Submitted:
03 April 2024
Posted:
03 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Clinician Innovations: New Treatments, Studies, and Perspectives
3. T-REX Analogy: RBC EVs as a “Decoy Ligand Therapy” for SARS-CoV-2 Infection
4. Method
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gyr, K.; Speck, B.; Ritz, R.; Cornu, P.; Buckner, C.D. [Cerebral tropical malaria with blackwater fever. A current diagnostic and therapeutic problem]. Schweizerische medizinische Wochenschrift. 1974, 104, 1628–1630. [Google Scholar] [PubMed]
- Wassmer, S.C.; De Koning-Ward, T.F.; Grau, G.E.R.; Pai, S. Unravelling mysteries at the perivascular space: a new rationale for cerebral malaria pathogenesis. Trends in Parasitology. 2024, 40, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.R.; Biagini, G.A.; Craig, A.G. Continued cytoadherence of Plasmodium falciparum infected red blood cells after antimalarial treatment. Molecular and Biochemical Parasitology. 2010, 169, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Cserti-Gazdewich, C.M.; Dhabangi, A.; Musoke, C.; Ssewanyana, I.; Ddungu, H.; Nakiboneka-Ssenabulya, D.; et al. Cytoadherence in paediatric malaria: ABO blood group, CD36, and ICAM1 expression and severe Plasmodium falciparum infection. British journal of haematology. 2012, 159, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Newton, C.R.J.C.; Hien, T.T.; White, N. Cerebral malaria. Journal of Neurology Neurosurgery and Psychiatry. 2000, 69, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, N.G.; Emery, S.J.; Garnham, A.L.; Tan, Q.Y.; Sisquella, X.; Pimentel, M.A.; et al. Extracellular vesicles from early stage Plasmodium falciparum-infected red blood cells contain PfEMP1 and induce transcriptional changes in human monocytes. Cellular Microbiology. 2018, 20, e12822. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Mohapatra, S.; Khokhar, M.; Hassan, S.; Pandey, R.K. Extracellular Vesicles in Malaria: Shedding Light on Pathogenic Depths. ACS Infectious Diseases [Internet]. 2023 [cited 2024 Feb 24]; Available from: https://pubs.acs.org/doi/full/10.1021/acsinfecdis.3c00649.
- Pankoui Mfonkeu, J.B.; Gouado, I.; Fotso Kuaté, H.; Zambou, O.; Amvam Zollo, P.H.; Grau, G.E.R.; et al. Elevated Cell-Specific Microparticles Are a Biological Marker for Cerebral Dysfunctions in Human Severe Malaria. Snounou G, editor. PLoS ONE. 2010, 5, e13415. [Google Scholar] [CrossRef] [PubMed]
- Wiser, M.F. Knobs, Adhesion, and Severe Falciparum Malaria. Tropical Medicine and Infectious Disease 2023, 8, 353. [Google Scholar] [CrossRef]
- Banesh, S.; Layek, S.; Trivedi, V. Hemin acts as CD36 ligand to activate down-stream signalling to disturb immune responses and cytokine secretion from macrophages. Immunology Letters. 2022, 243, 1–18. [Google Scholar] [CrossRef]
- Mantel, P.Y.; Hoang, A.N.; Goldowitz, I.; Potashnikova, D.; Hamza, B.; Vorobjev, I.; et al. Malaria infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell host & microbe. 2013, 13, 521. [Google Scholar]
- Nantakomol, D.; Dondorp, A.M.; Krudsood, S.; Udomsangpetch, R.; Pattanapanyasat, K.; Combes, V.; et al. Circulating red cell-derived microparticles in human malaria. The Journal of infectious diseases. 2011, 203, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Eda, S.; Sherman, I.W. Cytoadherence of Malaria-Infected Red Blood Cells Involves Exposure of Phosphatidylserine. Cellular Physiology and Biochemistry. 2002, 12, 373–384. [Google Scholar] [CrossRef]
- Jayasinghe, M.K.; Gao, C.; Yap, G.; Yeo, B.Z.J.; Vu, L.T.; Tay, D.J.W.; et al. Red Blood Cell-Derived Extracellular Vesicles Display Endogenous Antiviral Effects and Enhance the Efficacy of Antiviral Oligonucleotide Therapy. ACS Nano. 2023, 17, 21639–21661. [Google Scholar] [CrossRef] [PubMed]
- Mizejewski, G.J. Breast Cancer, Chemokines, And Metastasis: A Search for Decoy Ligands of the CXCR4 Receptor. JN. 2018, 1, 1–9. [Google Scholar] [CrossRef]
- Roncoroni, A.J.; Martino, O.A. Therapeutic use of exchange transfusion in malaria. American Journal of Tropical Medicine and Hygiene. 1979, 28, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, R.L.; Kohler, R.B.; Chin, W.; McCarthy, L.J.; Luft, F.C. The use of exchange transfusions: a potentially useful adjunct in the treatment of fulminant falciparum malaria. The American journal of the medical sciences. 1979, 277, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Elder, A.T.; Croughan, M.J.; Boulton, F.E.; Brettle, R.P. Exchange transfusion of whole blood in the treatment of cerebral malaria. Scottish Medical Journal. 1990, 35, 146–147. [Google Scholar] [CrossRef]
