Submitted:
12 March 2024
Posted:
12 March 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Literature Review and Hypothesis Development
3. Data and Method
3.1. Sample Selection and Data Source
3.2. Dependent Variables
3.3. Independent Variables
3.4. Empirical Method
4. Empirical Result
4.1. Summary Statistics
4.2. The Effect of Low-Carbon Innovations on Default Risks
4.3. Heterogeneity Effects
4.4. Endogeneity Issues
4.5. Mechanism of Low-Carbon Innovation Effects
5. Conclusions
| 1 | CCER is a database of economics and finance, which is built by Sinofin and China Centre for Economic Research, Peking University. |
| 2 | CNRDS is Chinese Research Data Services Platform, which provides high-quality and open data for Chinese economic researches. |
| 3 | CSMAR is China Stock Market and Accounting Research Database, which provides various datasets for Chinese stock market. |
References
- Zhu, J.; Fan, Y.; Deng, X.; Xue, L. Low-Carbon Innovation Induced by Emissions Trading in China. Nat Commun 2019, 10, 4088. [Google Scholar] [CrossRef]
- Monasterolo, I. Climate Change and the Financial System. Annu. Rev. Resour. Econ. 2020, 12, 299–320. [Google Scholar] [CrossRef]
- Jung, J.; Herbohn, K.; Clarkson, P. Carbon Risk, Carbon Risk Awareness and the Cost of Debt Financing. J Bus Ethics 2018, 150, 1151–1171. [Google Scholar] [CrossRef]
- Giglio, S.; Kelly, B.; Stroebel, J. Climate Finance. Annual Review of Financial Economics 2021, 13, 15–36. [Google Scholar] [CrossRef]
- Battiston, S.; Mandel, A.; Monasterolo, I.; Roncoroni, A. Climate Credit Risk and Corporate Valuation. In Climate credit risk and corporate valuation: Battiston, Stefano| uMandel, Antoine| uMonasterolo, Irene| uRoncoroni, Alan; [Sl]: SSRN, 2023. [Google Scholar]
- Lemoine, D. The Climate Risk Premium: How Uncertainty Affects the Social Cost of Carbon. Journal of the Association of Environmental and Resource Economists 2021, 8, 27–57. [Google Scholar] [CrossRef]
- Dietz, S.; Gollier, C.; Kessler, L. The Climate Beta. Journal of Environmental Economics and Management 2018, 87, 258–274. [Google Scholar] [CrossRef]
- Li, F.; Xu, X.; Li, Z.; Du, P.; Ye, J. Can Low-Carbon Technological Innovation Truly Improve Enterprise Performance? The Case of Chinese Manufacturing Companies. Journal of Cleaner Production 2021, 293, 125949. [Google Scholar] [CrossRef]
- Bannier, C.E.; Bofinger, Y.; Rock, B. Corporate Social Responsibility and Credit Risk. Finance Research Letters 2022, 44, 102052. [Google Scholar] [CrossRef]
- Safiullah, S.; Phan, D.H.B.; Kabir, M.N. Green Innovation and Corporate Default Risk 2022.
- Gutiérrez-López, C.; Castro, P.; Tascón, M.T. How Can Firms’ Transition to a Low-Carbon Economy Affect the Distance to Default? Research in International Business and Finance 2022, 62, 101722. [Google Scholar] [CrossRef]
- Hsu, P.-H.; Lee, H.-H.; Liu, A.Z.; Zhang, Z. Corporate Innovation, Default Risk, and Bond Pricing. Journal of Corporate Finance 2015. [Google Scholar] [CrossRef]
- Meles, A.; Salerno, D.; Sampagnaro, G.; Verdoliva, V.; Zhang, J. The Influence of Green Innovation on Default Risk: Evidence from Europe. International Review of Economics & Finance 2023, 84, 692–710. [Google Scholar] [CrossRef]
- Gunday, G.; Ulusoy, G.; Kilic, K.; Alpkan, L. Effects of Innovation Types on Firm Performance. International Journal of Production Economics 2011, 133, 662–676. [Google Scholar] [CrossRef]
- Naqbi, E.A.; Alshurideh, M.; AlHamad, A.; Al, B. The Impact of Innovation on Firm Performance: A Systematic Review. International Journal of Innovation 2020, 14. [Google Scholar]
- Wang, D.S. Association between Technological Innovation and Firm Performance in Small and Medium-Sized Enterprises: The Moderating Effect of Environmental Factors. International Journal of Innovation Science 2019, 11, 227–240. [Google Scholar] [CrossRef]
