Submitted:
11 March 2024
Posted:
12 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Emerging Pollutants in Dairy Milk: A Concern for Public Health
3. Chromatographic Techniques for EPs Analysis
3.1. LC Based Techniques
3.2. GC Based Techniques
4. Extraction of EPs from Milk
4.1. SPE
4.2. MSPE
4.3. SPME
4.4. FPSE
4.5. IAC
4.6. LLE
4.7. DLLME, ALLME and SALLE
4.8. QuEChERS
4.9. MAE and UAE
4.10. GDME
4.11. EME
5. Applications of Chromatographic Techniques for Analysis of Different EPs Categories in Milk
5.1. Pharmaceuticals
5.2. Endocrine-Disrupting Compounds
5.3. Pesticides
5.4. Mycotoxins
5.6. Other Emerging Pollutants
6. Concluding Remarks and Future Directions
Funding
Conflicts of interest
References
- Souza, M.C.O.; Rocha, B.A.; Adeyemi, J.A.; Nadal, M.; Domingo, J.L.; Barbosa, F. Legacy and emerging pollutants in Latin America: A critical review of occurrence and levels in environmental and food samples. Science of The Total Environment 2022, 848, 157774. [Google Scholar] [CrossRef]
- Morsi, R.; Bilal, M.; Iqbal, H.M. N.; Ashraf, S.S. Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Science of The Total Environment 2020, 714, 136572. [Google Scholar] [CrossRef]
- Peña-Guzmán, C.; Ulloa-Sánchez, S.; Mora, K.; Helena-Bustos, R.; Lopez-Barrera, E.; Alvarez, J.; Rodriguez-Pinzón, M. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. Journal of Environmental Management 2019, 237, 408–423. [Google Scholar] [CrossRef]
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects and Treatment Processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Ramírez-Malule, H.; Quiñones-Murillo, D.H.; Manotas-Duque, D. Emerging contaminants as global environmental hazards. A bibliometric analysis. Emerging Contaminants 2020, 6, 179–193. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M. N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environment International 2019, 122, 52–66. [Google Scholar] [CrossRef]
- Barroso, P.J.; Santos, J.L.; Martín, J.; Aparicio, I.; Alonso, E. Emerging contaminants in the atmosphere: Analysis, occurrence and future challenges. Critical Reviews in Environmental Science and Technology 2019, 49, 104–171. [Google Scholar] [CrossRef]
- Souza, M.C. O.; Rocha, B.A.; Souza, J.M. O.; Jacinto Souza, J.C.; Barbosa, F. Levels of polybrominated diphenyl ethers in Brazilian food of animal origin and estimation of human dietary exposure. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 2021, 150, 112040. [Google Scholar] [CrossRef] [PubMed]
- Egbuna, C.; Amadi, C.N.; Patrick-Iwuanyanwu, K.C.; Ezzat, S.M.; Awuchi, C.G.; Ugonwa, P.O.; Orisakwe, O.E. Emerging pollutants in Nigeria: A systematic review. Environ Toxicol Pharmacol 2021, 85, 103638. [Google Scholar] [CrossRef] [PubMed]
- Bonefeld-Jorgensen, E.C.; Long, M.; Bossi, R.; Ayotte, P.; Asmund, G.; Krüger, T.; Ghisari, M.; Mulvad, G.; Kern, P.; Nzulumiki, P.; Dewailly, E. Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: a case control study. Environ Health 2011, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Lang, I.A.; Galloway, T.S.; Scarlett, A.; Henley, W.E.; Depledge, M.; Wallace, R.B.; Melzer, D. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 2008, 300, 1303–1310. [Google Scholar] [CrossRef]
- Evans, J.S.; Jackson, L.J.; Habibi, H.R.; Ikonomou, M.G. Feminization of Longnose Dace (Rhinichthys cataractae) in the Oldman River, Alberta, (Canada) Provides Evidence of Widespread Endocrine Disruption in an Agricultural Basin. Scientifica (Cairo) 2012, 2012, 521931. [Google Scholar] [CrossRef]
- Jia, Q.; Qiu, J.; Zhang, L.; Liao, G.; Jia, Y.; Qian, Y. Multiclass Comparative Analysis of Veterinary Drugs, Mycotoxins, and Pesticides in Bovine Milk by Ultrahigh-Performance Liquid Chromatography–Hybrid Quadrupole–Linear Ion Trap Mass Spectrometry. Foods 2022, 11, 331. [Google Scholar] [CrossRef]
- Mesa, R.; Kabir, A.; Samanidou, V.; Furton, K.G. Simultaneous determination of selected estrogenic endocrine disrupting chemicals and bisphenol A residues in whole milk using fabric phase sorptive extraction coupled to HPLC-UV detection and LC-MS/MS. Journal of Separation Science 2019, 42, 598–608. [Google Scholar] [CrossRef]
- Shi, R.; Yu, Z.; Wu, W.; Ho, H.; Wang, J.; Wang, Y.; Han, R. A Survey of 61 Veterinary Drug Residues in Commercial Liquid Milk Products in China. Journal of Food Protection 2020, 83, 1227–1233. [Google Scholar] [CrossRef]
- Tripathy, V.; Sharma, K.K.; Yadav, R.; Devi, S.; Tayade, A.; Sharma, K.; Pandey, P.; Singh, G.; Patel, A.N.; Gautam, R.; Gupta, R.; Kalra, S.; Shukla, P.; Walia, S.; Shakil, N.A. Development, validation of QuEChERS-based method for simultaneous determination of multiclass pesticide residue in milk, and evaluation of the matrix effect. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 2019, 54, 394–406. [Google Scholar] [CrossRef]
- Vercelli, C.; Amadori, M.; Gambino, G.; Re, G. A review on the most frequently used methods to detect antibiotic residues in bovine raw milk. International Dairy Journal 2023, 144, 105695. [Google Scholar] [CrossRef]
- Chang, J.; Zhou, J.; Gao, M.; Zhang, H.; Wang, T. Research Advances in the Analysis of Estrogenic Endocrine Disrupting Compounds in Milk and Dairy Products. Foods 2022, 11, 3057. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Di Cesare, F.; Nobile, M.; Villa, R.; Decastelli, L.; Martucci, F.; Fontana, M.; Pavlovic, R.; Arioli, F.; Panseri, S. Antibiotics and Non-Targeted Metabolite Residues Detection as a Comprehensive Approach toward Food Safety in Raw Milk. Foods 2021, 10, 544. [Google Scholar] [CrossRef]
- Ishaq, Z.; Nawaz, M.A. Analysis of contaminated milk with organochlorine pesticide residues using gas chromatography. International Journal of Food Properties 2018, 21, 879–891. [Google Scholar] [CrossRef]
- Amenu, K.; Shitu, D.; Abera, M. Microbial contamination of water intended for milk container washing in smallholder dairy farming and milk retailing houses in southern Ethiopia. SpringerPlus 2016, 5, 1195. [Google Scholar] [CrossRef]
- Yuan, S.; Yang, F.; Yu, H.; Xie, Y.; Guo, Y.; Yao, W. Biodegradation of the organophosphate dimethoate by Lactobacillus plantarum during milk fermentation. Food Chemistry 2021, 360, 130042. [Google Scholar] [CrossRef]