- Beards, S.C.; Joynt, G.M.; Lipman, J. Haemodynamic and oxygen transport response during exchange transfusion for severe falciparum malaria. Postgraduate Medical Journal. 1994, 70, 801. [Google Scholar] [CrossRef] [PubMed]
- Anani, W.Q.; Smith, G.P.; Irani, M.; Puca, K.E. A report of cerebral malaria treated with automated red blood cell exchange. Transfusion. 2017, 57, 985–988. [Google Scholar] [CrossRef]
- Zodda, D.; Procopio, G.; Hewitt, K.; Parrish, A.; Balani, B.; Feldman, J. Severe malaria presenting to the ED: A collaborative approach utilizing exchange transfusion and artesunate. The American journal of emergency medicine. 2018, 36, e1–e1126. [Google Scholar] [CrossRef]
- White, N.J. What is the future of exchange transfusion in severe malaria? The Journal of infection. 1999, 39, 185–186. [Google Scholar] [CrossRef] [PubMed]
- Riggle, B.A.; Miller, L.H.; Pierce, S.K.; Riggle, B.A.; Miller, L.H.; Pierce, S.K. Desperately Seeking Therapies for Cerebral Malaria. 2020. [Google Scholar]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. Can exchange transfusions using red blood cells from donors with Southeast Asian ovalocytosis prevent or ameliorate cerebral malaria in patients with multi-drug resistant Plasmodium falciparum ? Transfusion and Apheresis Science. 2017, 56, 865–866. [Google Scholar] [CrossRef] [PubMed]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. Can the Therapeutically-rational Exchange (T-REX) of Glucose-6-phosphate Dehydrogenase Deficient Red Blood Cells Reduce Plasmodium falciparum Malaria Morbidity and Mortality? Journal of Nepal Health Research Council. 2018, 16, 108. [Google Scholar] [CrossRef]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. Can Therapeutically-Rational Exchange (T-REX) of Thalassemic Red Blood Cells Improve the Clinical Course of Plasmodium falciparum Malaria? The Eurasian Journal of Medicine. 2018, 50, 50–215. [Google Scholar] [CrossRef]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. “Dual-gene” malaria-resistance: Therapeutically-rational exchange (T-REX) of group-O sickle trait and group-O C-traittrait red blood cells can be evaluated in Benin and Nigeria. Transfusion and Apheresis Science. 2020. [CrossRef]
- Jajosky, R.P.; Jajosky, P.G.; Jajosky, A.N. Can therapeutically-rational exchange (T-REX) of type-O red blood cells (RBCs) benefit Plasmodium falciparum malaria patients? Transfusion and Apheresis Science. 2019, 58. [Google Scholar] [CrossRef]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. To prevent or ameliorate severe Plasmodium falciparum malaria, why not evaluate the impact of exchange transfusions of sickle cell trait red blood cells? Transfusion and Apheresis Science. 2018, 57. [Google Scholar] [CrossRef] [PubMed]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. Can Exchange Transfusions Using Red Blood Cells from Donors with Hemoglobin E Trait Prevent or Ameliorate Severe Malaria in Patients with Multi-drug Resistant Plasmodium falciparum? Indian Journal of Hematology and Blood Transfusion. 2018, 34. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.A.; Opi, D.H.; Williams, T.N. Blood groups and malaria: Fresh insights into pathogenesis and identification of targets for intervention. Current Opinion in Hematology. 2009, 16, 480–487. [Google Scholar] [CrossRef]
- Opi, D.H.; Ndila, C.M.; Uyoga, S.; Macharia, A.W.; Fennell, C.; Ochola, L.B.; et al. Non-O ABO blood group genotypes differ in their associations with Plasmodium falciparum rosetting and severe malaria. PLOS Genetics. 2023, 19, e1010910. [Google Scholar] [CrossRef]
- Debs, S.; Cohen, A.; Hosseini-Beheshti, E.; Chimini, G.; Hunt, N.H.; Grau, G.E.R. Interplay of extracellular vesicles and other players in cerebral malaria pathogenesis. Biochimica et Biophysica Acta (BBA) - General Subjects. 2019, 1863, 325–331. [Google Scholar] [CrossRef]
- Sierro, F.; Grau, G.E.R. The Ins and Outs of Cerebral Malaria Pathogenesis: Immunopathology, Extracellular Vesicles, Immunometabolism, and Trained Immunity. Frontiers in immunology [Internet]. 2019 [cited 2022 Aug 25];10(MAR). Available from: https://pubmed.ncbi.nlm.nih.gov/31057552/.
