Submitted:
04 April 2024
Posted:
05 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Review
3. Materials and Methods
3. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegenfeld, A.; Kollepara, P.; Bar-Yam, Y. Modeling Complex Systems: A Case Study of Compartmental Models in Epidemiology. Complexity 2022, 3007864. [Google Scholar] [CrossRef]
- Siegenfeld, A.; Bar-Yam, Y. An introduction to complex systems science and its applications. Complexity 2020, 6105872. [Google Scholar] [CrossRef]
- Espitia-Cuchango, H.; Machón-González, I.; López-García, H. Filling Control of a Conical Tank Using a Compact Neuro-Fuzzy Adaptive Control System. Complexity 2022, 4284378. [Google Scholar] [CrossRef]
- Machón-González, I.; López-García, H. Feedforward nonlinear control using neural gas network. Complexity 2017, 3125073, 1–11. [Google Scholar] [CrossRef]
- Guan WZhou, H.; Su, Z.; Zhang, X.; Zhao, C. Ship steering control based on Quantum neural network. Complexity 2019, 3821048, 1–10. [Google Scholar] [CrossRef]
- Varyash, I.; Mikhaylov, A.; Moiseev, N.; Aleshin, K. Triple bottom line and corporate social responsibility performance indicators for Russian companies. Entrepreneurship and Sustainability Issues 2020, 8, 313–331. [Google Scholar] [CrossRef] [PubMed]
- Stigter, J.D.; Beck, M.B.; Molenaar, J. Assessing local structural identifiability for environmental models. Environmental Modelling & Software 2017, 93, 398–408. [Google Scholar] [CrossRef]
- Soava, G.; Mehedintu, A.; Sterpu, M.; Raduteanu, M. Impact of Employed Labor Force, Investment, and Remittances on Economic Growth in EU Countries. Sustainability 2020, 12, 10141. [Google Scholar] [CrossRef]
- Skripnuk, D.F. Institutional-functional approach to the modelling of foreign economic activity. IOP Conference Series: Materials Science and Engineering, 2020, 940, 012116. [Google Scholar] [CrossRef]
- Peng, J.; Song, Y.; Liu, Y. A study of the dual-target corporate environmental behavior (DTCEB) of heavily polluting enterprises under different environment regulations: Green innovation vs. pollutant emissions. Journal of Cleaner Production 2021, 297, 126602. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Magin, R.L. On the Equivalence between Integer- and Fractional Order-Models of Continuous-Time and Discrete-Time ARMA Systems. Fractal Fract. 2022, 6, 242. [Google Scholar] [CrossRef]
- Mutalimov, V.; Kovaleva, I.; Mikhaylov, A.; Stepanova, D. Assessing regional growth of small business in Russia. Entrepreneurial Business and Economics Review 2021, 9, 119–133. [Google Scholar] [CrossRef]
- Hwang, I.; Shim, H.; Lee, W.J. Do an Organization’s Digital Transformation and Employees’ Digital Competence Catalyze the Use of Telepresence? Sustainability 2022, 14, 8604. [Google Scholar] [CrossRef]
- Hossin, M.A.; Hosain, M.S.; Frempong, M.F.; Adu-Yeboah, S.S.; Mustafi, M.A.A. What Drives Sustainable Organizational Performance? The Roles of Perceived Organizational Support and Sustainable Organizational Reputation. Sustainability 2021, 13, 12363. [Google Scholar] [CrossRef]
- Herzog, N.V.; Tonchia, S.; Polajnar, A. Linkages between manufacturing strategy, benchmarking, performance measurement and business process reengineering. Computers and Industrial Engineering 2009, 57, 963–975. [Google Scholar] [CrossRef]
- Fowler, C.E.A.; Gray, C.; Palmer, S.J. Searching for success: the relationship between information technology and business process reengineering. International Journal of Computer Applications in Technology 1998, 11, 428–435. [Google Scholar]
- Fildes, R.; Wei, Y.; Ismail, S. Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures. International Journal of Forecasting 2011, 27, 902–922. [Google Scholar] [CrossRef]