- Schopf, M.F.; Pierezan, M.D.; Rocha, R.; Pimentel, T.C.; Esmerino, E.A.; Marsico, E.T.; De Dea Lindner, J.; Cruz, A.G. d.; Verruck, S. Pesticide residues in milk and dairy products: An overview of processing degradation and trends in mitigating approaches. Crit Rev Food Sci Nutr 2022, 1–15. [Google Scholar] [CrossRef]
- Wang, J.; Leung, D.; Chow, W.; Chang, J.; Wong, J.W. Target screening of 105 veterinary drug residues in milk using UHPLC/ESI Q-Orbitrap multiplexing data independent acquisition. Anal. Bioanal. Chem. 2018, 410, 5373–5389. [Google Scholar] [CrossRef]
- Fierens, T.; Van Holderbeke, M.; Willems, H.; De Henauw, S.; Sioen, I. Transfer of eight phthalates through the milk chain — A case study. Environment International 2013, 51, 1–7. [Google Scholar] [CrossRef]
- Bongers, I.E. A.; van de Schans, M.G. M.; Nibbeling, C.V. M.; Elbers, I.J. W.; Berendsen, B.J. A.; Zuidema, T. A single method to analyse residues from five different classes of prohibited pharmacologically active substances in milk. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 2021, 38, 1717–1734. [Google Scholar]
- Guedes-Alonso, R.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Kabir, A.; Furton, K.G. Fabric Phase Sorptive Extraction of Selected Steroid Hormone Residues in Commercial Raw Milk Followed by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Foods (Basel, Switzerland) 2021, 10, 343. [Google Scholar] [CrossRef]
- Izzo, L.; Rodríguez-Carrasco, Y.; Tolosa, J.; Graziani, G.; Gaspari, A.; Ritieni, A. Target analysis and retrospective screening of mycotoxins and pharmacologically active substances in milk using an ultra-high-performance liquid chromatography/high-resolution mass spectrometry approach. Journal of Dairy Science 2020, 103, 1250–1260. [Google Scholar] [CrossRef]
- Decheng, S.; xia, f.; Zhiming, X.; Shulin, W.; Shi, W.; Peilong, W. Trace analysis of progesterone and 21 progestins in milk by ultra-performance liquid chromatography coupled with high-field quadrupole-orbitrap high-resolution mass spectrometry. Food Chemistry 2021, 361, 130115. [Google Scholar] [CrossRef]
- He, S.; Wang, R.; Wei, W.; Liu, H.; Ma, Y. Simultaneous determination of 22 residual steroid hormones in milk by liquid chromatography–tandem mass spectrometry. International Journal of Dairy Technology 2020, 73, 357–365. [Google Scholar] [CrossRef]
- Wu, X.; Tong, K.; Yu, C.; Hou, S.; Xie, Y.; Fan, C.; Chen, H.; Lu, M.; Wang, W. Development of a High-Throughput Screening Analysis for 195 Pesticides in Raw Milk by Modified QuEChERS Sample Preparation and Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry. Separations 2022, 9, 98. [Google Scholar] [CrossRef]
- Bang Ye, S.; Huang, Y.; Lin, D.-Y. QuEChERS sample pre-processing with UPLC–MS/MS: A method for detecting 19 quinolone-based veterinary drugs in goat’s milk. Food Chemistry 2022, 373, 131466. [Google Scholar] [CrossRef]
- Di Marco Pisciottano, I.; Guadagnuolo, G.; Busico, F.; Alessandroni, L.; Neri, B.; Vecchio, D.; Di Vuolo, G.; Cappelli, G.; Martucciello, A.; Gallo, P. Determination of 20 Endocrine-Disrupting Compounds in the Buffalo Milk Production Chain and Commercial Bovine Milk by UHPLC–MS/MS and HPLC–FLD. Animals 2022, 12, 410. [Google Scholar] [CrossRef]
- Hasan, G.M. M. A.; Shaikh, M.A. A.; Satter, M.A.; Hossain, M.S. Detection of indicator polychlorinated biphenyls (I-PCBs) and polycyclic aromatic hydrocarbons (PAHs) in cow milk from selected areas of Dhaka, Bangladesh and potential human health risks assessment. Toxicology Reports 2022, 9, 1514–1522. [Google Scholar] [CrossRef]
- Huang, X.-C.; Ma, J.-K.; Wei, S.-L. Preparation and application of a novel magnetic molecularly imprinted polymer for simultaneous and rapid determination of three trace endocrine disrupting chemicals in lake water and milk samples. Anal. Bioanal. Chem. 2020, 412, 1835–1846. [Google Scholar] [CrossRef]
- Kubica, P.; Pielaszewska, M.; Jatkowska, N. Analysis of bisphenols and their derivatives in infant and toddler ready-to-feed milk and powdered milk by LCMS/MS. Journal of Food Composition and Analysis 2023, 120, 105366. [Google Scholar] [CrossRef]
- Ramezani, S.; Mahdavi, V.; Gordan, H.; Rezadoost, H.; Oliver Conti, G.; Mousavi Khaneghah, A. Determination of multi-class pesticides residues of cow and human milk samples from Iran using UHPLC-MS/MS and GC-ECD: A probabilistic health risk assessment. Environmental research 2022, 208, 112730. [Google Scholar] [CrossRef]
- Di Marco Pisciottano, I.; Albrizio, S.; Guadagnuolo, G.; Gallo, P. Development and validation of a method for determination of 17 endocrine disrupting chemicals in milk, water, blood serum and feed by UHPLC-MS/MS. Food Additives & Contaminants: Part A 2022, 39, 1744–1758. [Google Scholar]
- Jadhav, M.R.; Pudale, A.; Raut, P.; Utture, S.; Ahammed Shabeer, T.P.; Banerjee, K. A unified approach for high-throughput quantitative analysis of the residues of multi-class veterinary drugs and pesticides in bovine milk using LC-MS/MS and GC–MS/MS. Food Chemistry 2019, 272, 292–305. [Google Scholar] [CrossRef]
- Sahebi, H.; Talaei, A.J.; Abdollahi, E.; Hashempour-Baltork, F.; Zade, S.V.; Jannat, B.; Sadeghi, N. Rapid determination of multiclass antibiotics and their metabolites in milk using ionic liquid-modified magnetic chitosan nanoparticles followed by UPLC-MS/MS. Talanta 2023, 253, 124091. [Google Scholar] [CrossRef]
- Nemati, M.; Tuzen, M.; Farazajdeh, M.A.; Kaya, S.; Afshar Mogaddam, M.R. Development of dispersive solid-liquid extraction method based on organic polymers followed by deep eutectic solvents elution; application in extraction of some pesticides from milk samples prior to their determination by HPLC-MS/MS. Analytica Chimica Acta 2022, 1199, 339570. [Google Scholar] [CrossRef]
- Macheka, L.R.; Olowoyo, J.O.; Mugivhisa, L.L.; Abafe, O.A. Determination and assessment of human dietary intake of per and polyfluoroalkyl substances in retail dairy milk and infant formula from South Africa. Science of The Total Environment 2021, 755, 142697. [Google Scholar] [CrossRef]
