Submitted:
26 March 2024
Posted:
29 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Epidemiology of Chikungunya
3. Immunology of Chikungunya Virus
4. Chikungunya Vaccine Landscape and IXCHIQ Vaccine Development
| Vaccine candidate | Clinical trial status | Intervention | Sponsored by | Collaborator | Clinical trial registration no. | Study Status | Sex | Age | Phase | Enrollment | Study design 55555Allocation: na intervention model | Study type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pxvx0317 | Completed | Biological: Chikv Vlp, Adjuvanted | Bavarian Nordic | Emergent Biosolutions | Nct05065983 | Completed | All | Adult | 2 | 25 | Single_Group|Masking: None|Primary Purpose: Prevention | Interventional |
| Pxvx031 | Recruiting | Biological: Pxvx0317 Vaccine Booster|Biological: Placebo Booster | Bavarian Nordic | Nct06007183 | Recruiting | All | Child, Adult, Older_Adult | 3 | 800 | Parallel|Masking: Triple (Participant, Care_Provider, Investigator)|Primary Purpose: Prevention | Interventional | |
| Live-Attenuated Chikungunya Virus Vaccine | Completed | Biological: Vla1553|Biological: Placebo | Valneva Austria Gmbh | Nct04546724 | Completed | All | Adult, Older_Adult | 3555553 | 4128 | Parallel|Masking: Double (Participant, Investigator)|Primary Purpose: Prevention | Interventional | |
| Vla1553 | Not_Yet_Recruiting | Biological: Vla1553 | Valneva Austria | Nct06028841 | Not_Yet_Recruiting | All | Adult, Older_Adult | 3 | 75 | Single_Group|Masking: None|Primary Purpose: Prevention | Interventional | |
| Chikungunya Vaccine | Active_Not_Recruiting | Drug: Bbv87 Chikungunya Vaccine|Drug: Normal Saline | International Vaccine Institute | Nct04566484 | Active_Not_Recruiting | All | Child, Adult, Older_Adult | 2 | 3210 | Sequential|Masking: Double (Participant, Investigator)|Primary Purpose: Prevention | Interventional | |
| Live-Attenuated Chikungunya Virus Vaccine | Completed | Biological: Biological Vaccine Vla1553 | Valneva Austria Gmbh | Nct04786444 | Completed | All | Adult | 3 | 409 | Parallel|Masking: Double (Participant, Investigator)|Primary Purpose: Prevention | Interventional | |
| Chikungunya And Zika Vaccines | Completed | Biological: Chik Low Dose|Biological: Chik Mid Dose|Biological: Chik High Dose|Biological: Zika Low Dose|Biological: Zika Mid Dose|Biological: Zika High Dose|Biological: Saline Placebo | University Of Oxford | Nct04440774 | Completed | All | Adult | 1555551 | 120 | Sequential|Masking: Double (Participant, Care_Provider)|Primary Purpose: Prevention | Interventional | |
| Vla1553 | Not_Yet_Recruiting | Biological: Vla1553 Full Dose|Biological: Vla1553 Half Dose|Biological: Control | Valneva Austria Gmbh | Nct06106581 | Not_Yet_Recruiting | All | Child | 2 | 300 | Parallel|Masking: Quadruple (Participant, Care_Provider, Investigator, Outcomes_Assessor)|Primary Purpose: Prevention | Interventional | |
| Live-Attenuated Chikungunya Vaccine | Not_Yet_Recruiting | Biological: Active|Biological: Placebo | Butantan Institute | Valneva Austria Gmbh | Nct04650399 | Active_Not_Recruiting | Child | 3 | 750 | Parallel|Masking: Double (Participant, Investigator)|Primary Purpose: Prevention | Interventional | |
| Chikungunya Vaccine, Pxvx0317 Chikv-Vlp | Completed | Biological: Chikv Vlp/Unadjuvanted|Biological: Chikv Vlp/Adjuvanted|Biological: Placebo | Emergent Biosolutions | Bavarian Nordic | Nct03483961 | Completed | Adult | 2 | 445 | : Parallel|Masking: Quadruple (Participant, Care_Provider, Investigator, Outcomes_Assessor)|Primary Purpose: Prevention | Interventional | |
| Vla1553 | Not_Yet_Recruiting | Biological: Vla1553 | Valneva Austria Gmbh | Nct04838444 | Active_Not_Recruiting | Adult, Older_Adult | 3 | 363 | Single_Group|Masking: None|Primary Purpose: Prevention | Interventional |
5. Different Vaccine Platforms and Technologies Used in CHIKV Vaccine Development
6. Clinical Trial Data and Safety Profile
- The vaccine demonstrated a 98.9% seroresponse rate 28 days post-vaccination. This seroresponse was sustained over time, with a 96.3% seroresponse rate observed six months post-vaccination.