- Babatunde, K.A.; Yesodha Subramanian, B.; Ahouidi, A.D.; Martinez Murillo, P.; Walch, M.; Mantel, P.Y. Role of Extracellular Vesicles in Cellular Cross Talk in Malaria. Frontiers in Immunology. 2020, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Al-Jipouri, A.; Almurisi, S.H.; Al-Japairai, K.; Bakar, L.M.; Doolaanea, A.A. Liposomes or Extracellular Vesicles: A Comprehensive Comparison of Both Lipid Bilayer Vesicles for Pulmonary Drug Delivery. Polymers 2023, 15, 318. [Google Scholar] [CrossRef]
- Baruch, D.I.; Gormley, J.A.; Ma, C.; Howard, R.J.; Pasloske, B.L. Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. Proceedings of the National Academy of Sciences of the United States of America. 1996, 93, 3497–3502. [Google Scholar] [CrossRef] [PubMed]
- Naeini, M.B.; Bianconi, V.; Pirro, M.; Sahebkar, A. The role of phosphatidylserine recognition receptors in multiple biological functions. Cellular and Molecular Biology Letters. 2020, 25, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, F.L.; Turner, L.; Bolla, J.R.; Robinson, C.V.; Lavstsen, T.; Higgins, M.K. The structural basis for CD36 binding by the malaria parasite. Nature Communications [Internet]. 2016 Sep 26 [cited 2022 Nov 12];7. Available from: /pmc/articles/PMC5052687/.
- Bridges, D.J.; Bunn, J.; Van Mourik, J.A.; Grau, G.; Preston, R.J.S.; Molyneux, M.; et al. Rapid activation of endothelial cells enables Plasmodium falciparum adhesion to platelet-decorated von Willebrand factor strings. Blood. 2010, 115, 1472–1474. [Google Scholar] [CrossRef]
- Albrecht-Schgoer, K.; Lackner, P.; Schmutzhard, E.; Baier, G. Cerebral Malaria: Current Clinical and Immunological Aspects. Frontiers in Immunology [Internet]. 2022 Apr 20 [cited 2023 Apr 29];13. Available from: /pmc/articles/PMC9067128/.
- Bachmann, A.; Metwally, N.G.; Allweier, J.; Cronshagen, J.; Martinez, P.; Murk, A.; et al. CD36 — A Host Receptor Necessary for Malaria Parasites to Establish and Maintain Infection. Microorganisms. 2022, 1–16. [Google Scholar] [CrossRef]
- El-Assaad, F.; Wheway, J.; Hunt, N.H.; Grau, G.E.R.; Combes, V. Production, fate and pathogenicity of plasma microparticles in murine cerebral malaria. PLoS pathogens [Internet]. 2014 [cited 2022 Aug 25];10(3). Available from: https://pubmed.ncbi.nlm.nih.gov/24651155/.