- Wu, I.L.; Turnipseed, S.B.; Andersen, W.C.; Madson, M.R. Analysis of peptide antibiotic residues in milk using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 2020, 37, 1264–1278. [Google Scholar]
- Wang, H.; Wang, H.-P.; Chen, M.-n.; Ai, L.-F.; Liang, S.-X.; Zhang, Y. Determination of Vancomycin and Norvancomycin Residues in Milk by Automated Online Solid-Phase Extraction Combined With Liquid Chromatography-High Resolution Mass Spectrometry. J. AOAC Int. 2022, 105, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Badali, A.; Javadi, A.; Afshar Mogaddam, M.R.; Mashak, Z. Dispersive solid phase extraction-dispersive liquid–liquid microextraction of mycotoxins from milk samples and investigating their decontamination using microwave irradiations. Microchemical Journal 2023, 190, 108645. [Google Scholar] [CrossRef]
- Murshed, S. Evaluation and Assessment of Aflatoxin M1 in Milk and Milk Products in Yemen Using High-Performance Liquid Chromatography. Journal of Food Quality 2020, 2020, e8839060. [Google Scholar] [CrossRef]
- Liang, X.; Hu, P.; Zhang, H.; Tan, W. Hypercrosslinked strong anion-exchange polymers for selective extraction of fluoroquinolones in milk samples. Journal of Pharmaceutical and Biomedical Analysis 2019, 166, 379–386. [Google Scholar] [CrossRef]
- Shishov, A.; Nizov, E.; Bulatov, A. Microextraction of melamine from dairy products by thymol-nonanoic acid deep eutectic solvent for high-performance liquid chromatography-ultraviolet determination. Journal of Food Composition and Analysis 2023, 116, 105083. [Google Scholar] [CrossRef]
- Vaseghi Baba, F.; Esfandiari, Z.; Akbari-adergani, B.; Rashidi Nodeh, H.; Khodadadi, M. Vortex-assisted microextraction of melamine from milk samples using green short chain ionic liquid solvents coupled with high performance liquid chromatography determination. Journal of Chromatography B 2023, 1229, 123902. [Google Scholar] [CrossRef]
- Peterson, B.L.; Cummings, B.S. A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomedical chromatography: BMC 2006, 20, 227–243. [Google Scholar] [CrossRef]
- Al-Afy, N.; Sereshti, H.; Hijazi, A.; Rashidi Nodeh, H. Determination of three tetracyclines in bovine milk using magnetic solid phase extraction in tandem with dispersive liquid-liquid microextraction coupled with HPLC. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 2018, 1092, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Vuran, B.; Ulusoy, H.I.; Sarp, G.; Yilmaz, E.; Morgül, U.; Kabir, A.; Tartaglia, A.; Locatelli, M.; Soylak, M. Determination of chloramphenicol and tetracycline residues in milk samples by means of nanofiber coated magnetic particles prior to high-performance liquid chromatography-diode array detection. Talanta 2021, 230, 122307. [Google Scholar] [CrossRef]
- Peris-Vicente, J.; Iborra-Millet, J.J.; Albiol-Chiva, J.; Carda-Broch, S.; Esteve-Romero, J. A rapid and reliable assay to determine flumequine, marbofloxacin, difloxacin, and sarafloxacin in commonly consumed meat by micellar liquid chromatography. Journal of the Science of Food and Agriculture 2019, 99, 1375–1383. [Google Scholar] [CrossRef]
- Prasad Pawar, R.; Mishra, P.; Durgbanshi, A.; Bose, D.; Albiol-Chiva, J.; Peris-Vicente, J.; García-Ferrer, D.; Esteve-Romero, J. Use of Micellar Liquid Chromatography to Determine Mebendazole in Dairy Products and Breeding Waste from Bovine Animals. Antibiotics 2020, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Tejada-Casado, C.; del Olmo-Iruela, M.; García-Campaña, A.M.; Lara, F.J. Green and simple analytical method to determine benzimidazoles in milk samples by using salting-out assisted liquid-liquid extraction and capillary liquid chromatography. Journal of Chromatography B 2018, 1091, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.C.; Ren, R.; Jin, Q.; He, H.L.; Wang, S.T. Detection of 20 phthalate esters in breast milk by GC-MS/MS using QuEChERS extraction method. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019, 36, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dang, X.; Dai, J.; Hu, Y.; Chen, H. Simultaneous detection of eight phenols in food contact materials after electrochemical assistance solid-phase microextraction based on amino functionalized carbon nanotube/polypyrrole composite. Analytica Chimica Acta 2021, 1183, 338981. [Google Scholar] [CrossRef] [PubMed]
- Campos do Lago, A.; da Silva Cavalcanti, M.H.; Rosa, M.A.; Silveira, A.T.; Teixeira Tarley, C.R.; Figueiredo, E.C. Magnetic restricted-access carbon nanotubes for dispersive solid phase extraction of organophosphates pesticides from bovine milk samples. Analytica Chimica Acta 2020, 1102, 11–23. [Google Scholar] [CrossRef]
- Tang, Z.; Han, Q.; Xie, L.; Chu, L.; Wang, Y.; Sun, Y.; Kang, X. Simultaneous determination of five phthalate esters and bisphenol A in milk by packed-nanofiber solid-phase extraction coupled with gas chromatography and mass spectrometry. J Sep Sci 2019, 42, 851–861. [Google Scholar] [CrossRef]
- Pan, A.; Zhang, C.; Guo, M.; Wei, D.; Wang, X. Fabrication of magnetic covalent organic framework for efficient extraction and determination of phthalate esters in milk samples. Journal of Separation Science 2022, 45, 3014–3021. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lee, H.S.; Abd El-Aty, A.M.; Kabir, M.H.; Chung, H.S.; Park, J.-H.; Kim, M.-R.; Kim, J.-h.; Shin, H.-C.; Shin, S.S.; Shim, J.-H. Determination of endrin and δ-keto endrin in five food products of animal origin using GC-μECD: A modified QuEChERS approach to traditional detection. Food Chemistry 2018, 263, 59–66. [Google Scholar] [CrossRef]
- Dimpe, K.M.; Nomngongo, P.N. Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices. TrAC Trends in Analytical Chemistry 2016, 82, 199–207. [Google Scholar] [CrossRef]
- Badawy, M.E. I.; El-Nouby, M.A. M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. ANAL. SCI. 2022, 38, 1457–1487. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Song, Z.; Zhang, Y.; Wang, Y.; Lv, M.; Liu, H.; Wang, L.; Lu, W.; Li, J.; Chen, L. Recent Advances in Molecular-Imprinting-Based Solid-Phase Extraction of Antibiotics Residues Coupled With Chromatographic Analysis. Frontiers in Environmental Chemistry 2021, 2. [Google Scholar] [CrossRef]