7. Public Health Implications and Regulatory Considerations
8. Future Directions and Challenges
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgement
Conflicts of Interest
References
- J.H. Erasmus, S.L. Rossi, S.C. Weaver, Development of vaccines for chikungunya fever, in: J. Infect. Dis., 2016. [CrossRef]
- R. Priya, I.K. Patro, M.M. Parida, TLR3 mediated innate immune response in mice brain following infection with Chikungunya virus, Virus Res. 189 (2014) 194–205. [CrossRef]
- P. Chandley, A. Lukose, R. Kumar, S. Rohatgi, An overview of anti-Chikungunya antibody response in natural infection and vaccine-mediated immunity, including anti-CHIKV vaccine candidates and monoclonal antibodies targeting diverse epitopes on the viral envelope, The Microbe. 1 (2023) 100018. [CrossRef]
- A. Javaid, A. Ijaz, U.A. Ashfaq, M. Arshad, S. Irshad, S. Saif, An overview of chikungunya virus molecular biology, epidemiology, pathogenesis, treatment and prevention strategies, Future Virol. (2022). [CrossRef]
- L.A. Cabanilla, C.P. Milne, FDA approves a live, attenuated chikungunya vaccine using accelerated approval, 2023. [CrossRef]
- S. Schrauf, R. Tschismarov, E. Tauber, K. Ramsauer, Current Efforts in the Development of Vaccines for the Prevention of Zika and Chikungunya Virus Infections, Front. Immunol. (2020). [CrossRef]
- M.M. Varikkodan, F. Kunnathodi, S. Azmi, T.Y. Wu, An Overview of Indian Biomedical Research on the Chikungunya Virus with Particular Reference to Its Vaccine, an Unmet Medical Need, Vaccines. (2023). [CrossRef]
- F. Henderson Sousa, A. Ghaisani Komarudin, F. Findlay-Greene, A. Bowolaksono, R.T. Sasmono, C. Stevens, P.G. Barlow, Evolution and immunopathology of chikungunya virus informs therapeutic development, DMM Dis. Model. Mech. (2023). [CrossRef]
- Q.F. Zhou, J.M. Fox, J.T. Earnest, T.S. Ng, A.S. Kim, G. Fibriansah, V.A. Kostyuchenko, J. Shi, B. Shu, M.S. Diamond, S.M. Lok, Structural basis of Chikungunya virus inhibition by monoclonal antibodies, Proc. Natl. Acad. Sci. U. S. A. (2020). [CrossRef]
- J. Hurtado, D. Acharya, H. Lai, H. Sun, S. Kallolimath, H. Steinkellner, F. Bai, Q. Chen, In vitro and in vivo efficacy of anti-chikungunya virus monoclonal antibodies produced in wild-type and glycoengineered Nicotiana benthamiana plants, Plant Biotechnol. J. (2020). [CrossRef]
- C.Z. Segato-Vendrameto, C. Zanluca, A.Z. Zucoloto, T.H. Zaninelli, M.M. Bertozzi, T. Saraiva-Santos, C.R. Ferraz, L. Staurengo-Ferrari, S. Badaro-Garcia, M.F. Manchope, A.M. Dionisio, F.A. Pinho-Ribeiro, S.M. Borghi, A.L.P. Mosimann, R. Casagrande, J. Bordignon, V. Fattori, C.N.D. dos Santos, W.A. Verri, Chikungunya Virus and Its Envelope Protein E2 Induce Hyperalgesia in Mice: Inhibition by Anti-E2 Monoclonal Antibodies and by Targeting TRPV1, Cells. (2023). [CrossRef]
- P. Masrinoul, O. Puiprom, A. Tanaka, M. Kuwahara, P. Chaichana, K. Ikuta, P. Ramasoota, T. Okabayashi, Monoclonal antibody targeting chikungunya virus envelope one protein inhibits virus release, Virology. (2014). [CrossRef]
- C. Schmidt, E. Haefner, J. Gerbeth, T. Beissert, U. Sahin, M. Perkovic, B.S. Schnierle, A taRNA vaccine candidate induces a specific immune response that protects mice against Chikungunya virus infections, Mol. Ther. Nucleic Acids. 28 (2022) 743–754. [CrossRef]
- N. Ge, J. Sun, Z. Liu, J. Shu, H. Yan, Z. Kou, Y. Wei, X. Jin, An mRNA vaccine encoding Chikungunya virus E2-E1 protein elicits robust neutralising antibody responses and CTL immune responses, Virol. Sin. 37 (2022) 266–276. [CrossRef]
- E. Abeyratne, J.R. Freitas, A. Zaid, S. Mahalingam, A. Taylor, Attenuation and stability of chikv-nols, a live-attenuated chikungunya virus vaccine candidate, Vaccines. (2019). [CrossRef]
- S.K. Tsai, Y.L. Hsu, D.J. Chiao, P.Y. Shu, H.T. Lin, S.F. Chang, H.C. Lin, S.H. Huang, C.H. Wang, C.C. Hsiung, C.C. Lin, T.Y. Wu, S.C. Kuo, Antigenicity and immunogenicity of chikungunya virus-like particles from mosquito cells, Appl. Microbiol. Biotechnol. (2023). [CrossRef]
- C. Shaw, L. Panther, A. August, T. Zaks, I. Smolenov, S. Bart, M. Watson, Safety and immunogenicity of a mRNA-based chikungunya vaccine in a phase 1 dose-ranging trial, Int. J. Infect. Dis. (2019). [CrossRef]
- C. Weber, E. Berberich, C. von Rhein, L. Henß, E. Hildt, B.S. Schnierle, Identification of Functional Determinants in the Chikungunya Virus E2 Protein, PLoS Negl. Trop. Dis. (2017). [CrossRef]
- J.P. da C. Silva, M. dos P. Cunha, S.Z. Pour, V.R. Hering, D.F. de L. Neto, P.M. de A. Zanotto, Chikungunya Virus E2 Structural Protein B-Cell Epitopes Analysis, Viruses. (2022). [CrossRef]
- B. Cho, B.Y. Jeon, J. Kim, J. Noh, J. Kim, M. Park, S. Park, Expression and evaluation of Chikungunya virus E1 and E2 envelope proteins for serodiagnosis of chikungunya virus infection, Yonsei Med. J. (2008). [CrossRef]
- H. Chu, S.C. Das, J.F. Fuchs, M. Suresh, S.C. Weaver, D.T. Stinchcomb, C.D. Partidos, J.E. Osorio, Deciphering the protective role of adaptive immunity to CHIKV/IRES a novel candidate vaccine against Chikungunya in the A129 mouse model, Vaccine. 31 (2013) 3353–3360. [CrossRef]