- Fayoumi, A.; Williams, R. An integrated socio-technical enterprise modelling: A scenario of healthcare system analysis and design. Journal of Industrial Information Integration. 2021. Volume 23, 100221. [CrossRef]
- Bhuiyan, M.A.; Dinçer, H.; Yüksel, S.; Mikhaylov, A.; Danish, M.S.S.; Pinter, G.; Uyeh, D.D.; Stepanova, D. Economic indicators and bioenergy supply in developed economies: QROF-DEMATEL and random forest models. 2022, 8, 561–570. [Google Scholar] [CrossRef]
- Dinçer, H.; Yüksel, S.; Mikhaylov, A.; Pinter, G.; Shaikh, Z.A. Analysis of renewable-friendly smart grid technologies for the distributed energy investment projects using a hybrid picture fuzzy rough decision-making approach. 2022, 8, 11466–11477. [Google Scholar] [CrossRef]
- Cao, Q.; Li, J.; Zhang, H.; Liu, Y.; Luo, X. Blockchain and Firm Total Factor Productivity: Evidence from China. Sustainability 2022, 14, 10165. [Google Scholar] [CrossRef]
- Cammarano, A.; Perano, M.; Michelino, F.; Del Regno, C.; Caputo, M. SDG-Oriented Supply Chains: Business Practices for Procurement and Distribution. Sustainability 2022, 14, 1325. [Google Scholar] [CrossRef]
- Calabrese, R. Contagion effects of UK small business failures: a spatial hierarchical autoregressive model for binary data. European Journal of Operational Research 2022. [CrossRef]
- Bienhaus, F.; Haddud, A.; Bienhaus, F.; Haddud, A. Procurement 4.0: factors influencing the digitisation of procurement and supply chains. Business Process Management Journal 2018, 24, pp. 965–984. [Google Scholar] [CrossRef]
- Beck, M.W.; Lehrter, J.C.; Jarvis, B.M. Parameter sensitivity and identifiability for a biogeochemical model of hypoxia in the northern Gulf of Mexico. Ecological Modelling 2017, 363, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Barboza Martignone, G.; Behrendt, K.; Paparas, D. Price Transmission Analysis of the International Soybean Market in a Trade War Context. Economies 2022, 10, 203. [Google Scholar] [CrossRef]
- Abdulkareem, S.A.; Mustafa, Y.T.; Augustijn, E.-W.; Filatova, T. Bayesian networks for spatial learning: a workflow on using limited survey data for intelligent learning in spatial agent-based models. Geoinformatica 2019, 23, 243–268. [Google Scholar] [CrossRef]
- An, L.; Grimm, V.; Sullivan, A.; Turner, B.L.; Wang, Z.; Malleson, N.; Huang, R.; Heppenstall, A.; Vincenot, C.; Robinson, D.; Ye, X.; Liu, J.; Lindvist, E.; Tang, W. Agent-based complex systems and agent-based modeling. Work. Pap. Cent. Complex Hum.-Environ. Syst. San Diego State Univ. 2021. URL http://complexities.org/Photo&PDF/ACS-ABM-document.pdf.
- Banino, A.; Barry, C.; Uria, B.; Blundell, C.; Lillicrap, T.; Mirowski, P.; Pritzel, A.; Chadwick, M.J.; Degris, T.; Modayil, J.; Wayne, G.; Soyer, H.; Viola, F.; Zhang, B.; Goroshin, R.; Rabinowitz, N.; Pascanu, R.; Beattie, C.; Petersen, S.; Sadik, A.; Gaffney, S.; King, H.; Kavukcuoglu, K.; Hassabis, D.; Hadsell, R.; Kumaran, D. Vector-based navigation using grid-like representations in artificial agents. Nature 2018, 557, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Chimmula, V.K.R.; Zhang, L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solitons Fractals 2020, 135. [Google Scholar] [CrossRef] [PubMed]
- Clay, R.; Kieu, L.-M.; Ward, J.A.; Heppenstall, A.; Malleson, N. 2020. Towards real-time crowd simulation under uncertainty using an agent-based model and an unscented Kalman filter. In: Demazeau, Y., Holvoet, T., Corchado, J.M., Costantini, S. (Eds.),Advances in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Collection. Springer International Publishing, Cham, 68–79.