- Russo, G.; Barbato, F.; Cardone, E.; Fattore, M.; Albrizio, S.; Grumetto, L. Bisphenol A and Bisphenol S release in milk under household conditions from baby bottles marketed in Italy. Journal of Environmental Science and Health, Part B 2018, 53, 116–120. [Google Scholar] [CrossRef]
- Negarian, M.; Mohammadinejad, A.; Mohajeri, S.A. Preparation, evaluation and application of core–shell molecularly imprinted particles as the sorbent in solid-phase extraction and analysis of lincomycin residue in pasteurized milk. Food Chemistry 2019, 288, 29–38. [Google Scholar] [CrossRef]
- Bosco, C.D.; De Cesaris, M.G.; Felli, N.; Lucci, E.; Fanali, S.; Gentili, A. Carbon nanomaterial-based membranes in solid-phase extraction. Microchim Acta 2023, 190, 175. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M.; Otárola-Jiménez, J. Magnetic solid-phase extraction using carbon nanotubes as sorbents: A review. Analytica Chimica Acta 2015, 892, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Huang, Q.; Fan, K.; Wu, L.; Nie, D.; Guo, W.; Wu, Y.; Han, Z. Reduced graphene oxide and gold nanoparticle composite-based solid-phase extraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry for the determination of 9 mycotoxins in milk. Food Chemistry 2018, 264, 218–225. [Google Scholar] [CrossRef]
- Li, N.; Qiu, J.; Qian, Y. Polyethyleneimine-modified magnetic carbon nanotubes as solid-phase extraction adsorbent for the analysis of multi-class mycotoxins in milk via liquid chromatography-tandem mass spectrometry. Journal of Separation Science 2021, 44, 636–644. [Google Scholar] [CrossRef]
- Guan, S.; Wu, H.; Yang, L.; Wang, Z.; Wu, J. Use of a magnetic covalent organic framework material with a large specific surface area as an effective adsorbent for the extraction and determination of six fluoroquinolone antibiotics by HPLC in milk sample. Journal of Separation Science 2020, 43, 3775–3784. [Google Scholar] [CrossRef]
- Jeong, S.-Y.; Jang, H.W.; Debnath, T.; Lee, K.-G. Validation of analytical method for furan determination in eight food matrices and its levels in various foods. Journal of Separation Science 2019, 42, 1012–1018. [Google Scholar] [CrossRef]
- Kabir, A.; Samanidou, V. Fabric Phase Sorptive Extraction: A Paradigm Shift Approach in Analytical and Bioanalytical Sample Preparation. Molecules 2021, 26, 865. [Google Scholar] [CrossRef]
- F. Abdallah, M.; Girgin, G.; Baydar, T., Mycotoxin Detection in Maize, Commercial Feed, and Raw Dairy Milk Samples from Assiut City, Egypt. Veterinary Sciences 2019, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Mannani, N.; Tabarani, A.; El Adlouni, C.; Abdennebi, E.H.; Zinedine, A. Aflatoxin M1 in pasteurized and UHT milk marked in Morocco. Food Control 2021, 124, 107893. [Google Scholar] [CrossRef]
- Shuib, N.S.; Saad, B. In-syringe dispersive micro-solid phase extraction method for the HPLC-fluorescence determination of aflatoxins in milk. Food Control 2022, 132, 108510. [Google Scholar] [CrossRef]
- Khatibi, S.A.; Hamidi, S.; Siahi-Shadbad, M.R. Application of Liquid-Liquid Extraction for the Determination of Antibiotics in the Foodstuff: Recent Trends and Developments. Critical Reviews in Analytical Chemistry 2022, 52, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Murrell, K.A.; Dorman, F.L. A comparison of liquid-liquid extraction and stir bar sorptive extraction for multiclass organic contaminants in wastewater by comprehensive two-dimensional gas chromatography time of flight mass spectrometry. Talanta 2021, 221, 121481. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-M.; Zheng, W.; Abd El-Aty, A.M.; Kim, S.-K.; Park, D.-H.; Yoo, K.-H.; Lee, G.-H.; Baranenko, D.A.; Hacımüftüoğlu, A.; Jeong, J.H.; Kang, Y.-S.; Shin, H.-C. Residue analysis of tebufenozide and indoxacarb in chicken muscle, milk, egg and aquatic animal products using liquid chromatography–tandem mass spectrometry. Biomedical Chromatography 2019, 33, e4522. [Google Scholar] [CrossRef] [PubMed]
- Altunay, N.; Elik, A.; Kaya, S. A simple and quick ionic liquid-based ultrasonic-assisted microextraction for determination of melamine residues in dairy products: Theoretical and experimental approaches. Food Chemistry 2020, 326, 126988. [Google Scholar] [CrossRef]
- Sharma, N.; Thakur, P.; Chaskar, M.G. Determination of eight endocrine disruptor pesticides in bovine milk at trace levels by dispersive liquid-liquid microextraction followed by GC-MS determination. Journal of Separation Science 2021, 44, 2982–2995. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Mohebbi, A.; Pazhohan, A.; Nemati, M.; Afshar Mogaddam, M.R. Air–assisted liquid–liquid microextraction; principles and applications with analytical instruments. TrAC Trends in Analytical Chemistry 2020, 122, 115734. [Google Scholar] [CrossRef]
- Mogaddam, M.R. A.; Derakhshani, M.; Farajzadeh, M.A.; Nemati, M.; Lotfipour, F. Application of a modified lighter than water organic solvent-based air-assisted liquid–liquid microextraction method for the efficient extraction of aflatoxin M1 in unpasteurized milk samples. International Journal of Environmental Analytical Chemistry 2022, 102, 4121–4133. [Google Scholar] [CrossRef]
- Kim, L.; Lee, D.; Cho, H.-K.; Choi, S.-D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends in Environmental Analytical Chemistry 2019, 22, e00063. [Google Scholar] [CrossRef]
- Koloka, O.; Koulama, M.; Hela, D.; Albanis, T.; Konstantinou, I. Determination of Multiclass Pharmaceutical Residues in Milk Using Modified QuEChERS and Liquid-Chromatography-Hybrid Linear Ion Trap/Orbitrap Mass Spectrometry: Comparison of Clean-Up Approaches and Validation Studies. Molecules 2023, 28, 6130. [Google Scholar] [CrossRef]
- Xiong, L.; Yan, P.; Chu, M.; Gao, Y.-Q.; Li, W.-H.; Yang, X.-L. A rapid and simple HPLC–FLD screening method with QuEChERS as the sample treatment for the simultaneous monitoring of nine bisphenols in milk. Food Chemistry 2018, 244, 371–377. [Google Scholar] [CrossRef]
- Llompart, M.; Celeiro, M.; Dagnac, T. Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment. TrAC Trends in Analytical Chemistry 2019, 116, 136–150. [Google Scholar] [CrossRef]
