Org.) (2016). Pecuária familiar no Rio Grande do Sul: história, diversidade social e dinâmicas de desenvolvimento. 1. ed. Porto Alegre: Editora da UFRGS.
- Matte, A., et al. (2019). Agricultura e pecuária familiar: (des)continuidade na reprodução social e na gestão dos negócios. Revista Brasileira De Gestão E Desenvolvimento Regional, 15, 19-33.
- Thies, V.F.; Schneider, E.P.; Matte, A. Especialização e descontinuidade da pecuária leiteira: impactos sobre as trajetórias das famílias agricultoras em Salvador das Missões (RS). Revista de economia e sociologia rural 2023, 61, e265911. [Google Scholar] [CrossRef]
- Carvalho, P. C. F., & Batello, C. (2009). Access to land, livestock production and ecosystem conservation in the Brazilian Campos biome: The natural grasslands dilemma. Livestock Science, 120(1-2), 158-162. [CrossRef]
- Greenwood, P. L. (2021). Review: an overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal, 15, 100295. [CrossRef]
- Fernández, P. D., et al. (2020). Understanding the distribution of cattle production systems in the South American Chaco. Journal Of Land Use Science, 15(1), 52-68. [CrossRef]
- Modernel, P., et al. (2019). Grazing management for more resilient mixed livestock farming systems on native grasslands of southern South America. Grass And Forage Science, 74(4), 636-649. [CrossRef]
- Alexandre, G., et al. (2021). Agroecological practices to support tropical livestock farming systems: a Caribbean and Latin American perspective. Tropical Animal Health and Production, 53, 111. [CrossRef]
- Froehlich, G., Stabile, M., & Souza, M. L. (2022). Iniciativas de Rastreabilidade nas Cadeias de Valor da Carne Bovina e do Couro no Brasil. [S.I]: Ipam. Recuperado de https://ipam.org.br/wp-content/uploads/2023/03/Iniciativas_rastreabilidade_PT_v05-2.pdf. Acesso em: 21 jan. 2024.
- Matte, A., Waquil, P. D. (2020b). Productive changes in Brazilian Pampa: impacts, vulnerabilities and coping strategies. Natural Hazards (Dordrecht. Online), 101, 1-28. [CrossRef]
- Baggio, R., et al. (2021). To graze or not to graze: a core question for conservation and sustainable use of grassy ecosystems in Brazil. Perspectives In Ecology And Conservation, 19(3), 256-266. [CrossRef]
- Manzano, P., et al. (2023a). Underrated past herbivore densities could lead to misoriented sustainability policies. npj Biodiversity, 2(1), 2023. [CrossRef]
- Townsend, C. R.; Costa, N. L.; Pereira, R. G. A. (2012). Pastagens Nativas na Amazônia Brasileira. Porto Velho: Embrapa Rondônia.
- Monbiot, G. (2022). Regenesis: feeding the world without devouring the planet. New York: Penguin Books.
- Godfray et al. (2018) Meat consumption, health, and the environment. Science, [S.L.], v. 361, n. 6399. American Association for the Advancement of Science (AAAS). [CrossRef]
- Berners-Lee, M., et al. (2018). Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa: Science of the Anthropocene, 6(1):52. [CrossRef]
- Cheng, L., et al. (2022). A 12% switch from monogastric to ruminant livestock production can reduce emissions and boost crop production for 525 million people. Nature Food, 3(12), 1040-1051. [CrossRef]
- Herrero, M., et al. (2023a). A Shift to Healthy and Sustainable Consumption Patterns. In J. von Braun et al. (Eds.), Science and Innovations for Food Systems Transformation. United Nations Food Systems Summit, Springer. P. 59-86. [CrossRef]
- Herrero, M., et al. (2023b). Livestock and sustainable food systems: status, trends, and priority actions. In J. von Braun et al. (Eds.), Science and Innovations for Food Systems Transformation. United Nations Food Systems Summit, Springer. P. 375-400. [CrossRef]
- Mottet, A., et al. (2017). Livestock: on our plates or eating at our table? a new analysis of the feed/food debate. Global Food Security, 14, 1-8. [CrossRef]
- Van Zanten. et al. (2023). “Circularity in Europe strengthens the sustainability of the global food system”. Nature Food, 4, 320-330. [CrossRef]
- Andrade, B. O., et al. (2023b). 12,500+ and counting: biodiversity of the Brazilian Pampa. Frontiers Of Biogeography, 5. [CrossRef]
- Leroy, F., et al. (2022). Animal source foods in healthy, sustainable, and ethical diets – An argument against drastic limitation of livestock in the food system. Animal, 16(3), March 2022. [CrossRef]
- Boldrini, I. I. (1997). Campos do Rio Grande do Sul: caracterização fisionômica e problemática ocupacional. Porto Alegre: UFRGS. (UFRGS, Boletim do Instituto de Biociências, 56).