- DeAngelis, D.L.; Diaz, S.G. Decision-making in agent-based modeling: a current review and future prospectus. Front. Ecol. Evol. 2019, 6, 237. [Google Scholar] [CrossRef]
- Grimm, V.; Johnston, A.S.A.; Thulke, H.-H.; Forbes, V.E.; Thorbek, P. Three questions to ask before using model outputs for decision support. Nat. Commun. 2020, 11, 4959. [Google Scholar] [CrossRef] [PubMed]
- Ayllon, D. The ODD protocol for describing agent-based and other simulation models: a second update to improve clarity, replication, and structural realism. J. Artif. Soc. Soc. Simul. 2020, 23. [Google Scholar] [CrossRef]
- Holovatch, Y.; Kenna, R.; Thurner, S. Complex systems: physics beyond physics. Eur. J. Phys. 2017, 38, 023002. [Google Scholar] [CrossRef]
- Malleson, N.; Minors, K.; Kieu, L.-M.; Ward, J.A.; West, A.; Heppenstall, A. Simulating crowds in real time with agent-based modelling and a particle filter. J. Artif. Soc. Soc. Simul. 2020, 23, 3. [Google Scholar] [CrossRef]
| Methods | Determining the parameters of modeling the impact on the company’s performance indicators |
|---|---|
| Picture fuzzy rough sets | Axiomatics of building an econometric model |
| Modeling the impact of the external environment on the company’s performance indicators that depend on each other | Normalization of values of exogenous and endogenous variables |
| System-related ones equations | Checking time series of variables for stationarity |
| ADL-model | Identifiability of a system of equations |
| ADL model System | Axiomatics of building an econometric model |
| Using the ADL model system for forecasting | Normalization of values of exogenous and endogenous variables |
| Endogenous variables | Exogenous variables |
|---|---|
| The company’s profit in the t year (money that remains in the company at the end of the reporting period after all expenses and taxes are paid and can be distributed among shareholders in the form of dividends) is billion rubles.; | Number of integration solutions of the company in the t year (the number of integrations of the company with other services/platforms made in a year, including those where the company developed the product or implemented its existing product), pcs.; |
