Submitted:
16 April 2024
Posted:
16 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
1. Survey Location Specificity and Origin of Samples
2. General Characteristics of Adobes

Particle Size Distribution
3. Methylene Blue Value (MBV1)
4. Compression Tests
5. Three-Point Flexural Tests
6. Thermal Analysis
7. Moisture Buffer Value (MBV2)
3.Results
1. Particle Size Distribution
2. Methylene Blue Value (MBV1)
3. Compression Tests

4. Three-Point Flexural Tests

5. Thermal Analysis
6. Moisture Buffer Value (MBV2)
7. Simulation of Adobe Integration within a Practical Eco-Friendly Vertical Wall
4. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
References
- United Nations Environment Programme. 2022 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector [Internet]. Vol. 224, United Nations Environment Programme. 2022. Available from: https://globalabc.org/sites/default/files/2022-11/FULL REPORT_2022 Buildings-GSR_1.pdf.
- Cerema. Guide RE2020. 2024.
- Rollot M. L’architecture localement bio- et géo-sourcée de Christophe Aubertin : régionaliste, biorégionaliste ? Cah la Rech Archit urbaine paysagère. 2021;(11):0–27.
- Rollot M. Éléments vers une éthique de l ’ habitation. Université Paris VIII; 2018.
- Hallauer E. Du vernaculaire à la déprise d’oeuvre : Urbanisme, architecture, design. Université Paris-Est; 2017.
- Ventura A, Ouellet-Plamondon C, Röck M, Hecht T, Roy V, Higuera P, et al. Environmental Potential of Earth-Based Building Materials: Key Facts and Issues from a Life Cycle Assessment Perspective. RILEM State-of-the-Art Reports [Internet]. 2022 [cited 2024 Apr 3];35:261–96. Available from: https://link.springer.com/chapter/10.1007/978-3-030-83297-1_8.
- Mcgregor F, Heath A, Shea A, Lawrence M. The moisture buffering capacity of unfired clay masonry. 2014 [cited 2024 Apr 3]; Available from: http://dx. [CrossRef]
- Roucan S, McGregor F, Fabbri A, Perlot-Bascoulès C, Morel JC. Indoor CO2 buffering potential of clay-based building materials. IOP Conf Ser Earth Environ Sci [Internet]. 2022 Sep 1 [cited 2024 Apr 3];1078(1):012135. Available from: https://iopscience.iop.org/article/10.1088/1755-1315/1078/1/012135.
- Fabbri A, Aubert JE, Bras AA, Faria P, Gallipoli D, Goffart J, et al. Hygrothermal and Acoustic Assessment of Earthen Materials. RILEM State-of-the-Art Reports [Internet]. 2022 [cited 2024 Apr 3];35:83–126. Available from: https://novaresearch.unl.pt/en/publications/hygrothermal-and-acoustic-assessment-of-earthen-materials.
- Walter A, Blake B, Yann D’ S, Perlot OMC. Recyclability, durability and water vapour adsorption of unstabilised and stabilised compressed earth bricks. Mater Struct [Internet]. [cited 2024 Apr 3];53. Available from: https://. [CrossRef]
- ADEME. Déchets Chiffres-clés - Edition 2023 [Internet]. 2023 [cited 2024 Apr 4]. Available from: https://librairie.ademe.fr/dechets-economie-circulaire/6108-dechets-chiffres-cles-edition-2023.html.
- Hamard E, Lemercier B, Cazacliu B, Razakamanantsoa A, Morel JC. A new methodology to identify and quantify material resource at a large scale for earth construction – Application to cob in Brittany. Constr Build Mater. 2018 May 10;170:485–97.
- Verron L, Hamard E, Cazacliu B, Razakamanantsoa A, Duc M, Vinceslas T, et al. Estimating and mapping the availability of earth resource for light earth building using a soil geodatabase in Brittany (France). Resour Conserv Recycl. 2022 Sep 1;184:106409.
- Santos MM, Hilton A, Poullain P, Hamard E, Mouraud C. Rediscovered earth heritage becomes motor for local change - The Guérande Peninsula (France). In: HERITAGE2022 International Conference on Vernacular Heritage: Culture, People and Sustainability [Internet]. Universitat Politecnica de Valencia; 2022 [cited 2024 Apr 3]. p. 149–56. Available from: https://shs.hal.science/halshs-03844005.
