Submitted:
27 March 2024
Posted:
27 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Search Strategy
3. Characteristics of Badminton
3.1. The History of Badminton
3.2. Match Characteristics of Badminton
3.3. Physiological Characteristics of a Badminton Match
3.4. Physical Activity as an Open-Skill Exercise
4. Benefits of Badminton for Cognitive Function
| Authors | Participant and study (1. Study design; 2. Participants; 3. Exercise experience or intervention; 4. Main outcome measures and/or 5. Cognitive function) |
Main findings |
|---|---|---|
| Chen et.al., 2022 [5] |
1. Observational study 2. Elite badminton players (n = 28; F:M = 14:14; age: 21.35 ± 2.65 years) 3. Badminton training for years 4. Compensatory tracking task, time/movement, and estimation task 5. Visuomotor integration and temporal prediction |
(Compensatory tracking task)
|
| Patterson et.al., 2017 [9] |
1. Intervention study 2. Healthy untrained premenopausal women (n = 36; age: 34.3 ± 6.9 years), badminton, n = 13; Running, n = 12; Control, n = 8) 3. Badminton match or running; intervention: 1 h/session; thrice weekly for 8weeks. 4. Resting BP, HR, TChol, HDL, LDL, T, and psychological well-being questionnaires (Exercise Motives Inventory-II) |
(BP)
|
| Chen et.al., 2022 [11] |
1. Intervention study 2. Young adults with ID (n = 18; F:M = 4:14; age: 22.28 ± 1.84) 3. Shuttle time badminton starter lessons; intervention: 50 min/session, twice weekly for 5 weeks. 4. BP, Resting HR, EEG, 6MWT, badminton skills assessment, and SDS |
(BP)
|
| Takahashi et. al., 2023 [29] | 1. Intervention study 2. Healthy students (n = 24; F:M = 9:15; age: 20.4 ± 0.2) 3. A singles badminton game or running; 10 min; 3 times separated by an average interval, 6.1 ± 1.8 days 4. Color–word Stroop task, fNIRS, and TDMS 5. Inhibitory control, hemodynamics in the prefrontal cortex during the Stroop task, and pleasure and arousal states |
(Color–word Stroop task)
|
| Takahashi et. al., 2019 [36] | 1. Intervention study 2. Healthy students (n = 20; F:M = 12:8; age: 20.9 ± 0.2) 3. A singles badminton game or running; 10 min; 3 times separated by an average interval, 5.8 ± 1.4 days. 4. Stroop/reverse Stroop test 5. Inhibitory function and information processing speed |
(Stroop task)
|
| Hung et.al., 2018 [37] |
1. Intervention study 2. Young adult males (n = 20; age: 23.15 ± 2.48) 3. Badminton match or running; 30 min/session; 2 times with a 7-day interval. 4. Serum BDNF and task-switching paradigm 5. Executive function |
(Serum BDNF)
|
| Behrendt et. al., 2021 [38] |
1. Intervention study 2. Healthy older adults, acute intervention group; n = 24; F:M = 12:12; age: 65.83 ± 5.98 years, cOSE; n = 6; age: F:M = 4:2; age: 64.50 ± 6.32 years, cCSE; n = 9; age: F:M = 6:3; age: 64.89 ± 3.51 years 3. Acute intervention; badminton or bicycling; 30 min/session, chronic intervention; cOSE (badminton/hockey/table tennis) or cCSE (strength training/endurance training); 40 min/session; once weekly for 12 weeks 4. Serum and plasma BDNF, IGF-1, and IL-6 |
(Acute effect)
|
| Wang et.al., 2023 [41] | 1. Intervention study 2. Adults with mild ID (n = 15; F:M = 5:10; age: 36.0 ± 3.64 years) 3. Badminton intervention protocol; 10 min/warm-up; 40 min/training; 10 min/cool down; 12 weeks 4. The Stroop test, n-back test, and task-switching test 5. Inhibitory control, working memory, and cognitive flexibility |
(Stroop test)
|
| Zubir et.al., 2021 [42] | 1. Observational study 2. Sedentary elderly participants (n = 36; F:M = 15:21; age: 55–69 years) 3. Regular players; badminton/running/cycling/swimming 4. Sternberg working memory task, Trail making test, Stroop test, and MoCA 5. Working memory, executive function, and cognitive aging |
(Sternberg working memory)
|
| Nassef et. al., 2020 [43] | 1. Observational study 2. Taiwanese aged 30–70 years, aerobic exercise group (n = 2461; F:M = 1310:1151), badminton group (n = 29; F:M = 8:21) 3. Regularly, badminton; 30 min/session; at least thrice weekly for 3 weeks 4. HDL |