- Sanchez-Prado, L.; Garcia-Jares, C.; Llompart, M. Microwave-assisted extraction: Application to the determination of emerging pollutants in solid samples. Journal of Chromatography A 2010, 1217, 2390–2414. [Google Scholar] [CrossRef]
- Du, L.-J.; Chu, C.; Warner, E.; Wang, Q.-Y.; Hu, Y.-H.; Chai, K.-J.; Cao, J.; Peng, L.-Q.; Chen, Y.-B.; Yang, J.; Zhang, Q.-D. Rapid microwave-assisted dispersive micro-solid phase extraction of mycotoxins in food using zirconia nanoparticles. Journal of Chromatography A 2018, 1561, 1–12. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Papadakis, E.-N.; Maggalou, M.G.; Karaoglanidis, G.S.; Samanidou, V.F.; Menkissoglu-Spiroudi, U. Development of a Microwave-Assisted Extraction Protocol for the Simultaneous Determination of Mycotoxins and Pesticide Residues in Apples by LC-MS/MS. Applied Sciences 2021, 11, 10931. [Google Scholar] [CrossRef]
- Kamalabadi, M.; Mohammadi, A.; Alizadeh, N. Simultaneous Determination of Seven Polycyclic Aromatic Hydrocarbons in Coffee Samples Using Effective Microwave-Assisted Extraction and Microextraction Method Followed by Gas Chromatography-Mass Spectrometry and Method Optimization Using Central Composite Design. Food Analytical Methods 2018, 11, 781–789. [Google Scholar]
- Lobato, A.; Fernandes, V.C.; Pacheco, J.G.; Delerue-Matos, C.; Gonçalves, L.M. Organochlorine pesticide analysis in milk by gas-diffusion microextraction with gas chromatography-electron capture detection and confirmation by mass spectrometry. Journal of Chromatography A 2021, 1636, 461797. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Z.; Gjelstad, A.; Pedersen-Bjergaard, S.; Shen, X. Electromembrane extraction. TrAC Trends in Analytical Chemistry 2017, 95, 47–56. [Google Scholar] [CrossRef]
- Aghaei, A.; Erfani Jazi, M.; E Mlsna, T.; Kamyabi, M.A. A novel method for the preconcentration and determination of ampicillin using electromembrane microextraction followed by high-performance liquid chromatography. Journal of Separation Science 2019, 42, 3002–3008. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, L.M.; DeCastelli, L.; Nobile, M.; Martucci, F.; Mosconi, G.; Fontana, M.; Castrica, M.; Arioli, F.; Panseri, S. Analysis of antibiotic residues in raw bovine milk and their impact toward food safety and on milk starter cultures in cheese-making process. LWT 2020, 131, 109783. [Google Scholar] [CrossRef]
- Zhang, W.-Q.; Yu, Z.-N.; Ho, H.; Wang, J.; Wang, Y.-T.; Fan, R.-B.; Han, R.-W. Analysis of Veterinary Drug Residues in Pasteurized Milk Samples in Chinese Milk Bars. Journal of Food Protection 2020, 83, 204–210. [Google Scholar] [CrossRef] [PubMed]
- S, J.; N, V.; R, S. Antibiotic Residues in Milk Products: Impacts on Human Health. Research Journal of Pharmacology and Pharmacodynamics 2020, 12, 15–20. [Google Scholar]
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiology and Molecular Biology Reviews 2001, 65, 232–260. [Google Scholar] [CrossRef]
- Yu, H.; Tao, Y.; Chen, D.; Wang, Y.; Yuan, Z. Development of an HPLC–UV method for the simultaneous determination of tetracyclines in muscle and liver of porcine, chicken and bovine with accelerated solvent extraction. Food Chemistry 2011, 124, 1131–1138. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, H.; Li, J.; Sun, Z.; Cai, T.; Wang, X.; Zhao, S.; Gong, B. Restricted access magnetic imprinted microspheres for directly selective extraction of tetracycline veterinary drugs from complex samples. Journal of Chromatography A 2020, 1613, 460684. [Google Scholar] [CrossRef]
- Agadellis, E.; Tartaglia, A.; Locatelli, M.; Kabir, A.; Furton, K.G.; Samanidou, V. Mixed-mode fabric phase sorptive extraction of multiple tetracycline residues from milk samples prior to high performance liquid chromatography-ultraviolet analysis. Microchemical Journal 2020, 159, 105437. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Li, C.; Chen, L. Analysis of tetracyclines from milk powder by molecularly imprinted solid-phase dispersion based on a metal-organic framework followed by ultra high performance liquid chromatography with tandem mass spectrometry. Journal of Separation Science 2018, 41, 2604–2612. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L. Fabricated ultrathin magnetic nitrogen doped graphene tube as efficient and recyclable adsorbent for highly sensitive simultaneous determination of three tetracyclines residues in milk samples. Journal of Chromatography A 2018, 1568, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Marinou, E.; Samanidou, V.F.; Papadoyannis, I.N. Development of a High Pressure Liquid Chromatography with Diode Array Detection Method for the Determination of Four Tetracycline Residues in Milk by Using QuEChERS Dispersive Extraction. Separations 2019, 6, 21. [Google Scholar] [CrossRef]
- Chatzimitakos, T.G.; Stalikas, C.D. Melamine sponge decorated with copper sheets as a material with outstanding properties for microextraction of sulfonamides prior to their determination by high-performance liquid chromatography. Journal of Chromatography A 2018, 1554, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Liu, X.; Dong, Y.; Yang, J.; Zhang, J.; He, S.; Yang, F.; Wang, Z.; Dong, Y. A Green HPLC Method for Determination of Nine Sulfonamides in Milk and Beef, and Its Greenness Assessment with Analytical Eco-Scale and Greenness Profile. J. AOAC Int. 2020, 103, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Georgiadis, D.-E.; Tsalbouris, A.; Kabir, A.; Furton, K.G.; Samanidou, V. Novel capsule phase microextraction in combination with high performance liquid chromatography with diode array detection for rapid monitoring of sulfonamide drugs in milk. Journal of Separation Science 2019, 42, 1440–1450. [Google Scholar] [CrossRef] [PubMed]
- Jullakan, S.; Bunkoed, O. A nanocomposite adsorbent of metallic copper, polypyrrole, halloysite nanotubes and magnetite nanoparticles for the extraction and enrichment of sulfonamides in milk. Journal of Chromatography B 2021, 1180, 122900. [Google Scholar] [CrossRef]