- Xu, J.; Shang, Y.; Yu, W.; Liu, F. Intellectual Capital, Technological Innovation and Firm Performance: Evidence from China’s Manufacturing Sector. Sustainability 2019, 11, 5328. [Google Scholar] [CrossRef]
- Ben-Nasr, H.; Bouslimi, L.; Zhong, R. Do Patented Innovations Reduce Stock Price Crash Risk?*. International Review of Finance 2021, 21, 3–36. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Paunov, C. THE RISKS OF INNOVATION: ARE INNOVATING FIRMS LESS LIKELY TO DIE? THE REVIEW OF ECONOMICS AND STATISTICS 2015. [Google Scholar] [CrossRef]
- Matos, S.; Viardot, E.; Sovacool, B.K.; Geels, F.W.; Xiong, Y. Innovation and Climate Change: A Review and Introduction to the Special Issue. Technovation 2022, 117, 102612. [Google Scholar] [CrossRef]
- Viardot, E. The Role of Cooperatives in Overcoming the Barriers to Adoption of Renewable Energy. Energy Policy 2013, 63, 756–764. [Google Scholar] [CrossRef]
- Ghisetti, C.; Pontoni, F. Investigating Policy and R&D Effects on Environmental Innovation: A Meta-Analysis. Ecological Economics 2015, 118, 57–66. [Google Scholar] [CrossRef]
- Zhou, S.; Matisoff, D.C.; Kingsley, G.A.; Brown, M.A. Understanding Renewable Energy Policy Adoption and Evolution in Europe: The Impact of Coercion, Normative Emulation, Competition, and Learning. Energy Research & Social Science 2019, 51, 1–11. [Google Scholar] [CrossRef]
- Lacal Arantegui, R.; Jäger-Waldau, A. Photovoltaics and Wind Status in the European Union after the Paris Agreement. Renewable and Sustainable Energy Reviews 2018, 81, 2460–2471. [Google Scholar] [CrossRef]
- Acemoglu, D.; Akcigit, U.; Hanley, D.; Kerr, W. Transition to Clean Technology. Journal of Political Economy 2016. [Google Scholar] [CrossRef]
- Davis, S.J.; Caldeira, K.; Matthews, H.D. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure. Science 2010, 329, 1330–1333. [Google Scholar] [CrossRef]
- Du, K.; Li, P.; Yan, Z. Do Green Technology Innovations Contribute to Carbon Dioxide Emission Reduction? Empirical Evidence from Patent Data. Technological Forecasting and Social Change 2019, 146, 297–303. [Google Scholar] [CrossRef]
- Cheng, C.C.J.; Yang, C.; Sheu, C. The Link between Eco-Innovation and Business Performance: A Taiwanese Industry Context. Journal of Cleaner Production 2014, 64, 81–90. [Google Scholar] [CrossRef]
- Liao, Z. Corporate Culture, Environmental Innovation and Financial Performance. Business Strategy and the Environment 2018, 27, 1368–1375. [Google Scholar] [CrossRef]
- Huang, J.-W.; Li, Y.-H. Green Innovation and Performance: The View of Organizational Capability and Social Reciprocity. J Bus Ethics 2017, 145, 309–324. [Google Scholar] [CrossRef]
- Rezende, L. de A.; Bansi, A.C.; Alves, M.F.R.; Galina, S.V.R. Take Your Time: Examining When Green Innovation Affects Financial Performance in Multinationals. Journal of Cleaner Production 2019, 233, 993–1003. [Google Scholar] [CrossRef]
- Saliba de Oliveira, J.A.; Cruz Basso, L.F.; Kimura, H.; Sobreiro, V.A. Innovation and Financial Performance of Companies Doing Business in Brazil. International Journal of Innovation Studies 2018, 2, 153–164. [Google Scholar] [CrossRef]
- Wagner, M. How to Reconcile Environmental and Economic Performance to Improve Corporate Sustainability: Corporate Environmental Strategies in the European Paper Industry. Journal of Environmental Management 2005, 76, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Misani, N.; Pogutz, S. Unraveling the Effects of Environmental Outcomes and Processes on Financial Performance: A Non-Linear Approach. Ecological Economics 2015, 109, 150–160. [Google Scholar] [CrossRef]