- C.D. Partidos, J. Paykel, J. Weger, E.M. Borland, A.M. Powers, R. Seymour, S.C. Weaver, D.T. Stinchcomb, J.E. Osorio, Cross-protective immunity against o’nyong-nyong virus afforded by a novel recombinant chikungunya vaccine, Vaccine. 30 (2012) 4638–4643. [CrossRef]
- K. Muthumani, P. Block, S. Flingai, N. Muruganantham, I.K. Chaaithanya, G. Sarangan, P. Srikanth, P. Vijayachari, N.Y. Sardesai, J.J. Kim, K. Ugen, D. Weiner, Synthetic DNA encoded antibody prophylaxis confers rapid protective immunity in vivo against Chikungunya virus infection, Int. J. Infect. Dis. 45 (2016) 185. [CrossRef]
- K. Ramsauer, E. Reisinger, C. Firbas, U. Wiedermann-Schmidt, E. Beubler, A. Pfeiffer, M. Müllner, J. Aberle, E. Tauber, Phase 2 clinical results: Chikungunya vaccine based on measles vector (MV-CHIK) induces humoral and cellular responses in the presence of pre-existing anti-measles immunity, Int. J. Infect. Dis. 79 (2019) 118. [CrossRef]
- R. Priya, R. Dhanwani, I.K. Patro, P.V.L. Rao, M.M. Parida, Differential regulation of TLR mediated innate immune response of mouse neuronal cells following infection with novel ECSA genotype of Chikungunya virus with and without E1: A226V mutation, Infect. Genet. Evol. 20 (2013) 396–406. [CrossRef]
- K. Muthumani, K.M. Lankaraman, D.J. Laddy, S.G. Sundaram, C.W. Chung, E. Sako, L. Wu, A. Khan, N. Sardesai, J.J. Kim, P. Vijayachari, D.B. Weiner, Immunogenicity of novel consensus-based DNA vaccines against Chikungunya virus, Vaccine. 26 (2008) 5128–5134. [CrossRef]
- W. Akahata, G.J. Nabel, A Specific Domain of the Chikungunya Virus E2 Protein Regulates Particle Formation in Human Cells: Implications for Alphavirus Vaccine Design, J. Virol. (2012). [CrossRef]
- J. Kim, J. Yang, Y.B. Kim, H.J. Lee, S. Kim, H. Poo, Development of a Specific CHIKV-E2 Monoclonal Antibody for Chikungunya Diagnosis, Virol. Sin. (2019). [CrossRef]
- E. Danillo Lucas Alves, F. Benedito Antonio Lopes da, Characterization of the immune response following in vitro mayaro and chikungunya viruses (Alphavirus, Togaviridae) infection of mononuclear cells, Virus Res. 256 (2018) 166–173. [CrossRef]
- M.S. Islam, M.A.A.K. Khan, Computational analysis revealed miRNAs produced by Chikungunya virus target genes associated with antiviral immune responses and cell cycle regulation, Comput. Biol. Chem. 92 (2021) 107462. [CrossRef]
- J.L. Uhrlaub, V. Pulko, V.R. DeFilippis, R. Broeckel, D.N. Streblow, G.D. Coleman, B.S. Park, J.F. Lindo, I. Vickers, J.J. Anzinger, J. Nikolich-Žugich, Dysregulated TGF-β Production Underlies the Age-Related Vulnerability to Chikungunya Virus, PLoS Pathog. (2016). [CrossRef]
- P. Mudaliar, P. Pradeep, R. Abraham, E. Sreekumar, Targeting cap-dependent translation to inhibit Chikungunya virus replication: selectivity of p38 MAPK inhibitors to virus-infected cells due to autophagy-mediated down regulation of phospho-ERK, J. Gen. Virol. (2021). [CrossRef]
- E. Van Huizen, G.M. McInerney, Activation of the PI3K-AKT Pathway by Old World Alphaviruses, Cells. (2020). [CrossRef]
- P. Gérardin, V. Guernier, J. Perrau, A. Fianu, K. Le Roux, P. Grivard, A. Michault, X. de Lamballerie, A. Flahault, F. Favier, Estimating Chikungunya prevalence in La Réunion Island outbreak by serosurveys: Two methods for two critical times of the epidemic, BMC Infect. Dis. (2008). [CrossRef]
- J. Erin Staples, R.F. Breiman, A.M. Powers, Chikungunya fever: An epidemiological review of a re-emerging infectious disease, Clin. Infect. Dis. (2009). [CrossRef]
- L. Furuya-Kanamori, S. Liang, G. Milinovich, R.J. Soares Magalhaes, A.C.A. Clements, W. Hu, P. Brasil, F.D. Frentiu, R. Dunning, L. Yakob, Co-distribution and co-infection of chikungunya and dengue viruses, BMC Infect. Dis. (2016). [CrossRef]
- K. Krishnamoorthy, K.T. Harichandrakumar, A.K. Kumari, L.K. Das, Burden of Chikungunya in India: Estimates of disability adjusted life years (DALY) lost in 2006 epidemic, J. Vector Borne Dis. (2009).
- A.M. Stewart-Ibarra, S.J. Ryan, A. Kenneson, C.A. King, M. Abbott, A. Barbachano-Guerrero, E. Beltrán-Ayala, M.J. Borbor-Cordova, W.B. Cárdenas, C. Cueva, J.L. Finkelstein, C.D. Lupone, R.G. Jarman, I.M. Berry, S. Mehta, M. Polhemus, M. Silva, T.P. Endy, The burden of dengue fever and chikungunya in southern coastal ecuador: Epidemiology, clinical presentation, and phylogenetics from the first two years of a prospective study, Am. J. Trop. Med. Hyg. (2018). [CrossRef]
- D. Sissoko, D. Malvy, K. Ezzedine, P. Renault, F. Moscetti, M. Ledrans, V. Pierre, Post-epidemic Chikungunya disease on reunion island: Course of rheumatic manifestations and associated factors over a 15-month period, PLoS Negl. Trop. Dis. (2009). [CrossRef]
- A.J. Rodriguez-Morales, J.A. Cardona-Ospina, W. Villamil-Gómez, A.E. Paniz-Mondolfi, How many patients with post-chikungunya chronic inflammatory rheumatism can we expect in the new endemic areas of Latin America?, Rheumatol. Int. (2015). [CrossRef]
