Submitted:
19 March 2024
Posted:
20 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
- dPCR allows direct quantification of the sample without the need for calibration curves. This non-need for calibration curves is also particularly important in cases where quantified DNA is not readily available to produce calibration curves [6].
- dPCR allows more accurate quantification than qPCR [7];
- is a more robust test in that it is resistant to many of the inhibitors that can alter qPCR results [8],
- has a higher tolerance to point defects in complementarity between the template and the primers or probes, which eventually facilitates detection of mutated subpopulations [9], and
- improves the comparability of results between different centres and laboratories.
2. Virology Applications.
3. Bacteriology Applications
4. Applications in Parasitology and Protozoa
5. Epidemiology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuypers, J.; Jerome, K.R. Applications of digital PCR for clinical microbiology. J Clin Microbiol 2017, 55, 1621–1628. [Google Scholar] [CrossRef]
- Li, H.; Bai, R.; Zhao, Z.; Tao, L.; Ma, M.; Ji, Z.; et al. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci Rep 2018, 38, BSR20181170. [Google Scholar] [CrossRef]
- Quan, P.L.; Sauzade, M.; Brouzes, E. dPCR: a technology review. Sensors (Basel) 2018, 18, 1271. [Google Scholar] [CrossRef] [PubMed]
- Vynck, M.; Trypsteen, W.; Thas, O.; Vandekerckhove, L.; De Spiegelaere, W. The future of digital polymerase chain reaction in virology. Mol Diagn Ther 2016, 20, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Sreejith, K.R.; Ooi, C.H.; Jin, J.; Dao, D.V.; Nguyen, N.T. Digital polymerase chain reaction technology—recent advances and future perspectives. Lab Chip 2018, 18, 3717–3732. [Google Scholar] [CrossRef]
- Salipante, S.J.; Jerome, K.R. Digital PCR-An emerging technology with broad applications in microbiology. Clin Chem 2020, 66, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Hindson, C.M.; Chevillet, J.R.; Briggs, H.A.; Gallichotte, E.N.; Ruf, I.K.; Hindson, B.J.; et al. Absolute quantification by droplet digital PCR versus analog real time PCR. Nat Methods 2013, 10, 1003–1005. [Google Scholar] [CrossRef]
- Svec, D.A.; Novosadova, V.; Pfaff, M.W.; Kubista, M. How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif 2015, 3, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Dingle, T.C.; Sedlak, R.H.; Cook, L.; Jerome, K.R. Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin Chem 2013, 59, 1670–1672. [Google Scholar] [CrossRef] [PubMed]
- Madic, J.; Zocevic, A.; Senlis, V.; Fradet, E.; Andre, B.; Muller, S.; et al. Three-color crystal digital PCR. Biomol Detect Quantif 2016, 10, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Demeke, T.; Dobnik, D. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Anal Bioanal Chem 2018, 410, 4039–4050. [Google Scholar]
- Duong, K.; Ou, J.; Li, Z.; Lv, Z.; Dong, H.; Hu, T.; et al. Increased sensitivity using real-time dPCR for detection of SARS-CoV-2. Biotechniques 2021, 70, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Liang, Y.; Tang, H.; Liao, Y. A sensitive and accurate quantification method for the detection of hepatitis B virus covalently closed circular dna by the application of a droplet digital polymerase chain reaction amplification system. Biotechnol Lett 2015, 37, 2063–2073. [Google Scholar] [CrossRef]
- Henrich, T.J.; Gallien, S.; Li, J.Z.; Pereyra, F.; Kuritzkes, D.R. Low-level detection and quantitation of cellular HIV-1 DNA and 2-LTR circles using droplet digital PCR. J Virol Methods 2012, 186, 68–72. [Google Scholar] [PubMed]