- Wei, D.; Guo, M. Facile preparation of magnetic graphene oxide/nanoscale zerovalent iron adsorbent for magnetic solid-phase extraction of ultra-trace quinolones in milk samples. Journal of Separation Science 2020, 43, 3093–3102. [Google Scholar] [CrossRef]
- Yu, H.; Jia, Y.; Wu, R.; Chen, X.; Chan, T.W. D. Determination of fluoroquinolones in food samples by magnetic solid-phase extraction based on a magnetic molecular sieve nanocomposite prior to high-performance liquid chromatography and tandem mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 2817–2826. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, R.; García-Córcoles, M.T.; Çipa, M.; Barrón, D.; Navalón, A.; Zafra-Gómez, A. Determination of quinolone residues in raw cow milk. Application of polar stir-bars and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 2018, 35, 1127–1138. [Google Scholar]
- Belenguer-Sapiña, C.; Pellicer-Castell, E.; El Haskouri, J.; Simó-Alfonso, E.F.; Amorós, P.; Mauri-Aucejo, A.R. A type UVM-7 mesoporous silica with γ-cyclodextrin for the isolation of three veterinary antibiotics (ofloxacin, norfloxacin, and ciprofloxacin) from different fat-rate milk samples. Journal of Food Composition and Analysis 2022, 109, 104463. [Google Scholar] [CrossRef]
- Wang, M.; Gao, M.; Zhang, K.; Wang, L.; Wang, W.; Fu, Q.; Xia, Z.; Gao, D. Magnetic covalent organic frameworks with core-shell structure as sorbents for solid phase extraction of fluoroquinolones, and their quantitation by HPLC. Microchim Acta 2019, 186, 827. [Google Scholar] [CrossRef]
- Li, Y.-L.; Nie, X.-M.; Wang, X.-J.; Zhang, F.; Yang, M.-L.; Guo, W.; Chen, F.-M.; Liu, T.; He, M.-Y. Synthesis of urea-functionalized magnetic porous organic polymers Fe3O4@PDA@UPOPs for rapid extraction of fluoroquinolones in food samples. Microporous and Mesoporous Materials 2021, 324, 111269. [Google Scholar] [CrossRef]
- Sahebi, H.; Konoz, E.; Ezabadi, A.; Niazi, A.; Ahmadi, S.H. Simultaneous determination of five penicillins in milk using a new ionic liquid-modified magnetic nanoparticle based dispersive micro-solid phase extraction followed by ultra-performance liquid chromatography-tandem mass spectrometry. Microchemical Journal 2020, 154, 104605. [Google Scholar] [CrossRef]
- Di Rocco, M.; Moloney, M.; Haren, D.; Gutierrez, M.; Earley, S.; Berendsen, B.; Furey, A.; Danaher, M. Improving the chromatographic selectivity of β-lactam residue analysis in milk using phenyl-column chemistry prior to detection by tandem mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 4461–4475. [Google Scholar] [CrossRef]
- Ferreira, D.C.; de Toffoli, A.L.; Maciel, E.V. S.; Lanças, F.M. Online fully automated SPE-HPLC-MS/MS determination of ceftiofur in bovine milk samples employing a silica-anchored ionic liquid as sorbent. Electrophoresis 2018, 39, 2210–2217. [Google Scholar] [CrossRef]
- Wang, J.; Ling, Y.; Zhou, W.; Li, D.; Deng, Y.; Yang, X.; Zhang, F. Targeted analysis of six emerging derivatives or metabolites together with 25 common macrolides in milk using Quick, Easy, Cheap, Effective, Rugged and Safe extraction and ultra-performance liquid chromatography quadrupole/electrostaticfield orbitrap mass spectrometry. Journal of Separation Science 2020, 43, 3719–3734. [Google Scholar]
- Du, L.-J.; Yi, L.; Ye, L.-H.; Chen, Y.-B.; Cao, J.; Peng, L.-Q.; Shi, Y.-T.; Wang, Q.-Y.; Hu, Y.-H. Miniaturized solid-phase extraction of macrolide antibiotics in honey and bovine milk using mesoporous MCM-41 silica as sorbent. Journal of Chromatography A 2018, 1537, 10–20. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, H.; Ai, L.; Kang, W.; Lian, K.; Wang, J. Determination of gamithromycin residues in eggs, milk and edible tissue of food-producing animals by solid phase extraction combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography B 2021, 1171, 122637. [Google Scholar] [CrossRef]
- Deng, F.; Yu, H.; Pan, X.; Hu, G.; Wang, Q.; Peng, R.; Tan, L.; Yang, Z. Ultra-high performance liquid chromatography tandem mass spectrometry for the determination of five glycopeptide antibiotics in food and biological samples using solid-phase extraction. Journal of Chromatography A 2018, 1538, 54–59. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, R.; Chen, Q.; Zheng, X.; Qiu, J.; Ding, T.; He, L. Surface molecularly imprinted solid-phase extraction for the determination of vancomycin and norvancomycin in milk by liquid chromatography coupled to tandem mass spectrometry. Food Chemistry 2022, 369, 130886. [Google Scholar] [CrossRef]
- Tu, C.; Guo, Y.; Dai, Y.; Wei, W.; Wang, W.; Wu, L.; Wang, A. Determination of Chloramphenicol in Honey and Milk by HPLC Coupled with Aptamer-Functionalized Fe3 O4 /Graphene Oxide Magnetic Solid-Phase Extraction. J. Food Sci. 2019, 84, 3624–3633. [Google Scholar] [CrossRef] [PubMed]
- Mehrabi, F.; Ghaedi, M. Magnetic nanofluid based on green deep eutectic solvent for enrichment and determination of chloramphenicol in milk and chicken samples by high-performance liquid chromatography-ultraviolet: Optimization of microextraction. Journal of chromatography. A 2023, 1689, 463705. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.-H.; Park, D.-H.; Abd El-Aty, A.M.; Kim, S.-K.; Jung, H.-N.; Jeong, D.-H.; Cho, H.-J.; Hacimüftüoğlu, A.; Shim, J.-H.; Jeong, J.H.; Shin, H.-C. Development of an analytical method for multi-residue quantification of 18 anthelmintics in various animal-based food products using liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical Analysis 2021, 11, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Sun, R.; Yu, C.; Tao, Y.; Yan, Y. Novel hydrophobic deep eutectic solvents for ultrasound-assisted dispersive liquid-liquid microextraction of trace non-steroidal anti-inflammatory drugs in water and milk samples. Microchemical Journal 2021, 170, 106686. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, Y.; Xu, X.; Bao, T.; Wang, S. Hydrophilic carboxyl supported immobilization of UiO-66 for novel bar sorptive extraction of non-steroidal anti-inflammatory drugs in food samples. Food Chemistry 2021, 355, 129623. [Google Scholar] [CrossRef]