- Trumpp, C.; Guenther, T. Too Little or Too Much? Exploring U-Shaped Relationships between Corporate Environmental Performance and Corporate Financial Performance. Business Strategy and the Environment 2017, 26, 49–68. [Google Scholar] [CrossRef]
- Aguilera-Caracuel, J.; Ortiz-de-Mandojana, N. Green Innovation and Financial Performance: An Institutional Approach. Organization & Environment 2013, 26, 365–385. [Google Scholar] [CrossRef]
- Aastvedt, T.M.; Behmiri, N.B.; Lu, L. Does Green Innovation Damage Financial Performance of Oil and Gas Companies? Resources Policy 2021, 73, 102235. [Google Scholar] [CrossRef]
- Cahen-Fourot, L.; Campiglio, E.; Godin, A.; Kemp-Benedict, E.; Trsek, S. Capital Stranding Cascades: The Impact of Decarbonisation on Productive Asset Utilisation. Energy Economics 2021, 103, 105581. [Google Scholar] [CrossRef]
- Muldoon-Smith, K.; Greenhalgh, P. Suspect Foundations: Developing an Understanding of Climate-Related Stranded Assets in the Global Real Estate Sector. Energy Research & Social Science 2019, 54, 60–67. [Google Scholar] [CrossRef]
- Curtin, J.; McInerney, C.; Ó Gallachóir, B.; Hickey, C.; Deane, P.; Deeney, P. Quantifying Stranding Risk for Fossil Fuel Assets and Implications for Renewable Energy Investment: A Review of the Literature. Renewable and Sustainable Energy Reviews 2019, 116, 109402. [Google Scholar] [CrossRef]
- Chevallier, J.; Goutte, S.; Ji, Q.; Guesmi, K. Green Finance and the Restructuring of the Oil-Gas-Coal Business Model under Carbon Asset Stranding Constraints. Energy Policy 2021, 149, 112055. [Google Scholar] [CrossRef]
- He, F.; Yan, Y.; Hao, J.; Wu, J. (George) Retail Investor Attention and Corporate Green Innovation: Evidence from China. Energy Economics 2022, 115, 106308. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Wang, Y. The Dynamic Interaction between Investor Attention and Green Security Market: An Empirical Study Based on Baidu Index. China Finance Review International 2021, 13, 79–101. [Google Scholar] [CrossRef]
- Liu, F.; Kang, Y.; Guo, K.; Sun, X. The Relationship between Air Pollution, Investor Attention and Stock Prices: Evidence from New Energy and Polluting Sectors. Energy Policy 2021, 156, 112430. [Google Scholar] [CrossRef]
- Deng, C.; Zhou, X.; Peng, C.; Zhu, H. Going Green: Insight from Asymmetric Risk Spillover between Investor Attention and pro-Environmental Investment. Finance Research Letters 2022, 47, 102565. [Google Scholar] [CrossRef]
- Hao, J.; Xiong, X. Retail Investor Attention and Firms’ Idiosyncratic Risk: Evidence from China. International Review of Financial Analysis 2021, 74, 101675. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, L.; Zhu, Y.; Si, H.; He, X. Does Low-Carbon City Construction Improve Total Factor Productivity? Evidence from a Quasi-Natural Experiment in China. International Journal of Environmental Research and Public Health 2021, 18, 11974. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Chen, Y.; Lin, B. Uncovering the Role of Renewable Energy Innovation in China’s Low Carbon Transition: Evidence from Total-Factor Carbon Productivity. Environmental Impact Assessment Review 2023, 101, 107128. [Google Scholar] [CrossRef]
- Wu, J.; Xia, Q.; Li, Z. Green Innovation and Enterprise Green Total Factor Productivity at a Micro Level: A Perspective of Technical Distance. Journal of Cleaner Production 2022, 344, 131070. [Google Scholar] [CrossRef]
- İmrohoroğlu, A.; Tüzel, Ş. Firm-Level Productivity, Risk, and Return. Management Science 2014, 60, 2073–2090. [Google Scholar] [CrossRef]
- de Faria, P.; Lima, F. Interdependence and Spillovers: Is Firm Performance Affected by Others’ Innovation Activities?
