Submitted:
20 March 2024
Posted:
22 March 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Methods
3. Role of ChatGPT-4 in Musculoskeletal Imaging
4. A. Clinical Applications of ChatGPT-4
4.1. Writing The MRI Reports
4.2. Writing The CT Reports
4.3. Writing The X-Ray Reports
4.4. Challenges in the Use of ChatGPT-4 in Musculoskeletal Imaging
4.5. Future Considerations of Artificial Intelligence in Musculoskeletal Imaging
5. Conclusions
Author Contributions
Funding
Ethics approval and consent to participate
Consent for publication
Availability of supporting data
Competing interest
References
- Iyengar, K. P., Yousef, M. M. A., Nune, A., Sharma, G. K., & Botchu, R. (2023). Perception of Chat Generative Pre-trained Transformer (Chat-GPT) AI tool amongst MSK clinicians. Journal of clinical orthopaedics and trauma, 44, 102253. [CrossRef]
- Lisacek-Kiosoglous, A. B., Powling, A. S., Fontalis, A., Gabr, A., Mazomenos, E., & Haddad, F. S. (2023). Artificial intelligence in orthopaedic surgery. Bone & joint research, 12(7), 447–454. [CrossRef]
- Patil, N. S., Huang, R. S., van der Pol, C. B., & Larocque, N. (2023). Comparative Performance of ChatGPT and Bard in a Text-Based Radiology Knowledge Assessment. Canadian Association of Radiologists journal = Journal l’Association canadienne des radiologistes, 8465371231193716. Advance online publication. [CrossRef]
- Sethi, H. S., Mohapatra, S., Mali, C., & Dubey, R. (2023). Online for On Call: A Study Assessing the Use of Internet Resources Including ChatGPT among On-Call Radiology Residents in India. The Indian journal of radiology & imaging, 33(4), 440–449. [CrossRef]
- Wagner, M. W., & Ertl-Wagner, B. B. (2024). Accuracy of Information and References Using ChatGPT-3 for Retrieval of Clinical Radiological Information. Canadian Association of Radiologists journal = Journal l’Association canadienne des radiologistes, 75(1), 69–73. [CrossRef]
- Totlis, T., Natsis, K., Filos, D., Ediaroglou, V., Mantzou, N., Duparc, F., & Piagkou, M. (2023). The potential role of ChatGPT and artificial intelligence in anatomy education: a conversation with ChatGPT. Surgical and radiologic anatomy : SRA, 45(10), 1321–1329. [CrossRef]
- Ariyaratne, S., Iyengar, K. P., & Botchu, R. (2023). Will collaborative publishing with ChatGPT drive academic writing in the future?. The British journal of surgery, 110(9), 1213–1214. [CrossRef]
- Massey, P. A., Montgomery, C., & Zhang, A. S. (2023). Comparison of ChatGPT-3.5, ChatGPT-4, and Orthopaedic Resident Performance on Orthopaedic Assessment Examinations. The Journal of the American Academy of Orthopaedic Surgeons, 31(23), 1173–1179. [CrossRef]
- Ali, R., Tang, O., Connolly, I., Fridley, J., Shin, J., Sullivan, P., … & Asaad, W. (2023). Performance of chatgpt, gpt-4, and google bard on a neurosurgery oral boards preparation question bank. [CrossRef]
- Fatani, B. (2023). Chatgpt for future medical and dental research. Cureus. [CrossRef]
- Rao, A., Kim, J., Kamineni, M., Pang, M., Lie, W., & Succi, M. (2023). Evaluating chatgpt as an adjunct for radiologic decision-making. [CrossRef]
- Cascella, M., Montomoli, J., Bellini, V., & Bignami, E. (2023). Evaluating the feasibility of chatgpt in healthcare: an analysis of multiple clinical and research scenarios. Journal of Medical Systems, 47(1). [CrossRef]
- Nedbal, C. (2023). Chatgpt in urology practice: revolutionizing efficiency and patient care with generative artificial intelligence. Current Opinion in Urology, 34(2), 98-104. [CrossRef]
- Oon, M. (2023). Bridging bytes and biopsies: a comparative analysis of chatgpt and histopathologists in pathology diagnosis and collaborative potential. Histopathology, 84(4), 601-613. [CrossRef]
- Aljindan, F. (2023). Utilization of chatgpt-4 in plastic and reconstructive surgery: a narrative review. Plastic and Reconstructive Surgery Global Open, 11(10), e5305. [CrossRef]
- Kijowski, R., Liu, F., Calivá, F., & Pedoia, V. (2019). Deep learning for lesion detection, progression, and prediction of musculoskeletal disease. Journal of Magnetic Resonance Imaging, 52(6), 1607-1619. [CrossRef]
- Suchman, K., Garg, S., & Trindade, A. (2023). Chat generative pretrained transformer fails the multiple-choice american college of gastroenterology self-assessment test. The American Journal of Gastroenterology, 118(12), 2280-2282. [CrossRef]
- Huh, S. (2023). Are chatgpt’s knowledge and interpretation ability comparable to those of medical students in korea for taking a parasitology examination?: a descriptive study. Journal of Educational Evaluation for Health Professions, 20, 1. [CrossRef]
- Sedaghat, S. (2023). Early applications of chatgpt in medical practice, education and research. Clinical Medicine, 23(3), 278-279. [CrossRef]
- Giannos, P. (2023). Evaluating the limits of ai in medical specialisation: chatgpt’s performance on the uk neurology specialty certificate examination. BMJ Neurology Open, 5(1), e000451. [CrossRef]
- Passby, L., Jenko, N., & Wernham, A. (2023). Performance of chatgpt on specialty certificate examination in dermatology multiple-choice questions. Clinical and Experimental Dermatology. [CrossRef]
- Sallam, M. (2023). Chatgpt utility in healthcare education, research, and practice: systematic review on the promising perspectives and valid concerns. Healthcare, 11(6), 887. [CrossRef]
- Khodarahmi, I. and Fritz, J. (2021). The value of 3 tesla field strength for musculoskeletal magnetic resonance imaging. Investigative Radiology, 56(11), 749-763. [CrossRef]
- Fritz, J. and Runge, V. (2022). Scientific advances and technical innovations in musculoskeletal radiology. Investigative Radiology, 58(1), 1-2. [CrossRef]
- Klauser, A., Faschingbauer, R., & Jaschke, W. (2010). Is sonoelastography of value in assessing tendons?. Seminars in Musculoskeletal Radiology, 14(03), 323-333. [CrossRef]
- Lin, D., Walter, S., & Fritz, J. (2022). Artificial intelligence–driven ultra-fast superresolution mri. Investigative Radiology, 58(1), 28-42. [CrossRef]
- Baumgartner, C. (2023). A regulatory challenge for natural language processing (nlp)-based tools such as chatgpt to be legally used for healthcare decisions. where are we now?. Clinical and Translational Medicine, 13(8). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