- Andrade, C.M.S. et al. (2023a) Sistema Guaxupé: modelo de intensificação sustentável da pecuária de corte baseado em pastagens permanentes de alta performance, ricas em leguminosas. Brasília, DF: Embrapa.
- Cezimbra, I. M., et al. (2021). Potential of grazing management to improve beef cattle production and mitigate methane emissions in native grasslands of the Pampa biome. Science of The Total Environment, 780. [CrossRef]
- Damian, J. M., et al. (2023). Intensification and diversification of pasturelands in Brazil: Patterns and driving factors in the soil carbon stocks. Catena, 220. [CrossRef]
- Alianza del Pastizal. (2023). Produção Agropecuária que conserva o Pampa. Recuperado de https://www.alianzadelpastizal.org.br/. Acesso em: 29 de jan. de 2024.
- Moutinho, P.; Azevedo-Ramos, C. (2023). Untitled public forestlands threaten Amazon conservation. Nat Commun, 14, 1152. [CrossRef]
- Albert, J. S., et al. (2023). Human impacts outpace natural processes in the Amazon. Science, 379(6630). [CrossRef]
- Valentim, J.F.; Andrade, C.M.S. (2020). Strategies leading to successful wide adoption of mixed grass-legume pastures for sustainable intensification of beef cattle production systems in the Brazilian Amazon. In: International Symposium on Agricultural Technolofy Adoption, 1, 2019, Campo Grande, MS. Studies, methods and experiences: abstracts. Campo Grande, MS: Embrapa Gado de Corte.
- Agronegocios. (2019). Degradación de pastizales por cambio climático genera millonarias pérdidas a comunidades. Recuperado de https://www.agronegocios.co/clima/degradacion-de-pastizales-por-cambio-climatico-genera-millonarias-perdidas-a-comunidades-2839754.
- MapBiomas (2023). South American Pampas loses one fifth of its grassland vegetation between 1985 and 2021. Disponível em: https://mapbiomas.org/en/pampa-sul-americano-perde-um-quinto-da-vegetacao-campestre--entre-1985-e-2021-2?cama_set_language=en. Acesso em: 16 abr. 2023.
- Serafini, P. P. et al. (2013). Plano De Ação Nacional Para A Conservação Dos Passeriformes Ameaçados Dos Campos Sulinos E Espinilho. Brasília: MMA.
- Staude, I. R., et al. (2021). Specialist Birds Replace Generalists in Grassland Remnants as Land Use Change Intensifies. Frontiers In Ecology And Evolution, 8, 597542. [CrossRef]
- Porto, A. B., et al. (2022). Restoration of subtropical grasslands degraded by non-native pine plantations: effects of litter removal and hay transfer. Restoration Ecology. [CrossRef]
- Smith, M. D., et al. (2022). Richness, not evenness, varies across water availability gradients in grassy biomes on five continents. OECOLOGIA, 199, 649-659. [CrossRef]
- Arantes, A. E., et al. (2018). Livestock intensification potential in Brazil based on agricultural census and satellite data analysis. Remote Sensing, Pesquisa Agropecuária Brasileira, 53(09). [CrossRef]
- Carvalho, P. C. F., et al. (2021). Reconnecting Grazing Livestock to Crop Landscapes: Reversing Specialization Trends to Restore Landscape Multifunctionality. Frontiers in Sustainable Food Systems. [CrossRef]
- Guarino, E. S., et al. (2023). Proposta de guia para a restauração de campos nativos no sul do Brasil. Comunicado Técnico 394. Pelotas, RS: Embrapa Clima Temperado.