- Aiello, F.; Cardamone, P. R&D Spillovers and Firms’ Performance in Italy: Evidence from a Flexible Production Function. Empirical Economics 2008, 34, 143–166. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, H.; Sun, F. The Impact of Dual Network Structure on Firm Performance: The Moderating Effect of Innovation Strategy. Technology Analysis & Strategic Management 2020, 32, 1020–1034. [Google Scholar] [CrossRef]
- Chen, L. Do Patent Citations Indicate Knowledge Linkage? The Evidence from Text Similarities between Patents and Their Citations. Journal of Informetrics 2017, 11, 63–79. [Google Scholar] [CrossRef]
- Whalen, R.; Lungeanu, A.; DeChurch, L.; Contractor, N. Patent Similarity Data and Innovation Metrics. J Empirical Legal Studies 2020, 17, 615–639. [Google Scholar] [CrossRef]
- Merton, R.C. On the Pricing of Corporate Debt: The Risk Structure of Interest Rates. The Journal of Finance 1974, 29, 449–470. [Google Scholar] [CrossRef]
- Bharath, S.T.; Shumway, T. Forecasting Default with the Merton Distance to Default Model. The Review of Financial Studies 2008, 21, 1339–1369. [Google Scholar] [CrossRef]
- Arts, S.; Cassiman, B.; Gomez, J.C. Text Matching to Measure Patent Similarity. Strategic Management Journal 2018, 39, 62–84. [Google Scholar] [CrossRef]
- Liang, Y.; Rudik, I.; Zou, E.Y.; Johnston, A.; Rodewald, A.D.; Kling, C.L. Conservation Cobenefits from Air Pollution Regulation: Evidence from Birds. Proceedings of the National Academy of Sciences 2020, 117, 30900–30906. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zheng, X.; Liao, J.; Niu, J. Low-Carbon City Pilot Policy and Corporate Environmental Performance: Evidence from a Quasi-Natural Experiment. International Review of Economics & Finance 2024, 89, 1248–1266. [Google Scholar] [CrossRef]
- Yang, G. Can the Low-Carbon City Pilot Policy Promote Firms’ Low-Carbon Innovation: Evidence from China. PLoS ONE 2023, 18, e0277879. [Google Scholar] [CrossRef]
- Yao, S.; Pan, Y.; Sensoy, A.; Uddin, G.S.; Cheng, F. Green Credit Policy and Firm Performance: What We Learn from China. Energy Economics 2021, 101, 105415. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Qi, Y.; Shao, S. Can Green Credit Policy Improve Environmental Quality? Evidence from China. Journal of Environmental Management 2021, 298, 113445. [Google Scholar] [CrossRef]
- Huang, J.; Cai, X.; Huang, S.; Tian, S.; Lei, H. Technological Factors and Total Factor Productivity in China: Evidence Based on a Panel Threshold Model. China Economic Review 2019, 54, 271–285. [Google Scholar] [CrossRef]

| Variables | Definition |
|---|---|
| Distance-to-default (DD) | The measurement of default risks developed by Merton model [57], the more is DD, the less is default risk |
| Current ratio | Current ratio is the ratio of current assets and current liabilities, which measures the ability to pay short-term obligations within one year. |
| Interest coverage | Interest coverage is EBIT divided by the interest expense of the firm. Higher interest coverage means |
| Debt-to-asset ratio | Debt-to-asset ratio is total liabilities divided by total assets, which measures the level of debt. |
| Total asset turnover | Total asset turnover ratio is the ratio that net sales divided by the average total assets, which measures the efficiency of generating revenue and sales. |
| Net ROA | The return on net assets is the ratio that net income divided by average net assets, which measures the profitability of the business. |
| ROE | The return on equity is the ratio that net income divided by average shareholders’ equity, which measures the profitability and efficiency of generating profits. |
| Total asset change | Total asset change is the percentage of total asset change, which measures the growth of assets. |