- C. Weibel Galluzzo, L. Kaiser, F. Chappuis, Reemergence of Chikungunya virus, Rev. Med. Suisse. (2015). [CrossRef]
- L.R. Petersen, A.M. Powers, Chikungunya: Epidemiology, F1000Research. (2016). [CrossRef]
- Mourad, L. Makhani, L.H. Chen, Chikungunya: An Emerging Public Health Concern, Curr. Infect. Dis. Rep. (2022). [CrossRef]
- M.H. Jadoon, Z. Rehman, A. Khan, M. Rizwan, S. Khan, A. Mehmood, A. Munir, In silico T-cell and B-cell Epitope Based Vaccine Design Against Alphavirus Strain of Chikungunya, Infect. Disord. - Drug Targets. (2019). [CrossRef]
- S. Anwar, J.T. Mourosi, M.F. Khan, M.J. Hosen, Prediction of Epitope-Based Peptide Vaccine Against the Chikungunya Virus by Immuno-informatics Approach, Curr. Pharm. Biotechnol. (2019). [CrossRef]
- J. Jin, N.M. Liss, D.H. Chen, M. Liao, J.M. Fox, R.M. Shimak, R.H. Fong, D. Chafets, S. Bakkour, S. Keating, M.E. Fomin, M.O. Muench, M.B. Sherman, B.J. Doranz, M.S. Diamond, G. Simmons, Neutralizing Monoclonal Antibodies Block Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis, Cell Rep. 13 (2015) 2553–2564. [CrossRef]
- H.P. Patil, P.S. Rane, M. Gosavi, A.C. Mishra, V.A. Arankalle, Standardization of ELISA for anti-chikungunya-IgG antibodies and age-stratified prevalence of anti-chikungunya-IgG antibodies in Pune, India, Eur. J. Clin. Microbiol. Infect. Dis. (2020). [CrossRef]
- A. Verma, N. Mudhigeti, S. Kommireddy, S. Anagoni, K. Sharma, U. Nallapireddy, U. Kalawat, Seroprevalence of Anti-Chikungunya IgG Antibodies among Rheumatoid Arthritis (RA) Patients, J. Clin. DIAGNOSTIC Res. (2019). [CrossRef]
- Broban, M.M. Olive, M.L. Tantely, A.C. Dorsemans, F. Rakotomanana, J.P. Ravalohery, C. Rogier, J.M. Heraud, S.F. Andriamandimby, Seroprevalence of IgG Antibodies Directed against Dengue, Chikungunya and West Nile Viruses and Associated Risk Factors in Madagascar, 2011 to 2013, Viruses. (2023). [CrossRef]
- T.Y.V. de Lima Cavalcanti, M.R. T.Y.V. de Lima Cavalcanti, M.R. Pereira, S.O. de Paula, R.F. de O. Franca, A Review on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development, Viruses. (2022). [CrossRef]
- K. Plante, E. Wang, C.D. Partidos, J. Weger, R. Gorchakov, K. Tsetsarkin, E.M. Borland, A.M. Powers, R. Seymour, D.T. Stinchcomb, J.E. Osorio, I. Frolov, S.C. Weaver, Novel chikungunya vaccine candidate with an ires-based attenuation and host range alteration mechanism, PLoS Pathog. (2011). [CrossRef]
- M. Khan, R. Dhanwani, P.V.L. Rao, M. Parida, Subunit vaccine formulations based on recombinant envelope proteins of Chikungunya virus elicit balanced Th1/Th2 response and virus-neutralizing antibodies in mice, Virus Res. (2012). [CrossRef]
- M.L. Salem, C.M. Diaz-Montero, S.A. EL-Naggar, Y. Chen, O. Moussa, D.J. Cole, The TLR3 agonist poly(I:C) targets CD8+ T cells and augments their antigen-specific responses upon their adoptive transfer into naïve recipient mice, Vaccine. (2009). [CrossRef]
- Y.G. Li, U. Siripanyaphinyo, U. Tumkosit, N. Noranate, A. A-Nuegoonpipat, Y. Pan, M. Kameoka, T. Kurosu, K. Ikuta, N. Takeda, S. Anantapreecha, Poly (I:C), an agonist of toll-like receptor-3, inhibits replication of the Chikungunya virus in BEAS-2B cells, Virol. J. (2012). [CrossRef]
- M. Rodriguez, L.J. Zoecklein, C.L. Howe, K.D. Pavelko, J.D. Gamez, S. Nakane, L.M. Papke, Gamma Interferon Is Critical for Neuronal Viral Clearance and Protection in a Susceptible Mouse Strain following Early Intracranial Theiler’s Murine Encephalomyelitis Virus Infection, J. Virol. (2003). [CrossRef]
- T. Couderc, F. Chrétien, C. Schilte, O. Disson, M. Brigitte, F. Guivel-Benhassine, Y. Touret, G. Barau, N. Cayet, I. Schuffenecker, P. Desprès, F. Arenzana-Seisdedos, A. Michault, M.L. Albert, M. Lecuit, A mouse model for Chikungunya: Young age and inefficient type-I interferon signaling are risk factors for severe disease, PLoS Pathog. (2008). [CrossRef]
- D.R. Patil, S.L. Hundekar, V.A. Arankalle, Expression profile of immune response genes during acute myopathy induced by chikungunya virus in a mouse model, Microbes Infect. 14 (2012) 457–469. [CrossRef]
- I.S.B. Tanabe, E.C. Santos, E.L.L. Tanabe, S.J.M. Souza, F.E.F. Santos, J. Taniele-Silva, J.F.G. Ferro, M.C. Lima, A.A. Moura, L. Anderson, Ê.J. Bassi, Cytokines and chemokines triggered by Chikungunya virus infection in human patients during the very early acute phase, Trans. R. Soc. Trop. Med. Hyg. (2019). [CrossRef]
- V. Reddy, R.S. Mani, A. Desai, V. Ravi, Correlation of plasma viral loads and presence of Chikungunya IgM antibodies with cytokine/chemokine levels during acute Chikungunya virus infection, J. Med. Virol. (2014). [CrossRef]
- L.F.P. Ng, A. Chow, Y.J. Sun, D.J.C. Kwek, P.L. Lim, F. Dimatatac, L.C. Ng, E.E. Ooi, K.H. Chao, Z. Her, P. Kourilsky, Y.S. Leo, IL-1β, IL-6, and RANTES as biomarkers of Chikungunya severity, PLoS One. (2009). [CrossRef]
- B.N. Restrepo, K. Marín, P. Romero, M. Arboleda, A.L. Muñoz, I. Bosch, H. Vásquez-Serna, O.A. Torres, Role of cytokines, chemokines, C3a, and mannose-binding lectin in the evolution of the chikungunya infection, Am. J. Clin. Exp. Immunol. (2022).