- Mileto C, Vegas F, Correia M, Carlos G, Dipasquale L, Mecca S, et al. THE EUROPEAN PROJECT “VERSUS+ / HERITAGE FOR PEOPLE”. OBJECTIVES AND METHODOLOGY. Int Arch Photogramm Remote Sens Spat Inf Sci [Internet]. 2020 Jul 24 [cited 2024 Apr 3];XLIV-M-1–2020(M–1):645–9. Available from: https://. [CrossRef]
- Pelé-Peltier A, Charef R, Morel JC. Factors affecting the use of earth material in mainstream construction: a critical review. Build Res Inf [Internet]. 2023 Feb 17 [cited 2024 Apr 3];51(2):119–37. Available from: https://www.tandfonline.com/. [CrossRef]
- Morel JC, Charef R, Hamard E, Fabbri A, Beckett C, Bui QB. Earth as construction material in the circular economy context: practitioner perspectives on barriers to overcome. Philos Trans R Soc B [Internet]. 2021 Sep 27 [cited 2024 Apr 3];376(1834). Available from: https://royalsocietypublishing.org/. [CrossRef]
- Turmel A. Répartition et utilisation des pierres et géomatériaux de construction dans le bâti du Pays rémois - analyse spatiale et propriétés pétrophysiques - | Theses.fr. Reims; 2014.
- Fronteau G, Laratte S, Devos A, Pichard C. L’emploi antique des géomatériaux à Reims/Durocortorum. http://journals.openedition.org/gallia [Internet]. 2022 Nov 1 [cited 2024 Apr 3];79(79–1):47–59. Available from: http://journals.openedition.org/gallia/6583.
- Delencre F. Terres et pierres pour matières de cultures : l’apparition et la diffusion de nouveaux modes et matériaux de construction dans le Nord-Est de la Gaule romaine (IIème siècle avant J.-C. - IIème siècle après J.-C.) | Theses.fr. 2017;
- Turmel A, Fronteau G, Chalumeau L, Deroin JP, Essautier-Chuine S, Thomachot-Schneider C, et al. GIS-based variability of building materials towards the Île-de-France cuesta (Paris Basin, France): Inventory, distribution, uses and relationship with the environment. Geol Soc London Spec Publ. 2015;416.
- Aras-Gaudry A, Fronteau G, Hamard E. Rediscovering raw earth heritage of Champagne area (France): Cartography and typology of a specific adobe vernacular architecture. Mater Today Proc. 2023 Sep 14;
- Royer C. Champagne Ardenne : L’architecture rurale française [Internet]. Die A, editor. 2001. Available from: https://www.eyrolles.com/BTP/Livre/champagne-ardenne-9782908730449/.
- Norme NF EN ISO 17892-4 [Internet]. 2018 [cited 2024 Apr 11]. Available from: https://www.boutique.afnor.org/fr-fr/norme/nf-en-iso-178924/reconnaissance-et-essais-geotechniques-essais-de-laboratoire-sur-les-sols-p/fa166662/80069.
- Beixing L, Mingkai Z, Jiliang W. Effect of the Methylene Blue Value of Manufactured Sand on Performances of Concrete. J Adv Concr Technol. 2011;9(2):127–32.
- AFNOR. NF P94-068 :1993, Mesure de la quantité et de l’activité de la fraction argileuse. 1993.
- AFNOR. XP P13-901:2022 Blocs de terre comprimée pour murs et cloisons : définitions - Spécifications - Méthodes d’essais - Conditions de réception. 2022.
- Abhilash HN, Hamard E, Beckett CTS, Morel JC, Varum H, Silveira D, et al. Mechanical Behaviour of Earth Building Materials. In: Fabbri A, Morel JC, Aubert JE, Bui QB, Gallipoli D, Reddy BVV, editors. Testing and Characterisation of Earth-based Building Materials and Elements: State-of-the-Art Report of the RILEM TC 274-TCE [Internet]. Cham: Springer International Publishing; 2022. p. 127–80. Available from: https://. [CrossRef]
- Adorni E, Coïsson E, Ferretti D. In situ characterization of archaeological adobe bricks. [cited 2024 Mar 18]; Available from: http://dx. [CrossRef]
- Rode C;, Peuhkuri RH, Hansen KK, Time B;, Svennberg K;, Arfvidsson J;, et al. NORDTEST Project on Moisture Buffer Value of Materials. In: AIVC 26th conference: Ventilation in relation to the energy performance of buildings Air Infiltration and Ventilation. APA; 2005. p. 47–52.