| ROA change | ROA change is the percentage of ROA change, which measures the growth of profitability. |
| Low-carbon patent quantity | The quantity measurement of low-carbon patent, denoting the number of climate change transition innovations |
| Low-carbon patent generality | The generality measurement of low-carbon patent, denoting the intensity of broad usage of climate transition |
| Low-carbon patent importance | The importance measurement of low-carbon patent citations, denoting the quality and importance for climate change transition innovations |
| Low-carbon patent time costs | The difference between the application date and the approval date of the low-carbon patent in the industry level, indicating time costs of innovations. |
| Investor attention score | The annual median of daily Baidu search index for listed firms |
| Total factor productivity | Total factor productivity (TFP) is the efficiency of productive activities over time, a productivity indicator that measures total output per unit of total inputs and is calculated by generalized method of moments |
| Patent centrality | The centrality degree of patent similarity network to describe the technology spillovers |
| Variables | Signal | Observations | Mean | SD | Min | Max |
|---|---|---|---|---|---|---|
| Distance-to- default | DD | 23,580 | 10.10 | 17.19 | 0.824 | 3,306 |
| Current ratio | CR | 23,580 | 2.726 | 3.958 | -5.132 | 190.9 |
| Interest cover | IC | 23,580 | 35.88 | 1,037 | -19,622 | 125,199 |
| Asset loan rate | AL | 23,580 | 0.448 | 1.347 | -0.195 | 178.3 |
| Total asset turnover | TAT | 23,580 | 0.670 | 0.556 | -0.0479 | 12.37 |
| Net ROA | ROA | 23,580 | 0.0412 | 0.192 | -16.11 | 20.79 |
| ROE | ROE | 23,580 | 0.0520 | 0.941 | -174.9 | 21.90 |
| Total asset change | TAG | 23,580 | 0.222 | 0.686 | -1.000 | 41.46 |
| ROA change | ROAG | 23,580 | -8.804 | 886.7 | -171,184 | 22,677 |
| Low-carbon patent quantity | LCQ | 23,580 | 0.556 | 6.937 | 0 | 417 |
| Low-carbon patent generality | LCG | 23,580 | 0.603 | 7.465 | 0 | 450 |
| Low-carbon patent importance | LCI | 23,580 | 0.864 | 11.87 | 0 | 750 |
| Low-carbon patent time costs | LCT | 23,580 | 19.11 | 67.48 | 0 | 1,250 |
| Total factor productivity | TFP | 23,580 | 3.095 | 1.375 | -0.527 | 9.437 |
| Investor attention score | IA | 23,580 | 750.3 | 1,348 | 0 | 49,556 |
| Patent centrality | PC | 23,580 | 0.0182 | 0.0550 | 0 | 0.888 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| LCQ | 0.007** | 0.007** | ||||
| (0.003) | (0.003) | |||||
| LCG | 0.007** | 0.007** | ||||
| (0.003) | (0.003) | |||||
| LCI | 0.004* | 0.004* | ||||
| (0.002) | (0.002) | |||||
| CR | 0.273*** | 0.271*** | 0.273*** | 0.271*** | 0.273*** | 0.271*** |
| (0.048) | (0.049) | (0.048) | (0.049) | (0.048) | (0.049) | |
| IC | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| AL | -0.029* | -0.021 | -0.029* | -0.021 | -0.029* | -0.021 |
| (0.016) | (0.022) | (0.016) | (0.022) | (0.016) | (0.022) | |
| TAT | 0.356** | 0.352* | 0.356** | 0.351* | 0.358** | 0.353* |
| (0.177) | (0.180) | (0.177) | (0.180) | (0.177) | (0.180) | |
| ROA | -0.478*** | -0.494*** | -0.478*** | -0.494*** | -0.476** | -0.492*** |
| (0.185) | (0.187) | (0.185) | (0.187) | (0.185) | (0.187) | |
| ROE | -0.009 | -0.010 | -0.009 | -0.010 | -0.009 | -0.010 |
| (0.007) | (0.009) | (0.007) | (0.009) | (0.007) | (0.009) | |
| TAG | 0.316*** | 0.339*** | 0.316*** | 0.339*** | 0.316*** | 0.339*** |
| (0.081) | (0.091) | (0.081) | (0.091) | (0.081) | (0.091) | |
| ROAG | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| Cons | 5.954*** | 10.234*** | 5.954*** | 10.234*** | 5.956*** | 10.235*** |
| (0.166) | (1.348) | (0.166) | (1.348) | (0.166) | (1.348) | |
| Firm FE | YES | YES | YES | YES | YES | YES |
| Year FE | YES | YES | YES | YES | YES | YES |