- Moreira, J. G.; Matte, A.; Conterato, M. A. (2023). Avanço Da Soja E Estratégias De Adaptação Da Pecuária De Corte No Sul Do Brasil. Revista Brasileira De Gestão E Desenvolvimento Regional, 19(1). [CrossRef]
- Euclides Filho, K. (2008). A pecuária de corte no cerrado brasileiro. Brasília: EMBRAPA Cerrados.
- Nanzer, M. C., et al. (2019). Estoque de carbono orgânico total e fracionamento granulométrico da matéria orgânica em sistemas de uso do solo no Cerrado. Revista de Ciências Agroveterinárias, 18(1), 136-145. [CrossRef]
- Victoria, D. C. et al. (2020). Potencialidades para expansão e diversificação agrícola sustentável do Cerrado. Embrapa Cerrados.
- Vigroux, F. et al. (2023). Unequal coexistence in the North eastern Cerrado: The rise of entrepreneurial agriculture in the face of family farming in Correntina (Bahia State, Brazil). Revue Internationale des Études du Développement, 251, 285-317. [CrossRef]
- Feltran-Barbieri, R., & Féres, J. G. (2021). Degraded pastures in Brazil: improving livestock production and forest restoration. Royal Society Open Science, 8(7), 201854. [CrossRef]
- Moojen, F. G., et al. (2022). A serious game to design integrated crop-livestock system and facilitate change in mindset toward system thinking. Agron. Sustain. Dev., 42, 35. [CrossRef]
- Beal, T., et al. (2023). Friend or Foe? The Role of Animal-Source Foods in Healthy and Environmentally Sustainable Diets. The Journal of Nutrition, 153(2). [CrossRef]
- Jaurena, M. A., et al. (2021). Native Grasslands at the Core: A New Paradigm of Intensification for the Campos of Southern South America to Increase Economic and Environmental Sustainability. Front. Sustain. Food Syst., 5. [CrossRef]
- Cunha, L. L., et al. (2023). Relevance of sward structure and forage nutrient contents in explaining methane emissions from grazing beef cattle and sheep. Science Of The Total Environment, 869. [CrossRef]
- Arango, J., et al. (2020). Ambition Meets Reality: Achieving GHG Emission Reduction Targets in the Livestock Sector of Latin America. Frontiers in Sustainable Food Systems, 4. [CrossRef]
- Zubieta, A. S. et al. (2021). Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems? Science of The Total Environment. Feb. [CrossRef]
- Congio, G. F. S., et al. (2023). Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries. Science of The Total Environment, 856. [CrossRef]
- Nascimento, A. F., et al. (2021). Estoques de carbono e emissões de gases de efeito estufa de floresta secundária na transição Amazônia-Cerrado. Sinop, MT: Embrapa Agrossilvipastoril.
- Belflower, J. B., et al. (2012). A case study of the potential environmental impacts of different dairy production systems in Georgia. Agricultural Systems, 108. [CrossRef]
- Bogaerts, M., et al. (2017). Climate change mitigation through intensified pasture management: Estimating greenhouse gas emissions on cattle farms in the Brazilian Amazon. Journal of Cleaner Production, 162, 1539-1550. [CrossRef]
- Franzluebbers, A. J. (2020). Cattle grazing effects on the environment: Greenhouse gas emissions and carbon footprint. In Management Strategies for Sustainable Cattle Production in Southern Pastures (pp. 11-34). [CrossRef]
- García-Souto, V., et al. (2022). Assessment of greenhouse gas emissions in dairy cows fed with five forage systems. Italian Journal of Animal Science, 21(1). [CrossRef]
- Cardoso, A. S., et al. (2016). Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use. Agricultural Systems, 143, 86-96. [CrossRef]
- Li, X., et al. (2016). Asparagopsis taxiformis decreases enteric methane production from sheep. Animal Production Science, 58(4), 681-688. [CrossRef]
- Kinley, R. D. et al. (2020). Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. Journal of Cleaner Production, v. 259, Jun. [CrossRef]
- Kinley, R. D. et al. (2021). Changing the Proportions of Grass and Grain in Feed Substrate Impacts the Efficacy of Asparagopsis taxiformis to Inhibit Methane Production in Vitro. American Journal of Plant Sciences, v. 12, n. 2, Dec. [CrossRef]
- Glasson, C. R. K., et al. (2022). Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Research, 64. [CrossRef]
- Roque, B. M., et al. (2019). Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. Journal of Cleaner Production, 234, 132-138. [CrossRef]
- Roque, B. M., et al. (2021). Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PlosOne, 16(3), Mar. [CrossRef]
- Scoones, I. (2022). Livestock, methane, and climate change: The politics of global assessments. Wiley Interdisciplinary Reviews: Climate Change, 14(1), e790.