- Saïag J, Collin PY, Sizun JP, Herbst F, Faÿ-Gomord O, Chateau Smith C, et al. Classifying chalk microtextures: Sedimentary versus diagenetic origin (Cenomanian–Santonian, Paris Basin, France). Sedimentology [Internet]. 2019 Dec 1 [cited 2024 Apr 4];66(7):2976–3007. Available from: https://onlinelibrary.wiley.com/. [CrossRef]
- Faÿ-Gomord O, Descamps F, Tshibangu JP, Vandycke S, Swennen R. Unraveling chalk microtextural properties from indentation tests. Eng Geol. 2016 Jul 15;209:30–43.
- LCPC-SETRA. Réalisation des remblais et des couches de forme (GTR) - Fascicule 1 - principes généraux : Guide technique - Fascicule 2 : Annexes techniques. Bagneux, France; 1992.
- Rojat F, Hamard E, Fabbri A, Carnus B, Mcgregor F. Towards an easy decision tool to assess soil suitability for earth building. 2020 [cited 2024 Mar 18]; Available from: https://. [CrossRef]
- AFNOR. NF EN ISO 10693 :1995. Qualité du sol - Détermination de la teneur en carbonate - Méthode volumétrique. 1995.
- Jiménez Delgado MC, Guerrero IC. The selection of soils for unstabilised earth building: A normative review. Constr Build Mater. 2007 Feb 1;21(2):237–51.
- Houben H, Guillaud H. Earth Construction—A Comprehensive Guide (second ed.) [Internet]. London: Intermediate Technology Publications; 1996 [cited 2024 Apr 4]. Available from: https://www.scirp.org/reference/referencespapers?referenceid=3129844.
- Silveira D, Varum H, Costa A, Martins T, Pereira H, Almeida J. Mechanical properties of adobe bricks in ancient constructions. 2011;
- Wu F, Li G, Li HN, Jia JQ. Strength and stress-strain characteristics of traditional adobe block and masonry. Mater Struct Constr [Internet]. 2013 Sep 27 [cited 2024 Apr 4];46(9):1449–57. Available from: https://link.springer.com/article/10.1617/s11527-012-9987-y.
- Illampas R, Ioannou I, Charmpis DC. Experimental assessment of adobe masonry assemblages under monotonic and loading-unloading compression. Mater Struct [Internet]. 2016 [cited 2024 Mar 18];50. Available from: http://www.ucy.ac.cy/dir/.
- Sánchez A, Varum H, Martins T, Fernández J. Mechanical properties of adobe masonry for the rehabilitation of buildings. 2022 [cited 2024 Mar 18]; Available from: https://. [CrossRef]
- CRAterre, Doat P, Hays A, Houben H, Matuk S, Vitoux F. Construire en terre. AnArchitec. 1979.
- Illampas R, Ioannou I, Charmpis DC. Adobe bricks under compression: Experimental investigation and derivation of stress–strain equation. Constr Build Mater. 2014 Feb 28;53:83–90.
- Fratini F, Pecchioni E, Rovero L, Tonietti U. The earth in the architecture of the historical centre of Lamezia Terme (Italy): Characterization for restoration. Appl Clay Sci. 2011 Sep 1;53(3):509–16.
- Standards New Zealand. NZS 4298:2020 - Materials and construction for earth buildings [Internet]. 2020 [cited 2024 Apr 4]. Available from: https://www.standards.govt.nz/shop/nzs-42982020/.
- Pima County Development Services (PCDS). Standard for earthen IRC structures. Tucson; 2012.
- Construction Industries Division of the Regulation and Licensing Department (RLD). New Mexico earthen building materials code. New Mexico; 2015.
- Standard DIN 4108 - Thermal insulation and energy economy in buildings [Internet]. Berlin; 2024 Jan [cited 2024 Apr 4]. Available from: https://www.boutique.afnor.org/en-gb/standard/din-41084/thermal-insulation-and-energy-economy-in-buildings-part-4-hygrothermal-desi/eu167388/261822.