- Watanaboonyongcharoen, P.; Park, Y.A.; Poisson, J.L.; Brecher, M.E. Rapid increases in parasitemia following red cell exchange for malaria. Journal of Clinical Apheresis. 2011, 26, 315–319. [Google Scholar] [CrossRef]
- Combes, V.; Coltel, N.; Alibert, M.; Van Eck, M.; Raymond, C.; Juhan-Vague, I.; et al. ABCA1 gene deletion protects against cerebral malaria: Potential pathogenic role of microparticles in neuropathology. American Journal of Pathology. 2005, 166, 295–302. [Google Scholar] [CrossRef]
- Omi, K.; Ohashi, J.; Patarapotikul, J.; Hananantachai, H.; Naka, I.; Looareesuwan, S.; et al. CD36 Polymorphism Is Associated with Protection from Cerebral Malaria. American Journal of Human Genetics. 2003, 72, 364. [Google Scholar] [CrossRef]
- Nantakomol, D.; Palasuwan, A.; Chaowanathikhom, M.; Soogarun, S.; Imwong, M. Red cell and platelet-derived microparticles are increased in G6PD-deficient subjects. European Journal of Haematology. 2012, 89, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Malaria Genomic Epidemiology Network, Malaria Genomic Epidemiology Network. Reappraisal of known malaria resistance loci in a large multicenter study. Nat Genet. 2014, 46, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Egesie, O.J.; Egesie, U.G.; Jatau, E.D.; Isiguzoro, I.; Ntuhun, D.B. Prevalence of sickle cell trait and glucose 6 phosphate dehydrogenase deficiency among blood donors in a Nigerian tertiary hospital. African Journal of Biomedical Research. 2013, 16, 143–148. [Google Scholar]
- Noulsri, E.; Lerdwana, S. Blood Donors with Thalassemic Trait, Glucose-6-Phosphate Dehydrogenase Deficiency Trait, and Sickle Cell Trait and Their Blood Products: Current Status and Future Perspective. Laboratory Medicine [Internet]. 2022 Aug 9 [cited 2022 Aug 26]; Available from: https://academic.oup.com/labmed/advance-article/doi/10.1093/labmed/lmac061/6658992.
- Tuikue Ndam, N.; Moussiliou, A.; Lavstsen, T.; Kamaliddin, C.; Jensen, A.T.R.; Mama, A.; et al. Parasites Causing Cerebral Falciparum Malaria Bind Multiple Endothelial Receptors and Express EPCR and ICAM-1-Binding PfEMP1. Journal of Infectious Diseases. 2017, 215, 1918–1925. [Google Scholar] [CrossRef]
- Pain, A.; Ferguson, D.J.P.; Kai, O.; Urban, B.C.; Lowe, B.; Marsh, K.; et al. Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98, 1805–1810. [Google Scholar] [CrossRef] [PubMed]
- Wassmer, S.C.; Combes, V.; Grau, G.E.R. Platelets and microparticles in cerebral malaria: The unusual suspects. Drug Discovery Today: Disease Mechanisms. 2011, 8, e15–23. [Google Scholar] [CrossRef]
- Sunseri, T. Blood Trials: Transfusions, Injections, and Experiments in Africa, 1890-1920. Journal of the history of medicine and allied sciences. 2016, 71, 293–321. [Google Scholar] [CrossRef]
- Olowe, S.A.; Ransome-Kuti, O. Exchange transfusion using G-6-PG deficient or Hgb-AS blood in icteric neonates. Journal of the National Medical Association. 1981, 73, 811–819. [Google Scholar]
- David, P.H.; Hommel, M.; Miller, L.H.; Udeinya, I.J.; Oligino, L.D. Parasite sequestration in Plasmodium falciparum malaria: Spleen and antibody modulation of cytoadherence of infected erythrocytes. Proceedings of the National Academy of Sciences of the United States of America. 1983, 80, 5075–5079. [Google Scholar] [CrossRef]
- Ockenhouse, C.F.; Ho, M.; Tandon, N.N.; Van Seventer, G.A.; Shaw, S.; White, N.J. Molecular Basis of Sequestration in Severe and Uncomplicated Plasmodium Falciparum Malaria: Differential Adhesion of Infected Erythrocytes to CD36 and ICAM-1 [Internet]. Vol. 164, Source: The Journal of Infectious Diseases. 1991 p. 163–9. Available from: https://www.jstor.org/stable/30112891.
- Ho, M.; White, N.J. Molecular mechanisms of cytoadherence in malaria. The American journal of physiology [Internet]. 1999 [cited 2021 Dec 29];276(6). Available from: https://pubmed.ncbi.nlm.nih.gov/10362584/.
- Swanson, P.A.; Hart, G.T.; Russo, M.V.; Nayak, D.; Yazew, T.; Peña, M. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLoS Pathogens [Internet]. 2016 Dec 1 [cited 2022 Sep 12];12(12). Available from: /pmc/articles/PMC5131904/.