- Houzer, E., & Scoones, I. (2021). Are livestock always bad for the planet? Rethinking the protein transition and climate change debate. Brighton: PASTRES.
- Intergovernmental Panel on Climate Change (IPCC).
- Willet, W. et al. (2019). Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The lancet, 393(10170), 447-492. [CrossRef]
- Poore, J.; Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987-992. [CrossRef]
- Zulueta R.; Manzano P.; Prado A. (2022). “El impulso y desarrollo de la ganadería regenerativa como herramienta para la sostenibilidad agroalimentaria”, BC3 Policy Briefs, Enero.
- Miatton, M., Karner, M. (2020). Regenerative Agriculture in Latin America. Mustardseed Trust. Disponível em: mustardseedtrust.org/post/research-to-create-a-knowledge-base-latin-america. Acesso em: 19 maio 2023.
- Rodale Institute. (2014). Regenerative Organic Agriculture and Climate Change: a down-to-earth solution to global warming. Kutztown: Rodale Institute. Disponível em: https://rodaleinstitute.org/wp-content/uploads/rodale-white-paper.pdf. Acesso em: 19 maio 2023.
- Spratt, E., et al. (2021). Accelerating regenerative grazing to tackle farm, environmental, and societal challenges in the upper Midwest. Journal Of Soil And Water Conservation, 76(1), 15-23. Soil and Water Conservation Society. [CrossRef]
- Lal, R. (2020). Regenerative agriculture for food and climate. Journal Of Soil And Water Conservation, 75(5), 123-124. [CrossRef]
- Evans-Pritchard, E. E. (2013). Os Nuer: uma descrição do modo de subsistência e das instituições políticas de um povo nilota. São Paulo: Perspectiva.
- Garrett, R.D.; et al. (2019). Criteria for effective zero-deforestation commitments. Global Environmental Change, [S.L.], v. 54, p. 135-147, jan. 2019. Elsevier BV. [CrossRef]
- Alencar, A., et al. (2022). Desafios e Oportunidades para Redução das Emissões de Metano no Brasil. Observatório do Clima.
- Global Forest Watch. (2023). Bolivia Deforestation Rates and Statistics. Disponível em: https://www.globalforestwatch.org/dashboards/country/BOL/?category=summary&firesAlertsSimple=eyJoaWdobGlnaHRlZCI6ZmFsc2V9&treeLossPct=eyJoaWdobGlnaHRlZCI6ZmFsc2V9&treeLossTsc=eyJoaWdobGlnaHRlZCI6ZmFsc2V9.
- Manzano, P., et al. (2023b). Challenges for the balanced attribution of livestock’s environmental impacts: the art of conveying simple messages around complex realities. Animal Frontiers, 13(2), 35-44, 15 abr. 2023. [CrossRef]
- Leroy, F., et al. (2023). The role of meat in the human diet: evolutionary aspects and nutritional value. Animal Frontiers, 13(2), 11-18, 1 abr. 2023. [CrossRef]
- Abramovay, R. , et al. (2023). Promoting Diversity in Agricultural Production Towards Healthy and Sustainable Consumption. T20 Policy Brief.