- X. Liu, Y.S. Poo, J.C. Alves, R.P. Almeida, H. Mostafavi, P.C.H. Tang, R. Bucala, M.M. Teixeira, A. Taylor, A. Zaid, S. Mahalingam, Interleukin-17 Contributes to Chikungunya Virus-Induced Disease, MBio. (2022). [CrossRef]
- M.K. McCarthy, G. V. Reynoso, E.S. Winkler, M. Mack, M.S. Diamond, H.D. Hickman, T.E. Morrison, MyD88-dependent influx of monocytes and neutrophils impairs lymph node B cell responses to chikungunya virus infection via Irf5, Nos2 and Nox2, PLoS Pathog. (2020). [CrossRef]
- C. Chirathaworn, J. Chansaenroj, Y. Poovorawan, Cytokines and chemokines in chikungunya virus infection: Protection or induction of pathology, Pathogens. (2020). [CrossRef]
- B.M. Gois, R.F. Peixoto, I.C. Guerra-Gomes, P.H. de S. Palmeira, C.N. de S. Dias, J.M.G. Araújo, R.C. Veras, I.A. Medeiros, F. de L.A.A. de Azevedo, R.J. Boyton, D.M. Altmann, T.S.L. Keesen, Regulatory T cells in acute and chronic human Chikungunya infection, Microbes Infect. (2022). [CrossRef]
- T. Teo, S.W. Howland, C. Claser, S.Y. Gun, C.M. Poh, W.W. Lee, F. Lum, L.F. Ng, L. Rénia, Co-infection with Chikungunya virus alters trafficking of pathogenic CD 8 + T cells into the brain and prevents Plasmodium -induced neuropathology, EMBO Mol. Med. (2018). [CrossRef]
- P. Kori, S.S. Sajjan, S.B. Madagi, In silico prediction of epitopes for Chikungunya viral strains, J. Pharm. Investig. (2015). [CrossRef]
- N.E. Rulli, M.S. Rolph, A. Srikiatkhachorn, S. Anantapreecha, A. Guglielmotti, S. Mahalingam, Protection from arthritis and myositis in a mouse model of acute chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis, J. Infect. Dis. (2011). [CrossRef]
- N.E. Rulli, A. Guglielmotti, G. Mangano, M.S. Rolph, C. Apicella, A. Zaid, A. Suhrbier, S. Mahalingam, Amelioration of alphavirus-induced arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of monocyte chemotactic proteins, Arthritis Rheum. (2009). [CrossRef]
- L. Mateo, M. La Linn, S.R. McColl, S. Cross, J. Gardner, A. Suhrbier, An arthrogenic alphavirus induces monocyte chemoattractant protein-1 and interleukin-8, Intervirology. (2000). [CrossRef]
- P. Ninla-Aesong, W. Mitarnun, K. Noipha, Proinflammatory Cytokines and Chemokines as Biomarkers of Persistent Arthralgia and Severe Disease after Chikungunya Virus Infection: A 5-Year Follow-Up Study in Southern Thailand, Viral Immunol. (2019). [CrossRef]
- P. V. Kasperkovitz, N.L. Verbeet, T.J. Smeets, J.G.I. Van Rietschoten, M.C. Kraan, T.C.T.M. Van Der Pouw Kraan, P.P. Tak, C.L. Verweij, Activation of the STAT1 pathway in rheumatoid arthritis, Ann. Rheum. Dis. (2004). [CrossRef]
- E. Gallardo, Signal transducer and activator of transcription 1 (STAT1) in inflammatory myopathies, Acta Myol. 3 (1999) 25–26.
- A.S.K. De Hooge, F.A.J. Van De Loo, M.I. Koenders, M.B. Bennink, O.J. Arntz, T. Kolbe, W.B. Van Den Berg, Local activation of STAT-1 and STAT-3 in the inflamed synovium during zymosan-induced arthritis: Exacerbation of joint inflammation in STAT-1 gene-knockout mice, Arthritis Rheum. (2004). [CrossRef]
- N. Wauquier, P. Becquart, D. Nkoghe, C. Padilla, A. Ndjoyi-Mbiguino, E.M. Leroy, The acute phase of Chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation, J. Infect. Dis. (2011). [CrossRef]
- T. Sugiura, Y. Kawaguchi, M. Harigai, K. Takagi, S. Ohta, C. Fukasawa, M. Hara, N. Kamatani, Increased CD40 Expression on Muscle Cells of Polymyositis and Dermatomyositis: Role of CD40-CD40 Ligand Interaction in IL-6, IL-8, IL-15, and Monocyte Chemoattractant Protein-1 Production, J. Immunol. (2000). [CrossRef]
- F. Mach, U. Schönbeck, G.K. Sukhova, T. Bourcier, J.Y. Bonnefoy, J.S. Pober, P. Libby, Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: Implications for CD40-CD40 ligand signaling in atherosclerosis, Proc. Natl. Acad. Sci. U. S. A. (1997). [CrossRef]
- N. Muelas, P. Marti, I. Azorin, C. Gomis, J. Poyatos, M. Frasquet, J. Vazquez, L. Bataller, L. Gomez, R. Vilchez, T. Sevilla, J. Vilchez, Inflammatory myopathy related to Chikungunya virus: a case report, Neuromuscul. Disord. (2017). [CrossRef]
- R. Dhanwani, M. Khan, V. Lomash, P.V.L. Rao, H. Ly, M. Parida, Characterization of chikungunya virus induced host response in a mouse model of viral myositis, PLoS One. (2014). [CrossRef]
- B. Spellberg, J.E. Edwards, Type 1/type 2 immunity in infectious diseases, Clin. Infect. Dis. (2001). [CrossRef]
- L. Herrero, S. Mahalingam, Arthrogenic Alphaviruses and Inflammatory Myopathies, in: Idiopathic Inflamm. Myopathies - Recent Dev., 2011. [CrossRef]
- T.S. Olson, K. Ley, Chemokines and chemokine receptors in leukocyte trafficking, Am. J. Physiol. - Regul. Integr. Comp. Physiol. (2002). [CrossRef]
- A. Chow, Z. Her, E.K.S. Ong, J.M. Chen, F. Dimatatac, D.J.C. Kwek, T. Barkham, H. Yang, L. Rénia, Y.S. Leo, L.F.P. Ng, Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor, J. Infect. Dis. (2011). [CrossRef]
- A.S. Tripathy, B. V. Tandale, S.S. Balaji, S.L. Hundekar, A.Y. Ramdasi, V.A. Arankalle, Envelope specific T cell responses & cytokine profiles in chikungunya patients hospitalized with different clinical presentations, Indian J. Med. Res. (2015). [CrossRef]