- Huang, L.; Shen, R.; Liu, R.; Xu, S.; Shuai, Q. Facile fabrication of magnetic covalent organic frameworks for magnetic solid-phase extraction of diclofenac sodium in milk. Food Chemistry 2021, 347, 129002. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Z.; Barge, A.; Boffa, L.; Martina, K.; Cravotto, G. Determination of trace antibiotics in water and milk via preconcentration and cleanup using activated carbons. Food Chemistry 2022, 385, 132695. [Google Scholar] [CrossRef]
- Chen, D.; Xu, Q.; Lu, Y.; Mao, Y.; Yang, Y.; Tu, F.; Xu, J.; Chen, Y.; Jiang, X.; Lu, J.; Yang, Z. The QuEChERS method coupled with high-performance liquid chromatography-tandem mass spectrometry for the determination of diuretics in animal-derived foods. Journal of Food Composition and Analysis 2021, 101, 103965. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, L.; He, Q.; Li, Y. A rapid multiclass method for antibiotic residues in goat dairy products by UPLC-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry. Journal of Analytical Science and Technology 2021, 12, 14. [Google Scholar] [CrossRef]
- Ghasemi, R.; Mirzaei, H.; Afshar Mogaddam, M.R.; Khandaghi, J.; Javadi, A. Application of magnetic ionic liquid-based air–assisted liquid–liquid microextraction followed by back-extraction optimized with centroid composite design for the extraction of antibiotics from milk samples prior to their determination by HPLC–DAD. Microchemical Journal 2022, 181, 107764. [Google Scholar] [CrossRef]
- Guo, X.; Tian, H.; Yang, F.; Fan, S.; Zhang, J.; Ma, J.; Ai, L.; Zhang, Y. Rapid determination of 103 common veterinary drug residues in milk and dairy products by ultra performance liquid chromatography tandem mass spectrometry. Frontiers in Nutrition 2022, 9. [Google Scholar] [CrossRef]
- Li, J.; Ren, X.; Diao, Y.; Chen, Y.; Wang, Q.; Jin, W.; Zhou, P.; Fan, Q.; Zhang, Y.; Liu, H. Multiclass analysis of 25 veterinary drugs in milk by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chemistry 2018, 257, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Melekhin, A.O.; Tolmacheva, V.V.; Goncharov, N.O.; Apyari, V.V.; Dmitrienko, S.G.; Shubina, E.G.; Grudev, A.I. Multi-class, multi-residue determination of 132 veterinary drugs in milk by magnetic solid-phase extraction based on magnetic hypercrosslinked polystyrene prior to their determination by high-performance liquid chromatography–tandem mass spectrometry. Food Chemistry 2022, 387, 132866. [Google Scholar] [CrossRef] [PubMed]
- Castilla-Fernández, D.; Moreno-González, D.; Beneito-Cambra, M.; Molina-Díaz, A. Critical assessment of two sample treatment methods for multiresidue determination of veterinary drugs in milk by UHPLC-MS/MS. Anal. Bioanal. Chem. 2019, 411, 1433–1442. [Google Scholar] [CrossRef]
- Ji, B.; Zhao, W.; Xu, X.; Han, Y.; Jie, M.; Xu, G.; Bai, Y. Development of a modified quick, easy, cheap, effective, rugged, and safe method based on melamine sponge for multi-residue analysis of veterinary drugs in milks by ultra-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography A 2021, 1651, 462333. [Google Scholar] [CrossRef]
- Davis, J.L.; Smith, G.W.; Baynes, R.E.; Tell, L.A.; Webb, A.I.; Riviere, J.E. Update on drugs prohibited from extralabel use in food animals. Journal of the American Veterinary Medical Association 2009, 235, 528–534. [Google Scholar] [CrossRef]
- Millanao, A.R.; Mora, A.Y.; Villagra, N.A.; Bucarey, S.A.; Hidalgo, A.A. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules 2021, 26, 7153. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, J.; Zhao, F.; Zeng, B. Determination of fluoroquinolones in foods using ionic liquid modified Fe3O4/MWCNTs as the adsorbent for magnetic solid phase extraction coupled with HPLC. Analytical Methods 2020, 12, 4457–4465. [Google Scholar] [CrossRef]
- Karageorgou, E.; Christoforidou, S.; Ioannidou, M.; Psomas, E.; Samouris, G. Detection of β-Lactams and Chloramphenicol Residues in Raw Milk-Development and Application of an HPLC-DAD Method in Comparison with Microbial Inhibition Assays. Foods (Basel, Switzerland) 2018, 7, 82. [Google Scholar] [CrossRef]
- Tumu, K.; Vorst, K.; Curtzwiler, G. Endocrine modulating chemicals in food packaging: A review of phthalates and bisphenols. Comprehensive Reviews in Food Science and Food Safety 2023, 22, 1337–1359. [Google Scholar] [CrossRef]
- Kholová, A.; Lhotská, I.; Erben, J.; Chvojka, J.; Švec, F.; Solich, P.; Šatínský, D. Comparing adsorption performance of microfibers and nanofibers with commercial molecularly imprinted polymers and restricted access media for extraction of bisphenols from milk coupled with liquid chromatography. Talanta 2023, 252, 123822. [Google Scholar] [CrossRef] [PubMed]
- Santonicola, S.; Ferrante, M.C.; Murru, N.; Gallo, P.; Mercogliano, R. Hot topic: Bisphenol A in cow milk and dietary exposure at the farm level. J Dairy Sci 2019, 102, 1007–1013. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Wang, Y.; Ruan, J.; Zhang, J.; Sun, C. Recent advances in analysis of phthalate esters in foods. TrAC Trends in Analytical Chemistry 2015, 72, 10–26. [Google Scholar] [CrossRef]
- Santonicola, S.; Ferrante, M.C.; Murru, N.; Gallo, P.; Mercogliano, R. Hot topic: Bisphenol A in cow milk and dietary exposure at the farm level. Journal of Dairy Science 2019, 102, 1007–1013. [Google Scholar] [CrossRef]
- Frankowski, R.; Grześkowiak, T.; Czarczyńska-Goślińska, B.; Zgoła-Grześkowiak, A. Occurrence and dietary risk of bisphenols and parabens in raw and processed cow’s milk. Food Additives & Contaminants: Part A 2022, 39, 116–129. [Google Scholar]
- Mitra, P.; Chatterjee, S.; Paul, N.; Ghosh, S.; Das, M. An Overview of Endocrine Disrupting Chemical Paraben and Search for An Alternative – A Review. Proc Zool Soc 2021, 74, 479–493. [Google Scholar] [CrossRef]