- Eisenman, A.; Baruch, Y.; Shechter, Y.; Oren, I. Blood Exchange — A Rescue Procedure for Complicated Falciparum Malaria. Vox Sanguinis. 1995, 68, 19–21. [Google Scholar]
- Jacobs, P.; Wood, L.; Barendse, G.; Maresky, A. Reversal of Life-Threatening Vascular Occlusion by Apheresis in Fulminating Plasmodium Falciparum Malaria. 1997; 2, 257–260. [Google Scholar] [CrossRef]
- Lin, D.M.H.; Becker, J.; Wu, Y.Y.; Cooling, L. How do I perform whole blood exchange? Transfusion. 2020, 60, 449–453. [Google Scholar] [CrossRef]
- Maude, R.J.; Silamut, K.; Plewes, K.; Charunwatthana, P.; Ho, M.; Abul Faiz, M.; et al. Randomized Controlled Trial of Levamisole Hydrochloride as Adjunctive Therapy in Severe Falciparum Malaria With High Parasitemia. The Journal of Infectious Diseases. 2014, 209, 120. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, N.; Balikagala, B.; Ueno, T.; Anywar, D.A.; Kimura, E.; Palacpac, N.M.Q.; et al. The Impact of Sequestration on Artemisinin-Induced Parasite Clearance in Plasmodium falciparum Malaria in Africa. Clinical Infectious Diseases. 2023, 76, 1585–1593. [Google Scholar] [CrossRef] [PubMed]
- Loi, L.K.; Yang, C.C.; Lin, Y.C.; Su, Y.F.; Juan, Y.C.; Chen, Y.H.; et al. Decoy peptides effectively inhibit the binding of SARS-CoV-2 to ACE2 on oral epithelial cells. Heliyon. 2023, 9, e22614. [Google Scholar] [CrossRef] [PubMed]
- Nampota-Nkomba, N.; Nyirenda, O.M.; Mallewa, J.; Chimalizeni, Y.; Dzabala, N.; Fay, M.P.; et al. DON in pediatric cerebral malaria, a phase I/IIA dose-escalation safety study: study protocol for a clinical trial. Trials. 2024, 25, 87. [Google Scholar] [CrossRef]
- Barnwell, J.W.; Ockenhouse, C.F.; Knowles, D.M. Monoclonal antibody OKM5 inhibits the in vitro binding of Plasmodium falciparum-infected erythrocytes to monocytes, endothelial, and C32 melanoma cells. The Journal of Immunology. 1985, 135, 3494–3497. [Google Scholar] [CrossRef]
- Cooke, B.M.; Nicoll, C.L.; Baruch, D.I.; Coppel, R.L. A recombinant peptide based on PfEMP-1 blocks and reverses adhesion of malaria-infected red blood cells to CD36 under flow. Molecular Microbiology. 1998, 30, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.; Hickey, M.J.; Murray, A.G.; Andonegui, G.; Kubes, P. Visualization of Plasmodium falciparum–Endothelium Interactions in Human Microvasculature: Mimicry of Leukocyte Recruitment. The Journal of Experimental Medicine. 2000, 192, 1205. [Google Scholar] [CrossRef] [PubMed]
- Yipp, B.G.; Baruch, D.I.; Brady, C.; Murray, A.G.; Looareesuwan, S.; Kubes, P.; et al. Recombinant PfEMP1 peptide inhibits and reverses cytoadherence of clinical Plasmodium falciparum isolates in vivo. Blood. 2003, 101, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Handunnetti, S.; van Schravendijk, M.; Hasler, T.; Barnwell, J.; Greenwalt, D.; Howard, R. Involvement of CD36 on erythrocytes as a rosetting receptor for Plasmodium falciparum-infected erythrocytes. Blood. 1992, 80, 2097–2104. [Google Scholar] [CrossRef]
- Dondorp, A.M.; Fanello, C.I.; Hendriksen, I.C.E.; Gomes, E.; Seni, A.; Chhaganlal, K.D.; et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet (London, England). 2010, 376, 1647–1657. [Google Scholar] [CrossRef]
- Lee, W.C.; Russell, B.; Lee, B.; Chu, C.S.; Phyo, A.P.; Sriprawat, K. Plasmodium falciparum rosetting protects schizonts against artemisinin. EBioMedicine [Internet]. 2021 Nov 1 [cited 2022 Aug 22];73. Available from: https://pubmed.ncbi.nlm.nih.gov/34749300/.