| Prov FE | NO | YES | NO | YES | NO | YES |
| Ind FE | NO | YES | NO | YES | NO | YES |
| Obs | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 |
| 0.050 | 0.053 | 0.050 | 0.053 | 0.050 | 0.053 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| z-score normalization | Min-max normalization | |||||
| LCQ | 0.005*** | 3.042*** | ||||
| (0.002) | (1.187) | |||||
| LCG | 0.005** | 3.056** | ||||
| (0.002) | (1.251) | |||||
| LCI | 0.005* | 3.228* | ||||
| (0.002) | (1.801) | |||||
| CR | 0.016*** | 0.016*** | 0.016*** | 0.000*** | 0.000*** | 0.000*** |
| (0.003) | (0.003) | (0.003) | (0.000) | (0.000) | (0.000) | |
| IC | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| AL | -0.001 | -0.001 | -0.001 | -0.000 | -0.000 | -0.000 |
| (0.001) | (0.001) | (0.001) | (0.000) | (0.000) | (0.000) | |
| TAT | 0.020* | 0.020* | 0.021* | 0.000* | 0.000* | 0.000* |
| (0.010) | (0.010) | (0.011) | (0.000) | (0.000) | (0.000) | |
| ROA | -0.029*** | -0.029*** | -0.029*** | -0.000*** | -0.000*** | -0.000*** |
| (0.011) | (0.011) | (0.011) | (0.000) | (0.000) | (0.000) | |
| ROE | -0.001 | -0.001 | -0.001 | -0.000 | -0.000 | -0.000 |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| TAG | 0.020*** | 0.020*** | 0.020*** | 0.000*** | 0.000*** | 0.000*** |
| (0.005) | (0.005) | (0.005) | (0.000) | (0.000) | (0.000) | |
| ROAG | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** | 0.000** |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| Cons | 0.008 | 0.008 | 0.008 | 0.003*** | 0.003*** | 0.003*** |
| (0.078) | (0.078) | (0.078) | (0.000) | (0.000) | (0.000) | |
| Obs | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 |
| 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | |
| (1) Merton |
(2) Merton |
(3) Merton |
(4) KMV |
(5) KMV |
(6) KMV |
|
|---|---|---|---|---|---|---|
| LCQ | 0.009*** | 0.003*** | ||||
| (0.003) | (0.001) | |||||
| LCG | 0.009*** | 0.003*** | ||||
| (0.003) | (0.001) | |||||
| LCI | 0.006*** | 0.004*** | ||||
| (0.002) | (0.001) | |||||
| CR | 0.325*** | 0.325*** | 0.325*** | 0.068*** | 0.068*** | 0.068*** |
| (0.055) | (0.055) | (0.055) | (0.014) | (0.014) | (0.013) | |
| IC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| AL | -0.023 | -0.023 | -0.023 | -0.048*** | -0.048*** | -0.048*** |
| (0.028) | (0.028) | (0.028) | (0.018) | (0.019) | (0.018) | |
| TAT | 0.498** | 0.498** | 0.500** | 0.173 | 0.173 | 0.174 |
| (0.199) | (0.199) | (0.199) | (0.120) | (0.120) | (0.120) | |
| ROA | 0.079 | 0.079 | 0.081 | 0.412*** | 0.412*** | 0.413*** |
| (0.253) | (0.253) | (0.253) | (0.155) | (0.155) | (0.155) | |
| ROE | -0.013** | -0.013** | -0.013** | 0.001 | 0.001 | 0.001 |
| (0.005) | (0.005) | (0.005) | (0.012) | (0.012) | (0.012) | |
| TAG | 0.259*** | 0.259*** | 0.259*** | 0.009 | 0.009 | 0.008 |
| (0.086) | (0.086) | (0.086) | (0.022) | (0.022) | (0.022) | |
| ROAG | 0.000** | 0.000** | 0.000** | 0.000 | 0.000 | 0.000 |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| Cons | 11.399*** | 11.399*** | 11.400*** | 2.987** | 2.987** | 2.988** |
| (1.457) | (1.457) | (1.458) | (1.384) | (1.384) | (1.386) | |
| Obs | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 |
| 0.036 | 0.036 | 0.035 | 0.076 | 0.076 | 0.076 |
| (1) | (2) | (3) | |
|---|---|---|---|
| Innovation= | Quantity | Generality | Importance |
| LCCPInnovation | -0.018* | -0.016* | 0.006** |
| (0.010) | (0.010) | (0.003) | |
| LCCP | 0.166 | 0.166 | 0.158 |
| (0.559) | (0.559) | (0.558) | |
| Innovation | 0.024** | 0.022** | 0.000 |
| (0.010) | (0.009) | (0.001) | |
| CR | 0.273*** | 0.273*** | 0.273*** |
| (0.048) | (0.048) | (0.048) | |
| IC | -0.000 | -0.000 | -0.000 |
| (0.000) | (0.000) | (0.000) | |
| AL | -0.029* | -0.029* | -0.029* |
| (0.016) | (0.016) | (0.016) | |
| TAT | 0.355** | 0.355** | 0.356** |