- Malatinkova, E.; Kiselinova, M.; Bonczkowski, P.; Trypsteen, W.; Messiaen, P.; Vermeire, J.; et al. Accurate quantification of episomal HIV-1 two-long terminal repeat circles by use of optimized DNA isolation and droplet digital PCR. J Clin Microbiol 2015, 53, 699–701. [Google Scholar] [PubMed]
- Ruelle, J.; Yfantis, V.; Duquenne, A.; Goubau, P. Validation of an ultrasensitive digital droplet PCR assay for HIV-2 plasma RNA quantification. J Int AIDS Soc 2014, 17, 19675. [Google Scholar] [CrossRef] [PubMed]
- Kiselinova, M.; Pasternak, A.O.; De, S.W.; Vogelaers, D.; Berkhout, B.; Vandekerckhove, L. Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA. PLoS One 2014, 9, e85999. [Google Scholar]
- Bharuthram, A.; Paximadis, M.; Picton, A.C.; Tiemessen, C.T. Comparison of a quantitative real-time PCR assay and droplet digital PCR for copy number analysis of the CCl4l genes. Infect Genet Evol 2014, 25, 28–35. [Google Scholar] [PubMed]
- Sedlak, R.H.; Cook, L.; Huang, M.L.; Magaret, A.; Zerr, D.M.; Boeckh, M.; et al. Identification of chromosomally integrated human herpesvirus 6 by droplet digital PCR. Clin Chem 2014, 60, 765–72. [Google Scholar] [CrossRef]
- Sedlak, R.H.; Hill, J.A.; Nguyen, T.; Cho, M.; Levin, G.; Cook, L.; et al. Detection of human herpesvirus 6B (HHV-6B) reactivation in hematopoietic cell transplant recipients with inherited chromosomally integrated HHV-6A by droplet digital PCR. J Clin Microbiol 2016, 54, 1223–1227. [Google Scholar] [CrossRef]
- Hunter-Schlichting, D.N.; Vogel, R.I.; Geller, M.A.; Nelson, H.N. Quantification of low-level human cytomegalovirus and Epstein-Barr virus DNAemia by digital PCR. J Virol Methods 2024, 325, 114876. [Google Scholar] [CrossRef]
- Haruta, K.; Takeuchi, S.; Yamaguchi, M.; Horiba, K.; Suzuki, T.; Torii, Y.; Narita, A.; et al. Droplet Digital PCR Development for Adenovirus Load Monitoring in Children after Hematopoietic Stem Cell Transplantation. J Mol Diagn 2023, 25, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, R.H.; Cook, L.; Cheng, A.; Magaret, A.; Jerome, K.R. Clinical utility of droplet digital PCR for human cytomegalovirus. J Clin Microbiol 2014, 52, 2844–2848. [Google Scholar] [CrossRef]
- Gu, J.; Ji, H.; Liu, T.; Chen, C.; Zhao, S.; Cao, Y.; et al. Detection of cytomegalovirus (CMV) by digital PCR in stool samples for the non-invasive diagnosis of CMV gastroenteritis. Virol J 2022, 19, 183. [Google Scholar] [CrossRef] [PubMed]
- Haqshenas, G.; Garland, S.M.; Balgovind, P.; Cornall, A.; Danielewski, J.; Molano, M.; Machalek, D.A.; Murray, G. Development of a touchdown droplet digital PCR assay for the detection and quantitation of human papillomavirus 16 and 18 from self-collected anal samples. Microbiol Spectr 2023, 11, e0183623. [Google Scholar] [CrossRef] [PubMed]
- Holland, S.C.; Holland, L.A.; Smith, M.F.; Lee, M.B.; Hu, J.C.; Lim, E.S. Digital PCR Discriminates between SARS-CoV-2 Omicron Variants and Immune Escape Mutations. Microbiol Spectr 2023, 11, e0525822. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, E.; Kim, B.; Cho, J.; Ryu, S.W.; Lee, K.A. Evaluation of diagnostic performance of SARS-CoV-2 infection using digital droplet polymerase chain reaction in individuals with or without COVID-19 symptoms. Clin Chim Acta 2024, 554, 117759. [Google Scholar] [CrossRef]
- Vesper, H.W.; Emons, H.; Gnezda, M.; Jain, C.P.; Miller, W.G.; Rej, R.; et al. Characterization and qualification of commutable reference materials for laboratory medicine approved guideline; Wayne (PA), CLSI,, 2010. [Google Scholar]
- Hayden, R.T.; Gu, Z.; Sam, S.S.; Sun, Y.; Tang, L.; Pounds, S.; et al. Comparative evaluation of three commercial quantitative cytomegalovirus standards by use of digital and real-time PCR. J Clin Microbiol 2015, 53, 1500–1505. [Google Scholar] [CrossRef] [PubMed]