(HDL)
|
| Zubir et. al., 2022 [44] | 1. Observational study 2. Healthy badminton players aged >55 years, high- (n = 18; age: 64.2 ± 2.81 years) and low-playing time groups (n = 18; age: 63.3 ± 2.59 years) 3. High- (9.72 ± 2.16 h/week) and low-playing time groups (3.34 ± 1.53 h/week) 4. Resting BP, mean arterial BP, Sternberg working memory task |
(BP)
|
| Zubir et. al., 2022 [45] | 1. Observational study 2. Healthy elderly badminton players, high (n = 18; age: 64.2 ± 2.81 years) and low-playing time groups (n = 18; age: 63.3 ± 2.59 years) 3. High- (9.72 ± 2.16 h/week) and low-playing time groups (3.34 ± 1.53 h/week) 4. Body fat percentage, lean body mass, fasting serum glucose |
(Body fat percentage)
|
5. Benefits of Badminton for Depression
6. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Høy, K.; Lindblad, B.E.; Terkelsen, C.J.; Helleland, H.E.; Terkelsen, C.J. Badminton injuries-a prospective epidemiological and socioeconomic study. Br. J. Sp. Med. 1994, 28, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Ting, H.Y. , Sim, K.S., Abas, F.S. Kinect-Based Badminton Movement Recognition and Analysis System. Int. J. Comput. Sci. Sport. 2015, 14, 25–41. [Google Scholar]
- Kumari, V. Social and Economic Impact of Badminton in India. IJRRMF. 2022, 1, 61–67. [Google Scholar]
- Phomsoupha, M.; Laffaye, G. The Science of Badminton: Game Characteristics, Anthropometry, Physiology, Visual Fitness and Biomechanics. Sports Med. 2015, 45, 473–495. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-L.; Hsu, J.-H.; Tai, D.H.-L.; Yao, Z.-Y. Training-Associated Superior Visuomotor Integration Performance in Elite Badminton Players after Adjusting for Cardiovascular Fitness. Int. J. Environ. Res. Public Health 2022, 19, 468. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Goodkind, D.; Kowal, P. An Aging World: 2015; United States Census Bureau: Washington, DC, USA, 2016. [Google Scholar]
- Yamasaki, T. Benefits of table tennis for brain health maintenance and prevention of dementia. Encyclopedia 2022, 2, 1577–1589. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; Costafreda, S.G.; Dias, A.; Fox, N.; Gitlin, L.N.; Howard, R.; Kales, H.C.; Kivimäki, M.; Larson, E.B.; Ogunniyi, A.; Orgeta, V.; Ritchie, K.; Rockwood, K.; Sampson, E.L.; Samus, Q.; Schneider, L.S.; Selbæk, G.; Teri, L.; Mukadam, N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.; Pattison, J.; Legg, H.; Gibson, A.M.; Brown, N. The Impact of Badminton on Health Markers in Untrained Females. J. Sports Sci. 2017, 35, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Cabello-Manrique, D.; Lorente, J.A.; Padial-Ruz, R.; Esther Puga-González, E. Play Badminton Forever: A Systematic Review of Health Benefits. Int. J. Environ. Res. Public Health 2022, 19, 9077. [Google Scholar] [CrossRef]
- Chen, C.-C. (JJ).; Ryuh, Y.-J.; Donald, M.; Rayner, M. The impact of badminton lessons on health and wellness of young adults with intellectual disabilities: a pilot study. Int. J. Dev. Disabil. 2022, 68, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, T. Preventive Strategies for Cognitive Decline and Dementia: Benefits of Aerobic Physical Activity, Especially Open-Skill Exercise. Brain Sci. 2023, 13, 521. [Google Scholar] [CrossRef] [PubMed]
- Byers, A.L.; Yaffe, K. Depression and Risk of Developing Dementia. Nat. Rev. Neurol. 2011, 7, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Kwan, M.; Cheng, C.-L.; Tang, W.-T.; Rasmussen, J. Measurement of badminton racket deflection during a stroke. Sports Eng. 2010, 12, 143–153. [Google Scholar] [CrossRef]
- Alberca, I.; Chénier, F.; Astier, M.; Combet, M.; Bakatchina, S.; Brassart, F.; Vallier, J.-M.; Pradon, D.; Watier, B.; Faupin, A. Impact of Holding a Badminton Racket on Spatio-Temporal and Kinetic Parameters During Manual Wheelchair Propulsion. Front. Sports Act. Living 2022, 4, 862760. [Google Scholar] [CrossRef] [PubMed]
- Deaflympics. Available online: https://www.deaflympics.com/sports/bd (accessed on 12 February 2024).