| (0.177) | (0.177) | (0.177) | |
| ROA | -0.479*** | -0.479*** | -0.476*** |
| (0.185) | (0.185) | (0.185) | |
| ROE | -0.009 | -0.009 | -0.009 |
| (0.007) | (0.007) | (0.007) | |
| TAG | 0.316*** | 0.316*** | 0.316*** |
| (0.081) | (0.081) | (0.081) | |
| ROAG | 0.000** | 0.000** | 0.000** |
| (0.000) | (0.000) | (0.000) | |
| Cons | 5.858*** | 5.858*** | 5.866*** |
| (0.349) | (0.349) | (0.349) | |
| Obs | 23,580 | 23,580 | 23,580 |
| 0.050 | 0.050 | 0.050 |
| (1) | (2) | (3) | |
|---|---|---|---|
| Innovation= | Quantity | Generality | Importance |
| PolicyInnovation | -0.062*** | -0.052*** | -0.049* |
| (0.020) | (0.018) | (0.029) | |
| Policy | 1.309** | 1.309** | 1.376** |
| (0.618) | (0.619) | (0.610) | |
| Innovation | 0.007** | 0.006** | 0.003 |
| (0.003) | (0.003) | (0.002) | |
| CR | 0.145*** | 0.145*** | 0.146*** |
| (0.018) | (0.018) | (0.018) | |
| IC | -0.000 | -0.000 | -0.000 |
| (0.000) | (0.000) | (0.000) | |
| AL | -0.030 | -0.030 | -0.030 |
| (0.027) | (0.027) | (0.027) | |
| TAT | -0.262** | -0.262** | -0.262** |
| (0.125) | (0.125) | (0.125) | |
| ROA | -0.243 | -0.244 | -0.241 |
| (0.158) | (0.158) | (0.158) | |
| ROE | -0.008 | -0.008 | -0.007 |
| (0.006) | (0.006) | (0.006) | |
| TAG | -0.050 | -0.050 | -0.050 |
| (0.035) | (0.035) | (0.035) | |
| ROAG | 0.000*** | 0.000*** | 0.000*** |
| (0.000) | (0.000) | (0.000) | |
| Cons | 7.636*** | 7.636*** | 7.634*** |
| (0.604) | (0.604) | (0.603) | |
| Obs | 23,580 | 23,580 | 23,580 |
| 0.272 | 0.272 | 0.271 |
| Quantity | Generality | Importance | ||||
|---|---|---|---|---|---|---|
| 1st-stage | 2nd-stage | 1st-stage | 2nd-stage | 1st-stage | 2nd-stage | |
| (1) | (2) | (3) | (4) | (5) | (6) | |
| LCT | 0.047** | 0.052** | -0.058** | |||
| (0.021) | (0.023) | (0.023) | ||||
| Innovations | 0.187** | 0.174** | -0.156* | |||
| (0.097) | (0.090) | (0.081) | ||||
| Obs | 23,059 | 23,059 | 23,059 | 23,059 | 23,059 | 23,059 |
| 0.021 | 0.021 | 0.021 | 0.021 | 0.126 | 0.126 | |
| Controls | YES | YES | YES | YES | YES | YES |
| Instrument Validity Tests for IV regression | ||||||
| (i) F-test for excluded instrument in first stage | ||||||
| Sanderson-Windmeijer F-test | 5.06** | 5.12** | 6.17** | |||
| (ii)Under-identification test | ||||||
| Kleibergen-Paap LM statistic | 4.891** | 4.941** | 6.04** | |||
| (iii)Weak identification test | ||||||
| Cragg-Donald Wald F statistic | 201.65 | 201.79 | 113.31 | |||
| Stock-Yogo weak ID test | ||||||
| 10% max IV size | 16.38 | 16.38 | 16.38 | |||
| 15% max IV size | 8.96 | 8.96 | 8.96 | |||
| 20% max IV size | 6.66 | 6.66 | 6.66 | |||
| 25% max IV size | 5.53 | 5.53 | 5.53 | |||
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| investor attention | DD | investor attention | DD | investor attention | DD | |
| IA | -0.001*** | -0.001*** | -0.001*** | |||
| (0.000) | (0.000) | (0.000) | ||||
| LCQ | -6.275*** | 0.007* | ||||
| (1.598) | (0.004) | |||||
| LCG | -5.840*** | 0.006 | ||||
| (1.531) | (0.004) | |||||
| LCI | -5.397*** | 0.000 | ||||
| (1.643) | (0.002) | |||||
| CR | -9.765*** | 0.141*** | -9.767*** | 0.141*** | -12.818*** | 0.262*** |
| (3.299) | (0.018) | (3.299) | (0.018) | (2.909) | (0.048) | |
| IC | 0.008 | -0.000 | 0.008 | -0.000 | 0.006 | 0.000 |
| (0.008) | (0.000) | (0.008) | (0.000) | (0.007) | (0.000) | |
| AL | 9.565 | -0.030 | 9.569 | -0.030 | 6.476 | -0.017 |
| (5.955) | (0.026) | (5.956) | (0.026) | (5.004) | (0.020) | |
| TAT | 65.143** | -0.232* | 65.171** | -0.232* | 43.898* | 0.385** |
| (28.621) | (0.122) | (28.625) | (0.122) | (26.622) | (0.180) | |
| ROA | 83.995* | -0.226 | 84.059* | -0.226 | 60.848* | -0.447** |
| (43.369) | (0.147) | (43.378) | (0.147) | (36.741) | (0.184) | |
| ROE | 1.341 | -0.007 | 1.340 | -0.007 | 2.582** | -0.008 |
| (0.945) | (0.006) | (0.946) | (0.006) | (1.079) | (0.009) | |