- Talarico, S.; Safaeian, M.; Gonzalez, P.; Hildesheim, A.; Herrero, R.; Porras, C.; et al. Quantitative detection and genotyping of Helicobacter pylori from stool using droplet digital PCR reveals variation in bacterial loads that correlates with cagA virulence gene carriage. Helicobacter 2016, 21, 325–333. [Google Scholar] [CrossRef]
- Leth, T.A.; Joensen, S.M.; Bek-Thomsen, M.; Møller, J.K. Establishment of a digital PCR method for detection of Borrelia burgdorferi sensu lato complex DNA in cerebrospinal fluid. Sci Rep 2022, 12, 19991. [Google Scholar] [CrossRef]
- Cresswell, F.; Lange, C.; van Crevel, R. Improving the diagnosis of tuberculous meningitis: good; but not good enough. Clin Microbiol Infect 2020, 26, 134–136. [Google Scholar] [CrossRef]
- King, J.L.; Smith, A.D.; Mitchell, E.A.; Allen, M.S. Validation of droplet digital PCR for the detection and absolute quantification of Borrelia DNA in Ixodes scapularis ticks. Parasitology 2017, 144, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Maggi, R.; Breitschwerdt, E.B.; Qurollo, B.; Miller, J.C. Development of a Multiplex Droplet Digital PCR Assay for the Detection of Babesia, Bartonella and Borrelia Species. Pathogens 2021, 10, 1462. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Pan, L.; Lyu, L.; Li, J.; Jia, H.; Du, B.; Sun, Q.; Zhang, Z. Diagnostic accuracy of droplet digital PCR analysis of cerebrospinal fluid for tuberculous meningitis in adult patients. Clin Microbiol Infect 2020, 26, 213–219. [Google Scholar] [CrossRef]
- Yang, J.; Han, X.; Liu, A.; Bai, X.; Xu, C.; Bao, F.; et al. Use of Digital Droplet PCR to Detect Mycobacterium tuberculosis DNA in Whole Blood-Derived DNA Samples from Patients with Pulmonary and Extrapulmonary Tuberculosis. Front Cell Infect Microbiol 2017, 7, 369. [Google Scholar] [CrossRef]
- Meregildo-Rodriguez, E.D.; Asmat-Rubio, M.G.; Vásquez-Tirado, G.A. Droplet digital PCR vs. quantitative real time-PCR for diagnosis of pulmonary and extrapulmonary tuberculosis: systematic review and meta-analysis. Front Med (Lausanne) 2023, 10, 1248842. [Google Scholar]
- Zhang, D.; Yu, F.; Han, D.; Chen, W.; Yuan, L.; Xie, M.; et al. ddPCR provides a sensitive test compared with GeneXpert MTB/RIF and mNGS for suspected Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2023, 13, 1216339. [Google Scholar] [CrossRef]
- Aung, Y.W.; Faksri, K.; Sangka, A.; Tomanakan, A.; Namwat, W. Detection of Mycobacterium tuberculosis Complex in Sputum Samples Using Droplet Digital PCR Targeting mpt64. Pathogens 2023, 12, 345. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Lin, Z.; Tan, Y.; Liang, B.; Pan, Y.; et al. Quantification of Isoniazid-heteroresistant Mycobacterium tuberculosis Using Droplet Digital PCR. J Clin Microbiol 2023, 61, e0188422. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hu, Y.; Yang, C.; Shi, W.; Jin, S.; Hua, C.; Jiang, K. Development and validation of a novel multiplex digital PCR assay for identification of pathogens in cerebrospinal fluid of children with bacterial meningitis. Clin Chim Acta 2024, 554, 117787. [Google Scholar] [CrossRef]
- Ding, Z.; Cui, J.; Zhang, Q.; Feng, J.; Du, B.; Xue, G.; et al. Detecting and quantifying Veillonella by real-time quantitative PCR and droplet digital PCR. Appl Microbiol Biotechnol 2024, 108, 45. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; He, Z.; Kong, M.; Jin, D. Development of a duplex droplet digital PCR assay for the detection of Burkholderia cepacia complex and Stenotrophomonas maltophilia in bloodstream infections. Microbiol Spectr. 2024, e0356923. [Google Scholar] [CrossRef]
- Zhao, H.; Yan, C.; Feng, Y.; Du, B.; Feng, J.; Cui, X.; Cui, J.; Gan, L.; et al. Absolute quantification of Mycoplasma pneumoniae in infected patients by droplet digital PCR to track disease severity and treatment efficacy. Front Microbiol 2023, 14, 1177273.