- Cohen, C.; Texier, B.D.; Quéré, D.; Clanet, C. The physics of badminton. New J. Phys. 2015, 17, 063001. [Google Scholar] [CrossRef]
- Vial, S.; Cochrane, J.; Blazevich, A.J.; Croft, J.L. Using the trajectory of the shuttlecock as a measure of performance accuracy in the badminton short serve. Int. J. Sports Sci. Coach. 2019, 14, 91–96. [Google Scholar] [CrossRef]
- Gómez-Ruano, M.-Á.; Cid, A.; Rivas, F.; Ruiz, L.-M. Serving Patterns of Women’s Badminton Medalists in the Rio 2016 Olympic Games. Front. Psychol. 2020, 11, 136. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, J.; de Zee, M. A Simulation of the Effects of Badminton Serve Release Height. Appl. Sci. 2021, 11, 2903. [Google Scholar] [CrossRef]
- Chen, H.-L.; Chen, T.C. Temporal structure comparison of the new and conventional scoring systems for men’s badminton singles in Taiwan. J. Exerc. Sci. Fit. 2008, 6, 34–43. [Google Scholar]
- Manrique, D.C.; González-Badillo, J.J. Analysis of the characteristics of competitive badminton. Br. J. Sports Med. 2003, 37, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Meyer, T.; Rosenberger, F.; Fries, M.; Huber, G.; Kindermann, W. Physiological characteristics of badminton match play. Eur. J. Appl. Physiol. 2007, 100, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Alcock, A.; Cable, N.T. A comparison of singles and doubles badminton: heart rate response, player profiles and game characteristics. Int. J. Perform. Anal. Sport 2009, 9, 228–37. [Google Scholar] [CrossRef]
- Liddle, S.D.; Murphy, M.H.; Bleakley, W. A comparison of the physiological demands of singles and doubles badminton: a heart rate and time/motion analysis. J. Hum. Movement Stud. 1996, 30, 159–176. [Google Scholar]
- Marchena-Rodriguez, A.; Gijon-Nogueron, G.; Cabello-Manrique, D.; Ortega-Avila, A.B. Incidence of injuries among amateur badminton players: A cross sectional study. Medicine 2020, 99, e19785. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, A.; Guo, W.; Zhu, F.; Wang, B. Which Type of Exercise Is More Beneficial for Cognitive Function? A Meta-Analysis of the Effects of Open-Skill Exercise versus Closed-Skill Exercise among Children, Adults, and Elderly Populations. Appl. Sci. 2020, 10, 2737. [Google Scholar] [CrossRef]
- Heilmann, F.; Weinberg, H.; Wollny, R. The Impact of Practicing Open- vs. Closed-Skill Sports on Executive Functions—A Meta-Analytic and Systematic Review with a Focus on Characteristics of Sports. Brain Sci. 2022, 12, 1071. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Grove, P.M. Impact of acute open-skill exercise on inhibitory control and brain activation: A functional near-infrared spectroscopy study. PLoS ONE 2023, 18, e0276148. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Hillman, C.H.; Kramer, A.F. Physical activity, brain, and cognition. Behav. Sci. 2015, 4, 27–32. [Google Scholar] [CrossRef]
- Gu, Q.; Zou, L.; Loprinzi, P.D. Effects of Open Versus Closed Skill Exercise on Cognitive Function: A Systematic Review. Front. Psychol. 2019, 10, 1707. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, N.S.; Vimalan, V.; Padmanabhan, P.; Gulyás, B. An Overview on Cognitive Function Enhancement through Physical Exercises. Brain Sci. 2021, 11, 1289. [Google Scholar] [CrossRef] [PubMed]
- Bowes, A.; Dawson, A.; Jepson, R.; McCabe, L. Physical activity for people with dementia a scoping study. BMC Geriatr. 2013, 13, 129. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.K.; Vidoni, E.D.; Johnson, D.K.; Van Sciver, A.; Mahnken, J.D.; Honea, R.A.; Wilkins, H.M.; Brooks, W.M.; Billinger, S.A.; Swerdlow, R.H.; Burns, J.M. Aerobic exercise for Alzheimer’s disease: A randomized controlled pilot trial. PLoS ONE 2017, 12, e0170547. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.-X.; Liang, J.-H.; Xu, Y.; Wang, Y.-Q. Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: a meta-analysis. BMC Geriatr. 2019, 19, 181. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Grove, P.M. Comparison of the effects of running and badminton on executive function: A within-subjects design. PLoS ONE 2019, 14, e0216842. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-L.; Tseng, J.-W.; Chao, H.-H.; Hung, T.-M.; Wang, H.-S. Effect of Acute Exercise Mode on Serum Brain-Derived Neurotrophic Factor (BDNF) and Task Switching Performance. J. Clin. Med. 2018, 7, 301. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, T.; Kirschnick, F.; Kröger, L.; Beileke, P.; Rezepin, M.; Brigadski, T.; Leßmann, V.; Schega, L. Comparison of the effects of open vs. closed skill exercise on the acute and chronic BDNF, IGF-1 and IL-6 response in older healthy adults. BMC Neurosci. 2021, 22, 71. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-L.; Wang, W.-L. Exercise-mode-related changes in task-switching performance in the elderly. Front. Behav. Neurosci. 2015, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-L; Pan, C.-Y.; Chen, F.-C.; Tseng, Y.-T. Open- and Closed-Skill Exercise Interventions Produce Different Neurocognitive Effects on Executive Functions in the Elderly: A 6-Month Randomized, Controlled Trial. Front. Aging Neurosci. 2017, 9, 294. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, X.; Chen, H. Badminton Improves Executive Function in Adults Living with Mild Intellectual Disability. Int. J. Environ. Res. Public Health 2023, 20, 3673. [Google Scholar] [CrossRef]
- Zubir, S.M.S.; Linoby, A.; Hussain, R.N.J.R.; Zulkhairi, A.; Lamat, S.A.; Felder, H. Retrospective Comparision of Regular Badminton and Closed-Skills Sports Participation on Cognitive Function in the Elderly: A Preminilary Analysis. Available online: https://ispesh.upi.edu/file/ppt/ABS-ISPESH-23069.pdf (accessed on 22 February 2024).
- Nassef, Y.; Lee, K.-J.; Nfor, O.N.; Tantoh, D.M.; Chou,M. -C.; Liaw, Y.-P. The Impact of Aerobic Exercise and Badminton on HDL Cholesterol Levels in Taiwanese Adults. Nutrients 2020, 12, 1204. [Google Scholar] [CrossRef] [PubMed]
- Zubir, S.M.S.; Linoby, A.; Hussain, R.N.J.R.; Lamat, S.A.; Norhamzi, I.; Zulkhairi, A.; Noor, M.A.M.; Felder, H. Influence of recreational badminton playing on blood pressure and cognitive function in the elderly: a cross-sectional analysis with playing time-stratified sampling. J. Phys. Educ. Sport 2022, 22, 2076–2082. [Google Scholar]
- Zubir, S.M.S.; Linoby, A.; Hussain, R.N.J.R.; Lamat, S.A.; Norhamzi, I.; Zulkhairi, A.; Noor, M.A.M.; Felder, H. A Cross-sectional analysis of recreational badminton playing and its influence on body composition and cardiometabolic health in healthy older adults. J. Phys. Educ. Sport. 2022, 22, 2134–2140. [Google Scholar]
- Roh, M.; Dan, H.; Kim, O. Influencing Factors of Subjective Cognitive Impairment in Middle Aged and Older Adults. Int. J. Environ. Res. Public Health 2021, 18, 11488. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.B.; Sanders, S.; Auth, E.A. Loneliness and depression in independent living retirement communities: risk and resilience factors. Aging Ment. Health 2004, 8, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Schnohr, P.; O’Keefe, J.H.; Holtermann, A.; Lavie, C.J.; Lange, P.; Jensen, G.B.; Marott, J.L. Various leisure-time physical activities associated with widely divergent life expectancies: The Copenhagen city heart study. Mayo Clin. Proc. 2018, 93, 1775–1785. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Morey, V.; Kang, Y.K.; Kim, K.W.; Kim, T.K. Prevalence and Risk Factors of Spine, Shoulder, Hand, Hip, and Knee Osteoarthritis in Community-dwelling Koreans Older Than Age 65 Years. Cli. Orthop. Relat. Res. 2015, 473, 307–3314. [Google Scholar] [CrossRef] [PubMed]

| Elite male players | Elite female players | |
|---|---|---|
| HRmean (bpm) [23] | 166 ± 6 | 170 ± 10 |
| HR max [4] | 188.0 | 193.4 |
| %HRmax (%) [23] | 90.3 ± 3.7 | 88.4% ± 5.1 |
| VO2mean (mL/kg/min) [23] | 46.0 ± 4.5 | 36.4 ± 2.8 |
| VO2max (mL/kg/min) [4] | 56.3 | 45.8 |
| %VO2max (%) [23] | 74.8 ± 5.3 | 72.6 ± 7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
