Submitted:
27 March 2024
Posted:
27 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Preliminaries
3. Proof of Theorem 2
- (i)
- ϝ is a Banach space which is also reflexive and separable.
- (ii)
- If or if , then, for all , we get
- (ii)
-
If , then for each , we havewhere q is such that .
3.1. Proof of Theorem 2
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alsaedi, R. ; Ghanmi, A, Variational approach for the Kirchhoff problem involving the p-Laplace operator and the p-Hilfer derivative. Methods Appl. Sci. 2023, 46, 9286–9297. [Google Scholar] [CrossRef]
- Almeida, R. Further properties of Osler’s generalized fractional integrals and derivatives with respect to another function. Rocky Mountain J. Math. 2019, 49, 2459–2493. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonl. Sc. Num. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Herrmann, R. Fractional calculus: an introduction for physicists, World Scientific, (2011).
- Ben Ali, K.; Ghanmi, A.; Kefi, K. Existence of solutions for fractional differential equations with Dirichlet boundary conditions. Electron. J. Differ. Equ. 2016, 1–11. [Google Scholar]
- Caisheng, C.; Zonghu, X.; Jincheng, H. The Nehari manifold and the existence of multiple solutions for a singular quasilinear elliptic equation. J. Math. Anal. Appl. 2012, 393, 671–679. [Google Scholar]
- Chen, W.; Pang, G. A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction. J. Comput. Phys. 2016, 309, 350–367. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, I.; Sheen, D. A fractional-order model for MINMOD millennium. Math. Biosci. 2015, 262, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Erturk, V. S.; Yusuf, S.; Kumar, A. Fractional time-delay mathematical modeling of oncolytic virotherapy. Chaos Solitons Fractals, 2021; 111–123. [Google Scholar]
- Erturk, V.; Godwe, E.; Baleanu, D.; Kumar, P.; Asad, J.; Jajarmi, A. Novel fractional-order Lagrangian to describe motion of beam on nanowire. Acta Phys. Pol. A 2021, 140, 265–272. [Google Scholar] [CrossRef]
- Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 207, Elsevier Science B.V., Amsterdam, 2006.
- Drábek, P.; Pohozaev, S. I. Positive solutions for the p-Laplacian: application of the fibrering method. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 1997, 127, 703–726. [Google Scholar] [CrossRef]
- Ghanmi, A.; Althobaiti, M. Existence results involving fractional Liouville derivative. Bol. Soc. Parana. Mat. 2021, 39, 93–102. [Google Scholar] [CrossRef]
- Ghanmi, A.; Horrigue, S. Existence of positive solutions for a coupled system of nonlinear fractional differential equations. Ukr. Math. 2019, 71, 39–49. [Google Scholar] [CrossRef]
- Ghanmi, A.; Zhang, Z. Nehari manifold and multiplicity results for a class of fractional boundary value problems with p-Laplacian. Bull. Korean Math. Soc. 2019, 56, 1297–1314. [Google Scholar]
- Grahovac, N. M.; Z̀igic̀, M. M. Modelling of the hamstring muscle group by use of fractional derivatives, Comput. Comput. Math. Appl. 2010, 59, 1695–1700. [Google Scholar] [CrossRef]
- Horrigue, S.; Almuashi, H.; Alnashry, A. A. Existence results for some ψ-Hilfer iterative approximation. Math. found. comput. 2023. [Google Scholar] [CrossRef]
- Jiao, F.; Zhou, Y. Existence results for fractional boundary value problem via critical point theory. Intern. Journal of Bif. and Chaos, 2012; 22, 1–17. [Google Scholar]
- Ledesma, C. T. Mountain pass solution for a fractional boundary value problem. J. Fract. Calc. Appl. 2014, 5, 1–10. [Google Scholar]
- Magin, R. L.; Ovadia, M. Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control 2008, 14, 1431–1442. [Google Scholar] [CrossRef]
- Miller, K.; Ross, B. An introduction to the fractional calculus and fractional differential equations, Wiley and Sons, New York, 1993.