| TAG | -15.286* | -0.057* | -15.298* | -0.057* | -19.690*** | 0.324*** |
| (7.960) | (0.034) | (7.961) | (0.034) | (7.097) | (0.088) | |
| ROAG | -0.010*** | 0.000*** | -0.010*** | 0.000*** | -0.010*** | 0.000** |
| (0.003) | (0.000) | (0.003) | (0.000) | (0.003) | (0.000) | |
| Cons | 2,354.184*** | 8.646*** | 2,354.560*** | 8.646*** | 2,192.537*** | 11.850*** |
| (185.072) | (0.612) | (185.111) | (0.612) | (170.333) | (1.446) | |
| Obs | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 |
| 0.215 | 0.286 | 0.215 | 0.286 | 0.199 | 0.063 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| TFP | DD | TFP | DD | TFP | DD | |
| TFP | 0.227*** | 0.227*** | 0.973*** | |||
| (0.053) | (0.053) | (0.119) | ||||
| LCQ | 0.001* | 0.010** | ||||
| (0.001) | (0.004) | |||||
| LCG | 0.001* | 0.008** | ||||
| (0.000) | (0.004) | |||||
| LCI | -0.001 | 0.004 | ||||
| (0.000) | (0.003) | |||||
| CR | 0.005 | 0.147*** | 0.005 | 0.147*** | -0.069*** | 0.204*** |
| (0.004) | (0.018) | (0.004) | (0.018) | (0.009) | (0.042) | |
| IC | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| AL | 0.000 | -0.034 | 0.000 | -0.034 | 0.004 | -0.018 |
| (0.010) | (0.026) | (0.010) | (0.026) | (0.007) | (0.019) | |
| TAT | 0.843*** | -0.069 | 0.843*** | -0.069 | 0.475*** | 0.816*** |
| (0.071) | (0.128) | (0.071) | (0.128) | (0.050) | (0.221) | |
| ROA | 0.294** | -0.196 | 0.294** | -0.196 | 0.427*** | -0.077 |
| (0.130) | (0.136) | (0.130) | (0.136) | (0.103) | (0.162) | |
| ROE | -0.007* | -0.009 | -0.007* | -0.009 | -0.009** | -0.019*** |
| (0.004) | (0.006) | (0.004) | (0.006) | (0.004) | (0.006) | |
| TAG | -0.021* | -0.056 | -0.021* | -0.056 | -0.217*** | 0.127** |
| (0.012) | (0.035) | (0.012) | (0.035) | (0.048) | (0.065) | |
| ROAG | 0.000 | 0.000*** | 0.000 | 0.000*** | 0.000 | 0.000** |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| Cons | 0.702** | 7.779*** | 0.702** | 7.777*** | -0.068 | 10.169*** |
| (0.293) | (0.564) | (0.293) | (0.565) | (0.279) | (1.325) | |
| Obs | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 |
| 0.260 | 0.272 | 0.260 | 0.272 | 0.178 | 0.078 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| spillovers | DD | spillovers | DD | spillovers | DD | |
| PC | 2.488* | 2.500* | 2.435** | |||
| (1.332) | (1.344) | (1.126) | ||||
| LCQ | 0.003*** | -0.000 | ||||
| (0.001) | (0.004) | |||||
| LCG | 0.003*** | -0.000 | ||||
| (0.001) | (0.004) | |||||
| LCI | 0.001*** | 0.004 | ||||
| (0.000) | (0.003) | |||||
| CR | -0.000 | 0.272*** | -0.000 | 0.272*** | -0.000 | 0.272*** |
| (0.000) | (0.049) | (0.000) | (0.049) | (0.000) | (0.049) | |
| IC | 0.000** | -0.000 | 0.000** | -0.000 | 0.000 | -0.000 |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| AL | 0.000* | -0.022 | 0.000* | -0.022 | 0.000* | -0.022 |
| (0.000) | (0.022) | (0.000) | (0.022) | (0.000) | (0.022) | |
| TAT | 0.001* | 0.348* | 0.001* | 0.348* | 0.000 | 0.349* |
| (0.001) | (0.180) | (0.001) | (0.180) | (0.001) | (0.180) | |
| ROA | 0.004* | -0.503*** | 0.004* | -0.503*** | 0.005** | -0.503*** |
| (0.002) | (0.187) | (0.002) | (0.187) | (0.002) | (0.187) | |
| ROE | 0.000 | -0.010 | 0.000 | -0.010 | 0.000 | -0.010 |
| (0.000) | (0.009) | (0.000) | (0.009) | (0.000) | (0.009) | |
| TAG | 0.000 | 0.339*** | 0.000 | 0.339*** | 0.000 | 0.338*** |
| (0.000) | (0.091) | (0.000) | (0.091) | (0.000) | (0.091) | |
| ROAG | -0.000 | 0.000*** | -0.000 | 0.000*** | -0.000 | 0.000*** |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| Cons | 0.016*** | 10.193*** | 0.016*** | 10.193*** | -0.014** | 10.195*** |
| (0.005) | (1.347) | (0.005) | (1.347) | (0.006) | (1.348) | |
| Obs | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 |
| 0.253 | 0.054 | 0.261 | 0.054 | 0.124 | 0.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