- Liu, J.; Song, Z.; Ta, N.; Tian, G.; Yang, X.; Zhao, H.; et al. Development and evaluation of a droplet digital PCR assay to detect Brucella in human whole blood. PLoS Negl Trop Dis 2023, 17, e0011367.
- Tedim, A.P.; Merino, I.; Ortega, A.; Domínguez-Gil, M.; Eiros, JM.; Bermejo-Martín, J.F. Quantification of bacterial DNA in blood using droplet digital PCR: a pilot study. Diagn Microbiol Infect Dis 2024, 108, 116075. [Google Scholar] [CrossRef]
- Li, Y.; Huang, K.; Yin, J.; Tan, Z.; Zhou, M.; Dai, J.; Yi, B. Clinical evaluation of a multiplex droplet digital PCR for pathogen detection in critically ill COVID-19 patients with bloodstream infections. Infection 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Giersch, K.; Tanida, K.; Both, A.; Nörz, D.; Heim, D.; Rohde, H.; Aepfelbacher, M.; Lütgehetmann, M. Adaptation and validation of a quantitative vanA/vanB DNA screening assay on a high-throughput PCR system. Sci Rep 2024, 14, 3523. [Google Scholar] [CrossRef]
- Ramirez, J.D.; Herrera, G.; Hernandez, C.; Cruz-Saavedra, L.; Muñoz, M.; Florez, C.; et al. Evaluation of the analytical and diagnostic performance of a digital droplet polymerase chain reaction (ddPCR) assay to detect Trypanosoma cruzi DNA in blood samples. PLoS Negl Trop Dis 2018, 12, e0007063.
- Dong, L.; Li, W.; Xu, Q.; Gu, J.; Kang, Z.; Chen, J.; et al. A rapid multiplex assay of human malaria parasites by digital PCR. Clin Chim Acta 2023, 539, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.L.; Alvarenga, D.A.M.; Aguiar, A.C.C.; Louzada, J.; Pereira, D.B.; de Oliveira, T.F.; et al. Improving the Molecular Diagnosis of Malaria: Droplet Digital PCR-Based Method Using Saliva as a DNA Source. Front Microbiol 2022, 13, 882530. [Google Scholar] [CrossRef] [PubMed]
- Mahendran, P.; Liew, J.W.K.; Amir, A.; Ching, X.T.; Lau, Y.L. Droplet digital polymerase chain reaction (ddPCR) for the detection of Plasmodium knowlesi and Plasmodium vivax. Malar J 2020, 19, 241. [Google Scholar] [CrossRef]
- Srisutham, S.; Suwannasin, K.; Sugaram, R.; Dondorp, A.M.; Imwong, M. Measurement of gene amplifications related to drug resistance in Plasmodium falciparum using droplet digital PCR. Malar J 2021, 20, 120.