- Lee, W.C.; Russell, B.; Rénia, L. Evolving perspectives on rosetting in malaria. Trends in Parasitology. 2022, 38, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Grange, C.; Tapparo, M.; Bruno, S.; Chatterjee, D.; Quesenberry, P.J.; Tetta, C.; et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. International Journal of Molecular Medicine. 2014, 33, 1055. [Google Scholar] [CrossRef] [PubMed]
- Kurathong, S.; Srichaikul, T.; Isarangkura, P.; Phanichphant, S. Exchange transfusion in cerebral malaria complicated by disseminated intravascular coagulation. The Southeast Asian journal of tropical medicine and public health. 1979, 10, 389–392. [Google Scholar] [PubMed]
- Yarrish, R.L.; Janas, J.S.; Nosanchuk, J.S.; Steigbigel, R.T.; Nusbacher, J. Transfusion malaria: treatment with exchange transfusion after delayed diagnosis. Arch Intern Med. 1982, 142, 187–188. [Google Scholar] [CrossRef] [PubMed]
- Kramer, S.L.; Campbell, C.C.; Moncrieff, R.E. Fulminant Plasmodium falciparum Infection Treated With Exchange Blood Transfusion. JAMA: The Journal of the American Medical Association. 1983, 249, 244–245. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.P. Exchange transfusion and quinine levels in falciparum malaria. Acta Leidensia. 1987, 55:121–8.
- Faille, D.; Combes, V.; Mitchell, A.J.; Fontaine, A.; Juhan-Vague, I.; Alessi, M.C.; et al. Platelet microparticles: a new player in malaria parasite cytoadherence to human brain endothelium. The FASEB Journal. 2009, 23, 3449–3458. [Google Scholar] [CrossRef] [PubMed]
- Cheng, I.S.; Sealy, B.C.; Tiberti, N.; Combes, V. Extracellular vesicles, from pathogenesis to biomarkers: the case for cerebral malaria. Vessel Plus. 2020, 4, 17. [Google Scholar] [CrossRef]
- Sampaio, N.G.; Cheng, L.; Eriksson, E.M. The role of extracellular vesicles in malaria biology and pathogenesis. Malaria Journal. 2017, 16, 1–11. [Google Scholar] [CrossRef]
- Wang, Z.; Xi, J.; Hao, X.; Deng, W.; Liu, J.; Wei, C.; et al. Red blood cells release microparticles containing human argonaute 2 and miRNAs to target genes of Plasmodium falciparum. Emerging microbes & infections. 2017, 6, e75. [Google Scholar]
- Mockenhaupt, F.P.; Ehrhardt, S.; Cramer, J.P.; Otchwemah, R.N.; Anemana, S.D.; Goltz, K.; et al. Hemoglobin C and resistance to severe malaria in Ghanaian children. J Infect Dis. 2004, 190, 1006–1009. [Google Scholar] [CrossRef] [PubMed]
- Aidoo, M.; Terlouw, D.J.; Kolczak, M.S.; Nahlen, B.L.; Lal, A.A.; Udhayakumar, V. Protective effects of the sickle cell gene against malaria morbidity and mortality For personal use. Only reproduce with permission from The Lancet Publishing Group. Lancet. 2002, 359, 1311–1312. [Google Scholar]
- Williams, T.N.; Mwangi, T.W.; Wambua, S.; Alexander, N.D.; Kortok, M.; Snow, R.W.; et al. Sickle cell trait and the risk of Plasmodium falciparum malaria and other childhood diseases. The Journal of infectious diseases. 2005, 192, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Sherman, I.W.; Eda, S.; Winograd, E. Cytoadherence and sequestration in Plasmodium falciparum : defining the ties that bind.2003, 5, 897–909.
- Cooke, B.M.; Mohandas, N.; Coppel, R.L. The malaria-infected red blood cell: Structural and functional changes. Advances in Parasitology. 2001, 50, 1–86. [Google Scholar] [PubMed]
- Winograd, E.; Eda, S.; Sherman, I.W. Chemical modifications of band 3 protein affect the adhesion of Plasmodium falciparum-infected erythrocytes to CD36. Molecular and Biochemical Parasitology. 2004, 136, 243–248. [Google Scholar] [CrossRef]
- Chan, J.A.; Howell, K.B.; Reiling, L.; Ataide, R.; Mackintosh, C.L.; Fowkes, F.J.I.; et al. Targets of antibodies against Plasmodium falciparum–infected erythrocytes in malaria immunity. J Clin Invest. 2012, 122, 3227–3238. [Google Scholar] [CrossRef]
- Thylur, R.P.; Wu, X.; Gowda, N.M.; Punnath, K.; Neelgund, S.E.; Febbraio, M.; et al. CD36 receptor regulates malaria-induced immune responses primarily at early blood stage infection contributing to parasitemia control and resistance to mortality. Journal of Biological Chemistry. 2017, 292, 9394–9408. [Google Scholar] [CrossRef] [PubMed]
- Gowda, N.M.; Wu, X.; Kumar, S.; Febbraio, M.; Gowda, D.C. CD36 Contributes to Malaria Parasite-Induced Pro-Inflammatory Cytokine Production and NK and T Cell Activation by Dendritic Cells. PLOS ONE. 2013, 8, e77604. [Google Scholar] [CrossRef]
- Ramakrishnan, D.P.; Hajj-Ali, R.A.; Chen, Y.; Silverstein, R.L. Extracellular vesicles activate a CD36-dependent signaling pathway to inhibit microvascular endothelial cell migration and tube formation. Arteriosclerosis, Thrombosis, and Vascular Biology. 2016, 36, 534–544. [Google Scholar] [CrossRef]
- Banesh, S.; Ramakrishnan, V.; Trivedi, V. Mapping of phosphatidylserine recognition region on CD36 ectodomain. Archives of Biochemistry and Biophysics. 2018, 660, 1–10. [Google Scholar] [CrossRef]
- Ye, W.; Chew, M.; Hou, J.; Lai, F.; Leopold, S.J.; Loo, H.L.; et al. Microvesicles from malaria-infected red blood cells activate natural killer cells via MDA5 pathway. PLoS pathogens [Internet]. 2018 Oct 1 [cited 2022 Nov 12];14(10). Available from: https://pubmed.ncbi.nlm.nih.gov/30286211/.