- Purohit, S.; Kalla, S. On fractional partial differential equations related to quantum mechanics. J. Phys. A, Math. Theor. 2011, 44, 1–8. [Google Scholar] [CrossRef]
- Rossikhin, Y. A.; Shitikova, M. V. Analysis of two colliding fractionally damped spherical shells in modelling blunt human head impacts. Cent. Eur. J. Phys. 2013, 11, 760–778. [Google Scholar] [CrossRef]
- Samko, S. G. Kilbas, A. A.; Marichev, O. I. Fractional integrals and derivatives, theory and functions, (1993), Gordon and Breach, Yverdon.
- Torres, C. Mountain pass solution for a fractional boundary value problem. J. Fract. Calculus Appli. 2014, 5, 1–10. [Google Scholar]
- Da Sousa, J. V.; de Oliveira, E. C. On the ψ-fractional integral and applications. Comp. Appl. Math. 2019, 38, 2019. [Google Scholar] [CrossRef]
- Da Sousa, E. C.; Zuo, J. Donal O’Regand, The Nehari manifold for a ψ-Hilfer fractional p-Laplacian. Appl. Anal. 2022, 101, 5076–5106. [Google Scholar] [CrossRef]
- Da Sousa, J. V.; Tavares, L. S.; Ledesma, C. E. T. A variational approach for a problem involving a ψ-Hilfer fractional operator. J. Appl. Anal. Comput. 2021, 11, 1610–1630. [Google Scholar] [CrossRef] [PubMed]
- Chamekh, M.; Ghanmi, A.; Horrigue, S. Iterative approximation of positive solutions for fractional boundary value problem on the half-line. Filomat 2018, 32, 6177–6187. [Google Scholar] [CrossRef]
- Cantizano, N. A.; Silva, A. Three solutions for a nonlocal problem with critical growth. J. Math. Anal. Appl. 2019, 469, 841–851. [Google Scholar] [CrossRef]
- Ghanmi, A.; Horrigue, S. Existence results for nonlinear boundary value problems. Filomat 2018, 32, 609–618. [Google Scholar] [CrossRef]
- Ghanmi, A.; Horrigue, S. Existence of positive solutions for a coupled system of nonlinear fractional differential equations. Ukr. Math. J. 2019, 71, 39–49. [Google Scholar] [CrossRef]
- Han, X.; Yang, X. Existence and multiplicity of positive solutions for a system of fractional differential equation with parameters. Bound. Value Probl. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Horrigue, S. Existence Results for a Class of Nonlinear Hadamard Fractional with p-Laplacian Operator Differential Equations. J. Math. Stat. 2021, 17, 61–72. [Google Scholar] [CrossRef]
- Il’yasov, Y. On nonlocal existence results for elliptic equations with convex-concave nonlinearities. Nonlinear Anal. Theory Methods Appl. 2005, 61, 211–236. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst. - S 2020, 13, 709–722. [Google Scholar] [CrossRef]
- Kassim, M. D.; Tatar, N. E. Stability of logarithmic type for a Hadamard fractional differential problem. J. Pseudo-Differ. Oper. Appl. 2020, 11, 447–466. [Google Scholar] [CrossRef]
- Luchko, Y. Trujillo, J. Caputo-type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal. 2007, 10, 249–267. [Google Scholar]
- Mainardi, F. Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, Imperial College Press, London, World Scientific (2020), Singapore.
- Nyamoradi, N.; Shekarbigi, M.; Razlansari, A.; Yavari, M. The Nehari manifold and application to a quasilinear elliptic equation with multiple Hardy-Type terms. J. Part. Diff. Eq 2013, 26, 193–216. [Google Scholar]
- Nouf, A.; Shammakh, W. M.; Ghanmi, A. Existence of solutions for a class of Boundary value problems involving Riemann Liouville derivative with respect to a function. FILOMAT 2023, 37, 1261–1270. [Google Scholar] [CrossRef]
- Oldham, K. Spanier, J. The fractional calculus theory and applications of differentiation and integration to arbitrary order,(1974), Elsevier, New York, Academic Press, New York.
- Wang, G.; Ghanmi, A.; Horrigue, S.; Madian, S. Existence result and uniqueness for some fractional problem. Mathematics 2019, 7, 516. [Google Scholar] [CrossRef]
- Zhang, X.; Boutat, D.; Liu, D. Applications of fractional operator in image processing and stability of control systems. Fractal Fract. 2023, 7, 359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