| The company’s revenue in t year (the total amount of funds received from the sale of all or part of the products, services, and works produced for the year) is billion rubles. rub.; | Central Bank of Russia interest Rate in the t year (the market value of shares directly depends on the interest rate of the Central Bank of Russia, since the lower the rate, the higher the growth of consumption and investment, and vice versa), % per annum; |
| Company’s estimated value in t year, is billion rubles. RUB (valuation of the company’s value, taking into account all sources of its financing: debt obligations, preferred shares, ordinary shares); | Company expenses in the t year (the company’s day-to-day costs for doing business, producing products and services) are billion rubles. rub.; |
| Price of the company’s shares in the t year, RUB/unit (price per share from the number of sold shares of the company); | Inflation in the t year (percentage of inflation in Russia for the year), % per year; |
| Search Engine market share in t year, owned by the company, % . | The main part of investment project costs in the t year (capital expenditures intended for investing in companies, such as the cost of purchasing fixed assets, for example, buildings, equipment, technologies, and other costs) is billion rubles.; |
| Number of competitors in the t year (other TNCs and major competitors of the company), units; | |
| Number of employees of the company in the t year , human; | |
| Value of the company’s assets in the t year (value of the company’s property and cash, including property and other rights that have a monetary value), billion rubles. |
| Scales for criteria | Picture fuzzy numbers | ||
|---|---|---|---|
| () | () | () | |
| Very low (VL) | 0,1 | 0,1 | 0,5 |
| Low (L) | 0,2 | 0,2 | 0,4 |
| Middle (M) | 0,3 | 0,3 | 0,3 |
| High (H) | 0,6 | 0,2 | 0,2 |
| Very High (VH) | 0,8 | 0,1 | 0,1 |
| C1 | C2 | C3 | C4 | C5 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| DS1 | DS2 | DS3 | DS1 | DS2 | DS3 | DS1 | DS2 | DS3 | DS1 | DS2 | DS3 | DS1 | DS2 | DS3 | |
| Research and Development (criterion 1) | - | - | - | H | H | M | M | L | L | VH | H | M | H | L | M |
| Commercialization (criterion 2) | M | M | VH | - | - | - | L | L | H | H | VL | VL | VL | L | L |
| Cost (criterion 3) | H | H | M | H | VH | H | - | - | - | M | VL | VL | L | M | M |