- Rempel AR, Rempel AW. Rocks, clays, water, and salts: Highly durable, infinitely rechargeable, eminently controllable thermal batteries for buildings. Geosci. 2013 Mar;3(1):63–101.
- ASHRAE American Society of Heating Refrigerating and Air-Conditioning Engineers. ASHRAE Handbook - Fundamentals. Atlanta, GA: ASHRAE; 2021.
- Yuan ZM, Li M, Ji CY, Li L, Jia L, Incecik A. Steady hydrodynamic interaction between human swimmers. J R Soc Interface [Internet]. 2019 Jan 1 [cited 2023 Sep 19];16(150). Available from: https://pubmed.ncbi.nlm.nih.gov/30958151/.
- Saleh MAE. Adobe as a thermal regulating material. Sol Wind Technol. 1990 Jan 1;7(4):407–16.
- Harb E, Maalouf C, Bliard C, Tenpierik M, Lachi M, Bogard F, et al. Thermal performance of starch/beet-pulp composite bricks for building insulation at a wall scale. Case Stud Constr Mater. 2023 Jul 1;18:e01851.
- Costantine G, Maalouf C, Moussa T, Polidori G. Experimental and numerical investigations of thermal performance of a Hemp Lime external building insulation. 2018 [cited 2024 Mar 18]; Available from: https://. [CrossRef]
- ISO 6946:2017 - Composants et parois de bâtiments — Résistance thermique et coefficient de transmission thermique — Méthodes de calcul [Internet]. 2017 [cited 2024 Apr 4]. Available from: https://www.iso.org/fr/standard/65708.html.
- Observatoire régional de la prévention et de la gestion des déchets et de l’économie circulaire. Observation des Déchets issus de Chantiers du Bâtiment et des Travaux Publics. 2023.
- Goodhew S, Carfrae J, Hood-Cree K, Fox M, Boutouil M, Streiff F. Building with earth: How we are working to revive an ancient, sustainable building technique. Constr Res Innov [Internet]. 2019 Oct 2 [cited 2024 Apr 4];10(4):105–8. Available from: https://www.tandfonline.com/. [CrossRef]
- Streiff F, Goodhew S, Morton T, Boutouil M, Guern M Le, Touati K, et al. CobBauge – A hybrid walling technique combining mechanical and thermal performance. In: LEHM 2020. 2020. p. 1–10.











| Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Average (SD) |
| (MPa) | 0.98 | 1.14 | 1.25 | 0.79 | 0.92 | 0.92 | 1.21 | 1.03 (0.17) |
| (%) | 4.85 | 4.57 | 6.08 | 4.21 | 4.27 | 6.40 | 4.25 | 4.95 (0.91) |
| Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Average (SD) |
| Width b (mm) |
145 | 138 | 145 | 129 | 138 | 134 | 152 | 140.1 (7.7) |
| Thickness h (mm) |
80 | 84 | 86 | 81 | 81 | 82 | 83 | 82.4 (2.1) |
| F (N) | 1832 | 1786 | 2242 | 1808 | 1390 | 1990 | 1749 | 1828 (258) |
| Flexural stress (MPa) |
0.49 | 0.45 | 0.52 | 0.53 | 0.38 | 0.55 | 0.41 | 0.48 (0.06) |
| Flexural strain (%) |
1.19 | 1.66 | 1.61 | 1.67 | 1.40 | 1.96 | 1.68 | 1.60 (0.24) |
| Thermal Conductivity (W/(m.K)) | Specific heat capacity (kJ/(kg.K)) | Diffusivity (10-6 m²/s) |
|
| Adobe (present study) |
0.669 (0.033) |
1.109 (0.004) |
0.414 (0.019) |
| Wood oak | 0.17 | 1.6 | 0.15 |
| Plain brick | 1.10 | 0.9 | 0.61 |
| Plain concrete | 2.1 | 1.0 | 0.83 |
| Designation | Thickness e (m) | Thermal conductivity λ (W/m.K) | |
| ① | Hemp concrete Outside coating | 0.05 | 0.095 (*) |
| ② | Fully bio-sourced Insulation |
0.16 | 0.09 (**) |
| ③ | Earth-based Inside Coating | 0.015 | 0.67 |
| ④ | Adobe (present study) |
TBD, | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