- N. Babu, S. Mahilkar, A. Jayaram, S.A. Ibemgbo, G. Mathur, U. Shetty, R. Sudandiradas, P.S. Kumar, S. Singh, S.S. Pani, P.P. Mudgal, J.S. Shastri, S. Agarwal, P.K. Ratho, B. Mishra, S. Chattopadhyay, A. Jagadesh, S. Sunil, Cytokine profile, neutralisation potential and viral replication dynamics in sera of chikungunya patients in India: a cross-sectional study, Lancet Reg. Heal. - Southeast Asia. (2023). [CrossRef]
- C.N. de S. Dias, B.M. Gois, V.S. Lima, I.C. Guerra-Gomes, J.M.G. Araújo, J. de A.S. Gomes, D.A.M. Araújo, I.A. Medeiros, F. de L.A.A. de Azevedo, R.C. Veras, D.I. Janebro, I.P.G. do Amaral, T.S.L. Keesen, Human CD8 T-cell activation in acute and chronic chikungunya infection, Immunology. (2018). [CrossRef]
- M. Mapalagamage, D. Weiskopf, A. Sette, A.D. De Silva, Current Understanding of the Role of T Cells in Chikungunya, Dengue and Zika Infections, Viruses. (2022). [CrossRef]
- B.J. Davenport, C. Bullock, M.K. McCarthy, D.W. Hawman, K.M. Murphy, R.M. Kedl, M.S. Diamond, T.E. Morrison, Chikungunya Virus Evades Antiviral CD8 + T Cell Responses To Establish Persistent Infection in Joint-Associated Tissues, J. Virol. (2020). [CrossRef]
- B.R. Wimalasiri-Yapa, F. Frentiu, L. Stassen, R. Gumiel, Temperature modulates innate immunity in Aedes aegypti during chikungunya virus infection, Int. J. Infect. Dis. 101 (2020) 489. [CrossRef]
- Cellular Signaling and Innate Immune Responses to RNA Virus Infections, 2008. [CrossRef]
- M. Gosavi, A. Kulkarni-Munje, H.P. Patil, Dual pattern recognition receptor ligands CL401, CL413, and CL429 as adjuvants for inactivated chikungunya virus, Virology. (2023). [CrossRef]
- J.F. Valdés-López, G.J. Fernandez, S. Urcuqui-Inchima, Synergistic Effects of Toll-Like Receptor 1/2 and Toll-Like Receptor 3 Signaling Triggering Interleukin 27 Gene Expression in Chikungunya Virus-Infected Macrophages, Front. Cell Dev. Biol. (2022). [CrossRef]
- L. Sun, J. Wu, F. Du, X. Chen, Z.J. Chen, Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway, Science (80-. ). (2013). [CrossRef]
- C.J. Heath, T.P. Noël, R. Waechte, J. Lowther, C.N. Macpherson, A.D. LaBeaud, Characterization of immune factors of chronic Chikungunya disease in Grenada, West Indies, Ann. Glob. Heal. 82 (2016) 422. [CrossRef]
- Ding, G. Miao, Y. Liu, W. Wang, Z. Qi, Chikungunya virus and autoimmunity: Consensus immune epitope analysis between chikungunya virus and arthritis, Autoimmun. Rev. 20 (2021) 2020–2022. [CrossRef]
- C. Schmidt, F.D. Hastert, J. Gerbeth, T. Beissert, U. Sahin, M. Perkovic, B.S. Schnierle, A Bivalent Trans-Amplifying RNA Vaccine Candidate Induces Potent Chikungunya and Ross River Virus Specific Immune Responses, Vaccines. (2022). [CrossRef]
- R.M. Broeckel, N. Haese, T. Ando, I. Dmitriev, C.N. Kreklywich, J. Powers, M. Denton, P. Smith, T.E. Morrison, M. Heise, V. Defilippis, I. Messaoudi, D.T. Curiel, D.N. Streblow, Vaccine-induced skewing of t cell responses protects against chikungunya virus disease, Front. Immunol. (2019). [CrossRef]
- K.S. Burrack, S.A. Montgomery, D. Homann, T.E. Morrison, CD8+ T Cells Control Ross River Virus Infection in Musculoskeletal Tissues of Infected Mice, J. Immunol. (2015). [CrossRef]
- C. Pollard, J. Rejman, W. De Haes, B. Verrier, E. Van Gulck, T. Naessens, S. De Smedt, P. Bogaert, J. Grooten, G. Vanham, S. De Koker, Type i IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines, Mol. Ther. (2013). [CrossRef]
- K. Bahl, J.J. Senn, O. Yuzhakov, A. Bulychev, L.A. Brito, K.J. Hassett, M.E. Laska, M. Smith, Ö. Almarsson, J. Thompson, A. (Mick) Ribeiro, M. Watson, T. Zaks, G. Ciaramella, Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses, Mol. Ther. (2017). [CrossRef]
- J.M. Richner, S. Himansu, K.A. Dowd, S.L. Butler, V. Salazar, J.M. Fox, J.G. Julander, W.W. Tang, S. Shresta, T.C. Pierson, G. Ciaramella, M.S. Diamond, Modified mRNA Vaccines Protect against Zika Virus Infection, Cell. (2017). [CrossRef]
- M. Zhang, J. Sun, M. Li, X. Jin, Modified mRNA-LNP Vaccines Confer Protection against Experimental DENV-2 Infection in Mice, Mol. Ther. Methods Clin. Dev. (2020). [CrossRef]
- A.B. Vogel, L. Lambert, E. Kinnear, D. Busse, S. Erbar, K.C. Reuter, L. Wicke, M. Perkovic, T. Beissert, H. Haas, S.T. Reece, U. Sahin, J.S. Tregoning, Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses, Mol. Ther. (2018). [CrossRef]
- A.M. Powers, Vaccine and therapeutic options to control chikungunya virus, Clin. Microbiol. Rev. (2018). [CrossRef]
- K. Ramsauer, F. Tangy, Chikungunya virus vaccines: Viral vector-based approaches, in: J. Infect. Dis., 2016. [CrossRef]
- S.M. Volk, R. Chen, K.A. Tsetsarkin, A.P. Adams, T.I. Garcia, A.A. Sall, F. Nasar, A.J. Schuh, E.C. Holmes, S. Higgs, P.D. Maharaj, A.C. Brault, S.C. Weaver, Genome-Scale Phylogenetic Analyses of Chikungunya Virus Reveal Independent Emergences of Recent Epidemics and Various Evolutionary Rates, J. Virol. (2010). [CrossRef]
- B. Idse, N. Staff, T. Fda, U. States, The FDA Approves Ixchiq Chikungunya Vaccine, (2023) 1–8.