- Manodori, A.B.; Barabino, G.A.; Lubin, B.H.; Kuypers, F.A. Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin. Blood. 2000, 95, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Gayen Betal, S.; Setty, B.N.Y. Phosphatidylserine-positive erythrocytes bind to immobilized and soluble thrombospondin-1 via its heparin-binding domain. Translational Research 2008, 152, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Seguin, J.; Nicolazzi, C.; Mignet, N.; Scherman, D.; Chabot, G. Vascular density and endothelial cell expression of integrin alpha v beta 3 and E-selectin in murine tumours. Tumour Biol. 2012, 33, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Hoshiga, M.; Alpers, C.E.; Smith, L.L.; Giachelli, C.M.; Schwartz, S.M. αvβ3 Integrin Expression in Normal and Atherosclerotic Artery. Circulation Research. 1995, 77, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Pulous, F.E.; Petrich, B.G. Integrin-dependent regulation of the endothelial barrier. Tissue Barriers. 2019, 7, 1685844. [Google Scholar] [CrossRef] [PubMed]
- Stupack, D.G.; Cheresh, D.A. ECM Remodeling Regulates Angiogenesis: Endothelial Integrins Look for New Ligands. Sci STKE [Internet]. 2002 Feb 12 [cited 2024 Mar 19];2002(119). Available from: https://www.science.org/doi/10.1126/stke.2002.119.pe7.
- Shrivastava, S.K.; Dalko, E.; Delcroix-Genete, D.; Herbert, F.; Cazenave, P.A.; Pied, S. Uptake of parasite-derived vesicles by astrocytes and microglial phagocytosis of infected erythrocytes may drive neuroinflammation in cerebral malaria. Glia. 2017, 65, 75–92. [Google Scholar] [CrossRef] [PubMed]
- Mbagwu, S.I.; Lannes, N.; Walch, M.; Filgueira, L.; Mantel, P.Y. Human Microglia Respond to Malaria-Induced Extracellular Vesicles. Pathogens (Basel, Switzerland) [Internet]. 2019 Jan 1 [cited 2023 Jun 29];9(1). Available from: https://pubmed.ncbi.nlm.nih.gov/31878288/.