| Operational issues (criterion 4) | M | L | M | H | H | VH | VH | VH | H | - | - | - | VH | H | M |
| Functionality (criterion 5) | H | H | L | H | VH | M | H | H | VH | L | VL | M | - | - | - |
| Decision Maker 1 | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| D1 | D2 | D3 | D4 | D5 | ||||||||||||||||
| µ | η | ν | π | µ | η | ν | π | µ | η | ν | π | µ | η | ν | Π | µ | η | ν | π | |
| C1 | 0 | 0 | 0 | 0 | 0,3 | 0,3 | 0,3 | 0 | 0,3 | 0,3 | 0,3 | 0,1 | 0,8 | 0,3 | 0,3 | 0,3 | 0,6 | 0,2 | 0,2 | 0 |
| C2 | 0,3 | 0,3 | 0,3 | 0,1 | 0,6 | 0,2 | 0,2 | 0 | 0,2 | 0,3 | 0,3 | 0,3 | 0,6 | 0,6 | 0,2 | 0,2 | 0,1 | 0,3 | 0,3 | 0,3 |
| C3 | 0,6 | 0,2 | 0,2 | 0 | 0,3 | 0,3 | 0,3 | 0 | 0 | 0,6 | 0,2 | 0,2 | 0,3 | 0,3 | 0,3 | 0,3 | 0,2 | 0,6 | 0,2 | 0,2 |
| C4 | 0,3 | 0,3 | 0,3 | 0,1 | 0,6 | 0,2 | 0,2 | 0 | 0,8 | 0,3 | 0,3 | 0,3 | 0 | 0,6 | 0,2 | 0,2 | 0,8 | 0,3 | 0,3 | 0,3 |
| C5 | 0,6 | 0,2 | 0,2 | 0 | 0,6 | 0,2 | 0,2 | 0 | 0,6 | 0,6 | 0,2 | 0,2 | 0,2 | 0,2 | 0,4 | 0,2 | 0 | 0,6 | 0,2 | 0,2 |
| Decision Maker 2 | ||||||||||||||||||||
| D1 | D2 | D3 | D4 | D5 | ||||||||||||||||
| µ | η | ν | π | µ | η | ν | π | µ | η | ν | π | µ | η | ν | π | µ | η | ν | π | |
| C1 | 0 | 0 | 0 | 0 | 0,6 | 0,3 | 0,3 | 0,3 | 0,2 | 0,3 | 0,3 | 0,3 | 0,6 | 0,2 | 0,2 | 0 | 0,2 | 0,6 | 0,2 | |
| C2 | 0,3 | 0,3 | 0,3 | 0,3 | 0 | 0,6 | 0,2 | 0,2 | 0,6 | 0,2 | 0,2 | 0,1 | 0,1 | 0,5 | 0,3 | 0,2 | 0 | 0,3 | 0,3 | |
| C3 | 0,6 | 0,6 | 0,2 | 0,2 | 0,8 | 0,3 | 0,3 | 0,3 | 0 | 0,3 | 0,3 | 0,3 | 0,6 | 0,2 | 0,3 | 0,3 | 0,8 | 0,2 | 0,2 | |
| C4 | 0,2 | 0,3 | 0,3 | 0,3 | 0,6 | 0,6 | 0,2 | 0,2 | 0,8 | 0,2 | 0,2 | 0,2 | 0 | 0,3 | 0,3 | 0 | 0,6 | 0,2 | 0,2 | 0 |
| C5 | 0,6 | 0,6 | 0,2 | 0,2 | 0,8 | 0,1 | 0,1 | 0 | 0,6 | 0,2 | 0,2 | 0 | 0,8 | 0,2 | 0,2 | 0,3 | 0 | 0 | 0 | 0 |
| Decision Maker 3 | ||||||||||||||||||||
| D1 | D2 | D3 | D4 | D5 | ||||||||||||||||
| µ | η | ν | π | µ | η | ν | π | µ | η | ν | π | µ | η | ν | π | µ | η | ν | π | |
| C1 | 0 | 0 | 0 | 0 | 0,3 | 0,3 | 0,3 | 0,1 | 0,6 | 0,2 | 0,2 | 0,3 | 0,3 | 0,3 | 0,1 | 0,3 | 0,3 | 0,3 | 0,1 | |
| C2 | 0,8 | 0,1 | 0,1 | 0 | 0 | 0 | 0 | 0 | 0 | 0,3 | 0,3 | 0 | 0,1 | 0,1 | 0,5 | 0,3 | 0,2 | 0,6 | 0,2 | |
| C3 | 0,6 | 0,2 | 0,3 | 0,6 | 0,2 | 0,2 | 0 | 0,8 | 0,2 | 0,2 | 0 | 0,6 | 0,2 | 0,3 | 0,3 | 0 | 0,3 | 0,3 | ||
| C4 | 0,3 | 0,3 | 0,3 | 0 | 0,3 | 0,3 | 0,1 | 0 | 0,6 | 0,2 | 0,2 | 0 | 0 | 0,3 | 0,3 | 0 | 0,3 | 0,8 | 0,2 | 0,2 |