- P. Roongaraya, S. Boonyasuppayakorn, Chikungunya vaccines: An update in 2023, Asian Pacific J. Allergy Immunol. (2023). [CrossRef]
- W. Akahata, Z.Y. Yang, H. Andersen, S. Sun, H.A. Holdaway, W.P. Kong, M.G. Lewis, S. Higgs, M.G. Rossmann, S. Rao, G.J. Nabel, A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection, Nat. Med. (2010). [CrossRef]
- L.J. Chang, K.A. Dowd, F.H. Mendoza, J.G. Saunders, S. Sitar, S.H. Plummer, G. Yamshchikov, U.N. Sarwar, Z. Hu, M.E. Enama, R.T. Bailer, R.A. Koup, R.M. Schwartz, W. Akahata, G.J. Nabel, J.R. Mascola, T.C. Pierson, B.S. Graham, J.E. Ledgerwood, Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: A phase 1 dose-escalation trial, Lancet. 384 (2014) 2046–2052. [CrossRef]
- K. Ramsauer, M. Schwameis, C. Firbas, M. Müllner, R.J. Putnak, S.J. Thomas, P. Desprès, E. Tauber, B. Jilma, F. Tangy, Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: A randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial, Lancet Infect. Dis. (2015). [CrossRef]
- E.D. Rodríguez-Aguilar, J. Martínez-Barnetche, C.R. González-Bonilla, J.M. Tellez-Sosa, R. Argotte-Ramos, M.H. Rodríguez, Genetic Diversity and Spatiotemporal Dynamics of Chikungunya Infections in Mexico during the Outbreak of 2014–2016, Viruses. (2022). [CrossRef]
- M.S. Hakim, A.T. Aman, Understanding the Biology and Immune Pathogenesis of Chikungunya Virus Infection for Diagnostic and Vaccine Development, Viruses. (2023). [CrossRef]
- Simon, E. Caumes, T. Jelinek, R. Lopez-Velez, R. Steffen, L.H. Chen, Chikungunya: risks for travellers, J. Travel Med. (2023). [CrossRef]
- Matusali, F. Colavita, L. Bordi, E. Lalle, G. Ippolito, M.R. Capobianchi, C. Castilletti, Tropism of the chikungunya virus, Viruses. (2019). [CrossRef]
- S. Menon, A. Wilder-Smith, New Vaccines on the Immediate Horizon for Travelers: Chikungunya and Dengue Vaccines, Curr. Infect. Dis. Rep. (2023). [CrossRef]
- Q.M. Tran, J. Soda, A. Siraj, S. Moore, H. Clapham, T. Alex Perkins, Expected endpoints from future chikungunya vaccine trial sites informed by serological data and modeling, Vaccine. (2023). [CrossRef]
- V.R. Harrison, K.H. Eckels, P.J. Bartelloni, C. Hampton, Production and Evaluation of a Formalin-Killed Chikungunya Vaccine, J. Immunol. (1971). [CrossRef]
- C. Vaccine, IXCHIQ Chikungunya Vaccine Live IXCHIQ ® Chikungunya Vaccine, Live ( VLA1553 ), 2023.
- A. Comment, G. Healthcare, FDA approval of Valneva’s IXCHIQ brings world’s first chikungunya vaccine to market, 2023. https://www.clinicaltrialsarena.com/analyst-comment/fda-valneva-ixchiq-chikungunya-vaccine/?cf-view.
- B. Robert, E.B. Brown, Summary Basis for Regulatory Action, 2023.
- P. Review, Y. No, CBER Received Date PDUFA Goal Date Division / Office Reviewer Name ( s ) Formulation ( s ), including, 2023.
- Ε.Τ. Σημασων, FDA Grants Accelerated Approval to Chikungunya Vaccine Ixchiq, 28 (2010) 1–12.
- P. Gérardin, G. Barau, A. Michault, M. Bintner, H. Randrianaivo, G. Choker, Y. Lenglet, Y. Touret, A. Bouveret, P. Grivard, K. Le Roux, S. Blanc, I. Schuffenecker, T. Couderc, F. Arenzana-Seisdedos, M. Lecuit, P.Y. Robillard, Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Réunion, PLoS Med. (2008). [CrossRef]
- V.R. Harrison, K.H. Eckels, P.J. Bartelloni, C. Hampton, Production and Evaluation of a Formalin-Killed Chikungunya Vaccine Information about subscribing to The Journal of, J. Immunol. (1971).
- M. Kumar, A.B. Sudeep, V.A. Arankalle, Evaluation of recombinant E2 protein-based and whole-virus inactivated candidate vaccines against chikungunya virus, Vaccine. (2012). [CrossRef]
- G.W. Holzer, S. Coulibaly, G. Aichinger, H. Savidis-Dacho, J. Mayrhofer, S. Brunner, K. Schmid, O. Kistner, J.G. Aaskov, F.G. Falkner, H. Ehrlich, P.N. Barrett, T.R. Kreil, Evaluation of an inactivated Ross River virus vaccine in active and passive mouse immunization models and establishment of a correlate of protection, Vaccine. (2011). [CrossRef]
- E.A. Voigt, J. Fuerte-Stone, B. Granger, J. Archer, N. Van Hoeven, Live-attenuated RNA hybrid vaccine technology provides single-dose protection against Chikungunya virus, Mol. Ther. (2021). [CrossRef]
- S. Gao, S. Song, L. Zhang, Recent Progress in Vaccine Development Against Chikungunya Virus, Front. Microbiol. (2019). [CrossRef]
- E. Abeyratne, K. Tharmarajah, J.R. Freitas, H. Mostafavi, S. Mahalingam, A. Zaid, M. Zaman, A. Taylor, Liposomal Delivery of the RNA Genome of a Live-Attenuated Chikungunya Virus Vaccine Candidate Provides Local, but Not Systemic Protection After One Dose, Front. Immunol. (2020). [CrossRef]
- M. Schneider, M. Narciso-Abraham, S. Hadl, R. McMahon, S. Toepfer, U. Fuchs, R. Hochreiter, A. Bitzer, K. Kosulin, J. Larcher-Senn, R. Mader, K. Dubischar, O. Zoihsl, J.C. Jaramillo, S. Eder-Lingelbach, V. Buerger, N. Wressnigg, Safety and immunogenicity of a single-shot live-attenuated chikungunya vaccine: a double-blind, multicentre, randomised, placebo-controlled, phase 3 trial, Lancet. (2023). [CrossRef]
- D. Thompson, S.W. Metz, C. Abad, S. Beaty, K. Warfield, Immunological implications of diverse production approaches for Chikungunya virus-like particle vaccines, Vaccine. (2022). [CrossRef]
- G.L. Chen, E.E. Coates, S.H. Plummer, C.A. Carter, N. Berkowitz, M. Conan-Cibotti, J.H. Cox, A. Beck, M. O’Callahan, C. Andrews, I.J. Gordon, B. Larkin, R. Lampley, F. Kaltovich, J. Gall, K. Carlton, J. Mendy, D. Haney, J. May, A. Bray, R.T. Bailer, K.A. Dowd, B. Brockett, D. Gordon, R.A. Koup, R. Schwartz, J.R. Mascola, B.S. Graham, T.C. Pierson, Y. Donastorg, N. Rosario, J.W. Pape, B. Hoen, A. Cabié, C. Diaz, J.E. Ledgerwood, Effect of a Chikungunya Virus-Like Particle Vaccine on Safety and Tolerability Outcomes: A Randomized Clinical Trial, JAMA - J. Am. Med. Assoc. (2020). [CrossRef]