- Chesnokov, O.; Merritt, J.; Tcherniuk, S.O.; Milman, N.; Oleinikov, A.V. Plasmodium falciparum infected erythrocytes can bind to host receptors integrins αVβ3 and αVβ6 through DBLδ1_D4 domain of PFL2665c PfEMP1 protein. Sci Rep. 2018, 8, 17871. [Google Scholar] [CrossRef]
- Baruch, D.I.; Ma, X.C.; Singh, H.B.; Bi, X.; Pasloske, B.L.; Howard, R.J. Identification of a region of PfEMP1 that mediates adherence of Plasmodium falciparum infected erythrocytes to CD36: Conserved function with variant sequence. Blood. 1997, 90, 3766–3775. [Google Scholar] [CrossRef]
| “Pathogenic Ligand” | Cytoadhesion and/or Inflammation | References |
|---|---|---|
| the PS on the surface of iRBCs | iRBCs express PS which can interact with CD36, TIM-1, TIM-4, BAI-1, TSP, and/or integrins αvβ3 and αvβ5 (to promote pathogenic cytoadherence and/or inflammation). | [13,37,38,87] |
| the PS on the surfaces of iRBC EVs, platelet EVs, and EC EVs | PS-expressing iRBC EVs carry pathogenic PfEMP1 (and miRNAs, etc.) as cargo which can promote inflammation. In Pf infection, platelet and EC EVs can also promote Pf-disease progression. | [6,34,82] |
| Hemin (released by iRBCs) | Hemin (which binds CD36) may (1) increase expression of adhesive receptors ICAM-1 and VCAM-1 on ECs and (2) promote inflammation by binding to CD36 on immune cells. | [10] |
| Pf-modified Band 3 on iRBCs | Pf parasites alter (“modify”) RBC Band 3 on iRBCs in ways that promote inflammation and adhesion via modified Band 3 binding to CD36-expressing platelets, ECs, and immune cells. | [87,88,89,90,91] |
| PfEMP1 on surface of iRBCs | Some PfEMP1 proteins can bind TSP and integrin αvβ3 on angiogenic ECs. Most Pf strains insert a CD36-binding PfEMP1 protein (“variant”) onto the iRBC surface. Of note, platelet CD36 enables iRBC-platelet-EC “bridge bonding” with those cerebral ECs that do not express CD36. | [37,38,39,40,41,42] |
| PS-receptor | Cytoadhesion | Inflammation | References |
|---|---|---|---|
| CD36 (on platelets, some immune cells and ECs) |
PS on iRBCs can promote iRBC-platelet-EC “bridge binding” and immune-cell, platelet, and RBC adhesion-related microvascular obstruction. | Secreted hemin and PS on iRBCs and iRBC EVs can bind to CD36 on immune cells and promote inflammation. | [10,13,38,40,42,92,93,94] |
| BAI-1 (on some ECs and brain cells) |
PS on iRBCs may promote microvascular obstruction by binding to BAI-1 on cerebral ECs. | PS-expressing iRBC EVs may increase inflammation by binding to BAI-1 on brain immune cells. | [6] |
| TIM-1 and TIM-4 (expressed by some immune cells) |
PS on iRBCs bind TIM-1 and TIM-4 on immune cells. | PS-expressing iRBC EVs bind TIM-1 and TIM-4 on immune cells. | [6,7,95] |
| TSP (on ECs and extracellular matrix) |
PS on iRBCs binds to TSP on ECs and extracellular matrix | PS-expressing iRBC EVs bind to TSP on ECs and extracellular matrix | [96,97] |
| Integrins αvβ3 and αvβ5 (on ECs and extracellular matrix) |
PS on iRBCs can promote obstruction by binding integrins αvβ3 and αvβ5 on extracellular matrix and on some ECs. | PS on iRBC EVs can promote inflammation by binding integrins αvβ3 and αvβ5 on extracellular matrix and on some ECs. | [38,98,99,100,101] |
| Unspecified receptor (on brain astrocytes and microglia) |
iRBC EVs promote inflammation by interacting with brain cells. | [102,103] |
| PS-receptor | Cytoadhesion and/or Inflammation | References |
|---|---|---|
| CD36 (on platelets and on some ECs) |
Cytoadhesion: Most PfEMP1 proteins on iRBCs bind CD36. Platelet CD36 enables iRBC-platelet-EC “bridge binding” with cerebral ECs that do not express CD36. | [39,40,42] |
| Integrin αvβ3 (on some immune cells and on angiogenic ECs |
iRBC PfEMP1-integrin binding can promote both cytoadhesion (microvascular obstruction) and inflammation. |
[41,101,104] |
| TSP (on ECs and Extracellular Matrix) |
iRBC PfEMP1-TSP binding promotes microvascular sequestration (obstruction). |
[105] |
| PS-receptor (and Target Cells) |
Adverse Effects of the Pf Factors Inserted into Patient Cells by iRBC EVs (PfEMP1, miRNAs, etc.) | References |
|---|---|---|
| CD36 (on some ECs and immune cells; possibly on brain microglia and astrocytes) |
PfEMP1 proteins incorporated into ECs and immune cells can promote inflammation | [6,13,93,94] |
| Integrins αvβ3 and αvβ5 (on some ECs and immune cells; possibly on brain microglia and astrocytes) |
PfEMP1 proteins incorporated into ECs and immune cells can promote inflammation | [6,41,101,104] |
| TSP (on ECs and possibly on brain microglia) |
PfEMP1 proteins incorporated into ECs and immune cells can promote inflammation | [6,105] |
| TIM-1 and TIM-4 (on immune cells and possibly on brain microglia) |
Immune-cell activation | [6,7,95] |
| BAI-1 (on neurons and cerebral ECs) |
[6] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
