Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A NLOS Ranging Error Mitigation Method for 5G Positioning in Indoor Environments

Version 1 : Received: 8 April 2024 / Approved: 8 April 2024 / Online: 9 April 2024 (07:33:57 CEST)

How to cite: Liu, J.; Deng, Z.; Hu, E. A NLOS Ranging Error Mitigation Method for 5G Positioning in Indoor Environments. Preprints 2024, 2024040574. https://doi.org/10.20944/preprints202404.0574.v1 Liu, J.; Deng, Z.; Hu, E. A NLOS Ranging Error Mitigation Method for 5G Positioning in Indoor Environments. Preprints 2024, 2024040574. https://doi.org/10.20944/preprints202404.0574.v1

Abstract

Positioning based on wireless signals such as mobile communication networks has become an important means to provide high-precision location services in environments where satellite signals are blocked. In complex environments such as indoor and underground, wireless signal propagation is obstructed and non-line-of-sight (NLOS) phenomena appears due to serious occlusion and reflection. The time delay caused by NLOS effects has little impact on communication system but can significantly increase positioning errors in positioning systems. Therefore, effective suppression of NLOS errors is crucial to improving 5G positioning accuracy. To address the insufficient feature extraction of existing NLOS error suppression methods, the neglect of residual NLOS measurement errors, and poor stability of position estimation results, this paper innovatively proposes a NLOS mitigation and location estimation method for 5G positioning terminals. Simulation and experimental test results demonstrate that the proposed method outperforms the comparative methods both theoretically and practically, achieving an average positioning accuracy of 1.85 meters in complex indoor NLOS environments. The method proposed in this paper provides a new strategy for NLOS error suppression in indoor 5G positioning, which can significantly contribute to high-precision location services based on commercial 5G networks.

Keywords

5G positioning; Ziv-Zakai Bound; non-line-of-sight mitigation; location estimation

Subject

Engineering, Telecommunications

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.