- Barreto, P. (2021). Políticas para desenvolver a pecuária na Amazônia sem desmatamento. Imazon. Disponível em: https://amazonia2030.org.br/wp-content/uploads/2021/09/pecuaria-extrativa_final_Paulo- Barreto-1.pdf.
- Silva, A. (2022). Pragas, patógenos e plantas na história dos sistemas agroecológicos. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas, 17. [CrossRef]
- Valério, J. R. (2009). Cigarrinhas-das-pastagens. Campo Grande, MS: Embrapa Gado de Corte. (Embrapa Gado de Corte. Documentos, 1eid79).
- Valentim, J. F.; Carneiro, J. C.; Sales, M. F. L. (2001). Amendoim forrageiro cv. Belmonte: leguminosa para a diversificação das pastagens e conservação do solo no Acre. EMBRAPA Acre (Circular Técnica 43).
- Pereira, L. E. T.; Herling, V. R.; Alma, O. J. I. (2016). Gramíneas forrageiras de clima temperado e tropical. Pirassununga: GEFEP, Faculdade de Zootecnia e Engenharia de Alimentos - FZEA, Universidade de São Paulo.
- Poccard, R. , et al. (2015). Amazonie, la forêt qui cache la prairie. In Dupré, L., Lasseur, J. & R. Poccard-Chapuis. Pâturages Techniques & Culture, 63, 150-167.
- Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2021). Estratégias de adaptação às mudanças do clima dos sistemas agropecuários brasileiros. In: Sotta, E.D.; Sampaio, F.G.; Marzall, K.; Silva, W.G. (Eds.). Brasília: MAPA/SENAR. Biblioteca Nacional de Agricultura – BINAGRI Brasil.
- Pacheco, P. , et al. (2017). Beyond zero deforestation in the Brazilian Amazon: progress and remaining challenges to sustainable cattle intensification. Center For International Forestry Research (Cifor), [S.L.], No. 167, Feb. Center for International Forestry Research (CIFOR). [CrossRef]
- Oliveira, P. de, et al. (2013). Evolução de sistemas de integração lavoura-pecuária-floresta (iLPF): estudo de caso da Fazenda Santa Brígida. Ipameri, GO: Embrapa Cerrados.
- Behling, M. , et al. (2013). Integração Lavoura-Pecuária-Floresta (iLPF). In: Galhardi Junior et al. (Ed.). Boletim de Pesquisa de Soja 2013/2014. Rondon#xF3;polis: Fundacao MT.
- Domiciano, L. F. , et al. (2016). Performance and behaviour of Nellore steers on integrated systems. Animal Production Science. [CrossRef]
- Giro, A. , et al. (2019). Behavior and body surface temperature of beef cattle in integrated crop-livestock systems with or without tree shading. Science of the Total Environment, 684, 587-596. [CrossRef]
- Garrett, R. D. Drivers of decoupling and recoupling of crop and livestock systems at farm and territorial scales. Ecology And Society, 25(1), 0-24. [CrossRef]
- Delandmeter, M. et al. (2024). Integrated crop and livestock systems increase both climate change adaptation and mitigation capacities. Science Of The Total Environment, [S.L.], v. 912, p. 169061, fev. [CrossRef]
- Soussana, J.F.; Lemaire, G. (2014). Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agric. Ecosyst. Environ., 190, p. 9-17. [CrossRef]
- Franzluebbers, A.J. (2010). Will we allow soil carbon to feed our needs?. Carbon Manag., 1 (2), p. 237-251. [CrossRef]
- Fundación para la Conservación del Bosque Chiquitano – FCBC. (2020). Informe anual 2020. FCBC.
- Ganaclimard. (2022). Plataforma de conocimientos. Recuperado de https://ganaderiayclimard.do/ganaclima/. Acesso em: 16 de agosto de 2023.
- Franciosi, E. (2022). Modelagem de sistema agroflorestal de babaçu e mandioca na Mata dos Cocais. Dissertação de Mestrado. Escola de Economia de Sao Paulo da Fundacao Getúlio Vargas.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).