- Yang, R.; Paparini, A.; Monis, P.; Ryan, U. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. Int J Parasitol 2014, 44, 1105–1113. [Google Scholar] [CrossRef]
- Pomari, E.; Piubelli, C.; Perandin, F.; Bisoffi, Z. Digital PCR: a new technology for diagnosis of parasitic infections. Clin Microbiol Infect 2019, 25, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Cai, P.; Weerakoon, K.G.; Mu, Y.; Olveda, R.M.; Ross, A.G.; Olveda, D.U.; McManus, D.P. Comparison of Kato Katz; antibody-based ELISA and droplet digital PCR diagnosis of schistosomiasis japonica: Lessons learnt from a setting of low infection intensity. PLoS Negl Trop Dis 2019, 13, e0007228. [Google Scholar] [CrossRef] [PubMed]
- Weerakoon, K.G.; Gordon, C.A.; Williams, G.M.; Cai, P.; Gobert, G.N.; Olveda, R.M.; et al. Droplet Digital PCR Diagnosis of Human Schistosomiasis: Parasite Cell-Free DNA Detection in Diverse Clinical Samples. J Infect Dis. 2017, 216, 1611–1622. [Google Scholar] [CrossRef] [PubMed]
- Acosta Soto, L.; Santísima-Trinidad, A.B.; Bornay-Llinares, F.J.; Martín González, M.; Pascual Valero, J.A.; Ros Muñoz, M. Quantitative PCR and Digital PCR for Detection of Ascaris lumbricoides Eggs in Reclaimed Water. Biomed Res Int 2017, 2017, 7515409. [Google Scholar] [CrossRef] [PubMed]
- An, N.; Dou, X.; Yin, N.; Lu, H.; Zheng, J.; Liu, X.; Yang, H.; Zhu, X.; et al. The Use of Digital PCR for the Diagnosis of Demodex Blepharitis. Curr Eye Res. 2024, 49, 33–38. [Google Scholar] [CrossRef]
- Chai, X.; Liu, S.; Liu, C.; Bai, J.; Meng, J.; Tian, H.; Han, X.; Han, G.; Xu, X.; Li, Q. Surveillance of SARS-CoV-2 in wastewater by quantitative PCR and digital PCR: a case study in Shijiazhuang city, Hebei province. China. Emerg Microbes Infect 2024, 13, 2324502. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Ryu, J.; Park, SS.; Kim, S.; Kim, K. Monitoring viruses and beta-lactam resistance genes through wastewater surveillance during a COVID-19 surge in Suwon, South Korea. Sci Total Environ 2024, 28, 922:171223. [Google Scholar] [CrossRef]
- Boehm, A.B.; Shelden, B.; Duong, D.; Banaei, N.; White, BJ.; Wolfe, MK. A retrospective longitudinal study of adenovirus group F, norovirus GI and GII, rotavirus, and enterovirus nucleic acids in wastewater solids at two wastewater treatment plants: solid-liquid partitioning and relation to clinical testing data. mSphere 2024, 1, e0073623. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz Barron, M.; Kneis, D.; Geissler, M.; Dumke, R.; Dalpke, A.; Berendonk, TU. Evaluating the sensitivity of droplet digital PCR for the quantification of SARS-CoV-2 in wastewater. Front Public Health 2023, 11, 1271594. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Ryu, E.; Khaleel, Z.H.; Seo, S.E.; Kim, L.; Kim, Y.H.; Park, H.G.; Kwon, O.S. Plasmonic digital PCR for discriminative detection of SARS-CoV-2 variants. Biosens Bioelectron 2024, 246, 115859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cui, L.; Wang, Y.; Xie, Z.; Wei, Y.; Zhu, S.; et al. An Integrated ddPCR Lab-on-a-Disc Device for Rapid Screening of Infectious Diseases. Biosensors (Basel) 2023, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Malla, B.; Shrestha, S.; Haramoto, E. Optimization of the 5-plex digital PCR workflow for simultaneous monitoring of SARS-CoV-2 and other pathogenic viruses in wastewater. Sci Total Environ 2024, 913, 169746. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Li, M.; Law, MK.; Mak, PI.; Martins, RP.; Jia, Y. Sub-5-Minute Ultrafast PCR using Digital Microfluidics. Biosens Bioelectron 2023, 242, 115711. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