| C5 | 0,2 | 0,2 | 0,4 | 0,8 | 0,2 | 0,2 | 0,3 | 0,1 | 0,8 | 0,1 | 0,1 | 0 | 0,8 | 0,2 | 0,2 | 0,1 | 0 | 0 | 0 | 0 |
| D1 | D2 | D3 | D4 | D5 | |
|---|---|---|---|---|---|
| D1 | 0,00 | 0,34 | 0,00 | 0,18 | 0,22 |
| D2 | 0,34 | 0,37 | 0,26 | 0,00 | 0,20 |
| D3 | 0,34 | 0,00 | 0,18 | 0,22 | 0,00 |
| D4 | 0,37 | 0,26 | 0,00 | 0,20 | 0,20 |
| D5 | 0,21 | 0,26 | 0,35 | 0,18 | 0,00 |
| D1 | D2 | D3 | D4 | D5 | |
|---|---|---|---|---|---|
| D1 | 0,20 | 0,34 | 0,00 | 0,18 | 0,22 |
| D2 | 0,24 | 0,37 | 0,26 | 0,00 | 0,20 |
| D3 | 0,34 | 0,00 | 0,18 | 0,18 | 0,00 |
| D4 | 0,37 | 0,26 | 0,00 | 0,19 | 0,19 |
| D5 | 0,26 | 0,35 | 0,18 | 0,17 | 0,17 |
| BS | DC | FACTS | DLR | PMUs | |
|---|---|---|---|---|---|
| C1 | (⌈0,07;0,15⌋;⌈0,05;0,07⌋; ⌈0,05;0,07⌋;⌈0;0,01⌋) | (⌈0,05;0,07⌋;⌈0;0,05⌋; ⌈0,07;0,15⌋;⌈0,01;0,07⌋) | (⌈0,10;0,10⌋;⌈0,05;0,15⌋; ⌈0,01;0,05⌋;⌈0;0⌋) | (⌈0,05;0,15⌋;⌈0,05;0,07⌋; ⌈0,05;0,10⌋;⌈0;0,05⌋) | (⌈0,05;0,07⌋;⌈0,05;0,07⌋; ⌈0,07;0,10⌋;⌈0,01;0,05⌋) |
| C2 | (⌈0,17;0,13⌋;⌈0,01;0,05⌋; ⌈0,01;0,05⌋;⌈0;0⌋) | (⌈0,17;0,13⌋;⌈0,01;0,05⌋; ⌈0,01;0,05⌋;⌈0;0⌋) | (⌈0,17;0,13⌋;⌈0,01;0,05⌋; ⌈0,01;0,05⌋;⌈0;0⌋) | (⌈0,05;0,08⌋;⌈0,05;0,08⌋; ⌈0,08;0,11⌋;⌈0,01;0,05⌋) | (⌈0,01;0,17⌋;⌈0,01;0,08⌋; ⌈0,05;0,14⌋;⌈0;0,08⌋) |
| C3 | (⌈0,07;0,15⌋;⌈0,05;0,07⌋; ⌈0,05;0,07⌋;⌈0;0,01⌋) | (⌈0,15;0,10⌋;⌈0,01;0,05⌋; ⌈0,01;0,05⌋;⌈0;0⌋) | (⌈0,15;0,10⌋;⌈0,01;0,05⌋; ⌈0,01;0,05⌋;⌈0;0⌋) | (⌈0,05;0,15⌋;⌈0,05;0,07⌋; ⌈0,05;0,10⌋;⌈0;0,05⌋) | (⌈0,01;0,05⌋;⌈0,01;0,05⌋; ⌈0,10;0,11⌋;⌈0,05;0,07⌋) |
| C4 | (⌈0,04;0,14⌋;⌈0,04;0,07⌋; ⌈0,04;0,09⌋;⌈0;0,04⌋) | (⌈0,07;0,18⌋;⌈0,01;0,07⌋; ⌈0,01;0,07⌋;⌈0;0,01⌋) | (⌈0,14;0,18⌋;⌈0,01;0,04⌋; ⌈0,01;0,04⌋;⌈0;0⌋) | (⌈0,04;0,07⌋;⌈0,04;0,07⌋; ⌈0,07;0,09⌋;⌈0,01;0,04⌋) | (⌈0,04;0,14⌋;⌈0,04;0,07⌋; ⌈0,04;0,09⌋;⌈0;0,04⌋) |
| C5 | (⌈0,06;0,11⌋;⌈0,04;0,06⌋; ⌈0,04;0,06⌋;⌈0;0,01⌋) | (⌈0,06;0,11⌋;⌈0,04;0,06⌋; ⌈0,04;0,06⌋;⌈0;0,01⌋) | (⌈0,11;0,16⌋;⌈0,01;0,04⌋; ⌈0,01;0,04⌋;⌈0;0⌋) | (⌈0,04;0,11⌋;⌈0,04;0,06⌋; ⌈0,04;0,08⌋;⌈0;0,04⌋) | (⌈0,04;0,06⌋;⌈0,04;0,06⌋; ⌈0,06;0,08⌋;⌈0,01;0,04⌋) |
| B | DC | F | DL | P | |
|---|---|---|---|---|---|
| D1 | 0,15 | 0,16 | 0,18 | 0,11 | 0,14 |
| D2 | 0,23 | 0,13 | 0,16 | 0,12 | 0,09 |
| D3 | 0,16 | 0,18 | 0,11 | 0,14 | 0,09 |
| D4 | 0,16 | 0,18 | 0,11 | 0,14 | 0,14 |
| D5 | 0,13 | 0,16 | 0,12 | 0,09 | 0,09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