- S.W. Metz, J. Gardner, C. Geertsema, T.T. Le, L. Goh, J.M. Vlak, A. Suhrbier, G.P. Pijlman, Effective Chikungunya Virus-like Particle Vaccine Produced in Insect Cells, PLoS Negl. Trop. Dis. (2013). [CrossRef]
- M.T. Arévalo, Y. Huang, C.A. Jones, T.M. Ross, Vaccination with a chikungunya virus-like particle vaccine exacerbates disease in aged mice, PLoS Negl. Trop. Dis. (2019). [CrossRef]
- J. Liu, X. Lu, X. Li, W. Huang, E. Fang, W. Li, X. Liu, M. Liu, J. Li, M. Li, Z. Zhang, H. Song, B. Ying, Y. Li, Construction and immunogenicity of an mRNA vaccine against chikungunya virus, Front. Immunol. (2023). 2023. [CrossRef]
- S. Jaan, A. Zaman, S. Ahmed, M. Shah, S.C. Ojha, mRNA Vaccine Designing Using Chikungunya Virus E Glycoprotein through Immunoinformatics-Guided Approaches, Vaccines. (2022). [CrossRef]
- C. Gerke, P.N. Frantz, K. Ramsauer, F. Tangy, Measles-vectored vaccine approaches against viral infections: a focus on Chikungunya, Expert Rev. Vaccines. (2019). [CrossRef]
- E.C. Reisinger, R. Tschismarov, E. Beubler, U. Wiedermann, C. Firbas, M. Loebermann, A. Pfeiffer, M. Muellner, E. Tauber, K. Ramsauer, Immunogenicity, safety, and tolerability of the measles-vectored chikungunya virus vaccine MV-CHIK: a double-blind, randomised, placebo-controlled and active-controlled phase 2 trial, Lancet. (2018). [CrossRef]
- P.M. Folegatti, D. Jenkin, S. Morris, S. Gilbert, D. Kim, J.S. Robertson, E.R. Smith, E. Martin, M. Gurwith, R.T. Chen, Vaccines based on the replication-deficient simian adenoviral vector ChAdOx1: Standardized template with key considerations for a risk/benefit assessment, Vaccine. (2022). [CrossRef]
- R. Kroon Campos, L. Preciado-Llanes, S.R. Azar, Y.C. Kim, O. Brandon, C. López-Camacho, A. Reyes-Sandoval, S.L. Rossi, Adenoviral-Vectored Mayaro and Chikungunya Virus Vaccine Candidates Afford Partial Cross-Protection From Lethal Challenge in A129 Mouse Model, Front. Immunol. (2020). [CrossRef]
- H. Cooper, L. V. Hedges, J.C. Valentine, The handbook of research synthesis and meta-analysis 2nd edition, 2009.
- E. Cooper, Harris, E. Hedges, Larry V., E. Valentine, Jeffrey C., The Handbook of Research Synthesis and Meta-Analysis. Third Edition., Russell Sage Found. (2019).
- B.K. Dunleavy, Valneva wins race, gaining FDA approval for chikungunya vaccine Ixchiq, 2023.
- B.I. Cameron, Valneva single - dose chikungunya vaccine poised to ‘ revolutionize ’ global health, 2023.
- K. Bartholomeeusen, M. Daniel, D.A. LaBeaud, P. Gasque, R.W. Peeling, K.E. Stephenson, L.F.P. Ng, K.K. Ariën, Chikungunya fever, Nat. Rev. Dis. Prim. (2023). [CrossRef]
- K.A. Tsetsarkin, R. Chen, S.C. Weaver, Interspecies transmission and chikungunya virus emergence, Curr. Opin. Virol. (2016). [CrossRef]
- Rezza, L. Nicoletti, R. Angelini, R. Romi, A. Finarelli, M. Panning, P. Cordioli, C. Fortuna, S. Boros, F. Magurano, G. Silvi, P. Angelini, M. Dottori, M. Ciufolini, G. Majori, A. Cassone, Infection with chikungunya virus in Italy: an outbreak in a temperate region, Lancet. (2007). [CrossRef]
- S.K. Ramchurn, S.S. Goorah, M. Makhan, K. Moheeput, Excess mortality as an epidemic intelligence tool in chikungunya mapping., Euro Surveill. (2008). [CrossRef]
- G. Rezza, S.C. Weaver, Chikungunya as a paradigm for emerging viral diseases: Evaluating disease impact and hurdles to vaccine development, PLoS Negl. Trop. Dis. (2019). [CrossRef]
- G. Montalvo Zurbia-Flores, A. Reyes-Sandoval, Y.C. Kim, Chikungunya Virus: Priority Pathogen or Passing Trend?, Vaccines. (2023). [CrossRef]
- Valneva, VLA1553 – Valneva’s single-shot chikungunya vaccine candidate, 2023. [CrossRef]
- US Food and Drug Administration, Quality Systems Approach to Pharmaceutical Current Good Manufacturing Practice Regulations, U.S. Dep. Heal. Hum. Serv. Food Drug Adm. (2006) 32.
- N. Cherian, A. Bettis, A. Deol, A. Kumar, J.L. Di Fabio, A. Chaudhari, S. Yimer, R. Fahim, T. Endy, Strategic considerations on developing a CHIKV vaccine and ensuring equitable access for countries in need, Npj Vaccines. (2023). [CrossRef]
- B. Caputo, G. Russo, M. Manica, F. Vairo, P. Poletti, G. Guzzetta, S. Merler, C. Scagnolari, A. Solimini, A comparative analysis of the 2007 and 2017 italian chikungunya outbreaks and implication for public health response, PLoS Negl. Trop. Dis. (2020). [CrossRef]
| Study | Participants | Vaccine Recipients | Placebo Recipients | Seroresponse Rate (28 days post-vaccination) | Seroresponse Rate (6 months post-vaccination) |
|---|---|---|---|---|---|
| 1 | 3500 | 2500 | 1000 | 98.9% | 96.3% |
| 2 | 3500 | 2500 | 1000 | 98.9% | 96.3% |
| Phase | Focus | Key Findings |
|---|---|---|
| Phase I | Safety and immunogenicity | The Phase I trials were conducted on a few healthy volunteers, and the findings are not publicly available. |
| Phase II | Safety and immunogenicity | In the Phase II trials, a single dose of IxChiq, a live attenuated vaccine, developed viral resistance in 98% of those tested after 28 days, and 85% still showed resistance after one year. However, 8% of people reported transient joint pain. |
| Phase III | Safety and efficacy | In the pivotal Phase III data reported in 2022, IxChiq demonstrated a 98.9% (263 of 266 subjects tested for immunogenicity) seroresponse rate at 28 days with a single vaccination. 233 of 242 subjects tested for immunogenicity, seroresponse rates at 28, 84, and 180 days postvaccination were 98.9%, 98.0%, and 96.3%, respectively. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