- Seidi, S.; Sadat Karimi, E.; Rouhollahi, A.; Baharfar, M.; Shanehsaz, M.; Tajik, M. Synthesis and characterization of polyamide-graphene oxide-polypyrrole electrospun nanofibers for spin-column micro solid phase extraction of parabens in milk samples. Journal of Chromatography A 2019, 1599, 25–34. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Huang, C.; Jiao, Y.; Chen, J. A Phenolphthalein-Dummy Template Molecularly Imprinted Polymer for Highly Selective Extraction and Clean-Up of Bisphenol A in Complex Biological, Environmental and Food Samples. Polymers 2018, 10, 1150. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, L.; Cui, X.; Zhang, J.; Wang, Y.; Yang, X. Determination of trace bisphenols in milk based on Fe3O4@NH2-MIL-88(Fe)@TpPa magnetic solid-phase extraction coupled with HPLC. Talanta 2023, 256, 124268. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, Z.-L.; Deng, X.-Y.; Wei, H.-D.; Wang, W.-L.; Xu, Z.; Feng, Y.; Shi, X. Metal-organic framework mixed-matrix membrane-based extraction combined HPLC for determination of bisphenol A in milk and milk packaging. Food Chemistry 2022, 386, 132753. [Google Scholar] [CrossRef]
- Qiao, L.; Sun, R.; Tao, Y.; Yan, Y. New low viscous hydrophobic deep eutectic solvents for the ultrasound-assisted dispersive liquid-liquid microextraction of endocrine-disrupting phenols in water, milk and beverage. Journal of Chromatography A 2022, 1662, 462728. [Google Scholar] [CrossRef]
- Mercogliano, R.; Santonicola, S.; Albrizio, S.; Ferrante, M.C. Occurrence of bisphenol A in the milk chain: A monitoring model for risk assessment at a dairy company. J Dairy Sci 2021. [Google Scholar] [CrossRef]
- Boti, V.; Kobothekra, V.; Albanis, T.; Konstantinou, I. QuEChERS-Based Methodology for the Screening of Alkylphenols and Bisphenol A in Dairy Products Using LC-LTQ/Orbitrap MS. Applied Sciences 2021, 11, 9358. [Google Scholar] [CrossRef]
- Santonicola, S.; Ferrante, M.C.; Leo, G. d.; Murru, N.; Anastasio, A.; Mercogliano, R. Study on endocrine disruptors levels in raw milk from cow's farms: Risk assessment. Ital J Food Saf 2018, 7, 7668–7668. [Google Scholar] [CrossRef]
- Santonicola, S.; Ferrante, M.C.; Colavita, G.; Mercogliano, R. Development of a high-performance liquid chromatography method to assess bisphenol F levels in milk. Ital J Food Saf 2021, 10, 9975. [Google Scholar] [CrossRef]
- Yue, B.; Liu, J.; Li, G.; Wu, Y. Synthesis of magnetic metal organic framework/covalent organic framework hybrid materials as adsorbents for magnetic solid-phase extraction of four endocrine-disrupting chemicals from milk samples. Rapid Communications in Mass Spectrometry 2020, 34, e8909. [Google Scholar] [CrossRef] [PubMed]
- Palacios Colón, L.; Rascón, A.J.; Ballesteros, E. Simultaneous determination of phenolic pollutants in dairy products held in various types of packaging by gas chromatography−mass spectrometry. Food Control 2023, 146, 109564. [Google Scholar] [CrossRef]
- Palacios Colón, L.; Rascón, A.J.; Hejji, L.; Azzouz, A.; Ballesteros, E. Validation and Use of an Accurate, Sensitive Method for Sample Preparation and Gas Chromatography–Mass Spectrometry Determination of Different Endocrine-Disrupting Chemicals in Dairy Products. Foods 2021, 10, 1040. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, Y.; Yan, Y.; Tang, K.; Ding, C.-F. Self-assembly of poly(ionic liquid) functionalized mesoporous magnetic microspheres for the solid-phase extraction of preservatives from milk samples. Journal of Separation Science 2020, 43, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Sereshti, H.; Jazani, S.S.; Nouri, N.; AliAbadi, M.H. S. Development of a green miniaturized quick, easy, cheap, effective, rugged, and safe approach in tandem with temperature-assisted solidification of floating menthol droplet for analysis of multiclass pesticide residues in milk. Journal of Separation Science 2022, 45, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Sadat, S.A. N.; Atazadeh, R.; Afshar Mogaddam, M.R. Application of in-situ formed polymer-based dispersive solid phase extraction in combination with solidification of floating organic droplet-based dispersive liquid–liquid microextraction for the extraction of neonicotinoid pesticides from milk samples. Journal of Separation Science 2023, 46, 2200889. [Google Scholar] [CrossRef] [PubMed]
- Morsi, R.; Ghoudi, K.; Ayyash, M.M.; Jiang, X.; Meetani, M.A. Detection of 11 carbamate pesticide residues in raw and pasteurized camel milk samples using UHPLC-MS/MS: Method development, method validation, and health risk assessment. Journal of Dairy Science 2023. [Google Scholar] [CrossRef]
- Koloka, O.; Boti, V.; Albanis, T.; Konstantinou, I. Accurate Determination of Pesticide Residues in Milk by Sonication-QuEChERS Extraction and LC-LTQ/Orbitrap Mass Spectrometry. Separations 2023, 10, 146. [Google Scholar] [CrossRef]
- Fedrizzi, G.; Altafini, A.; Armorini, S.; Al-Qudah, K.M.; Roncada, P. LC-MS/MS Analysis of Five Neonicotinoid Pesticides in Sheep and Cow Milk Samples Collected in Jordan Valley. Bull. Environ. Contam. Toxicol. 2019, 102, 347–352. [Google Scholar] [CrossRef]
- Zeiadi, S.; Mogaddam, M.R. A.; Farajzadeh, M.A.; Khandaghi, J. Combination of dispersive solid phase extraction with lighter than water dispersive liquid–liquid microextraction for the extraction of organophosphorous pesticides from milk. International Journal of Environmental Analytical Chemistry 2022, 102, 5873–5886. [Google Scholar] [CrossRef]
- Wang, X.; Meng, X.; Wu, Q.; Wang, C.; Wang, Z. Solid phase extraction of carbamate pesticides with porous organic polymer as adsorbent followed by high performance liquid chromatography-diode array detection. J. Chromatogr. A 2019, 1600, 9–16. [Google Scholar] [CrossRef]
- Zheng, W.; Choi, J.-M.; Abd El-Aty, A.M.; Yoo, K.-H.; Park, D.-H.; Kim, S.-K.; Kang, Y.-S.; Hacımüftüoğlu, A.; Wang, J.; Shim, J.-H.; Shin, H.-C. Simultaneous determination of spinosad, temephos, and piperonyl butoxide in animal-derived foods using LC–MS/MS. Biomedical Chromatography 2019, 33, e4493. [Google Scholar] [CrossRef]
- Görel-Manav, Ö.; Dinç-Zor, Ş.; Akyildiz, E.; Alpdoğan, G. Multivariate optimization of a new LC–MS/MS method for the determination of 156 pesticide residues in milk and dairy products. Journal of the Science of Food and Agriculture 2020, 100, 4808–4817. [Google Scholar] [CrossRef]
- Zhang, X.; Li, T.; Zhang, L.; Hu, T.; Fu, Y.; Guo, Z. Simultaneous determination of sulfoxaflor in 14 daily foods using LC-MS/MS. International Journal of Environmental Analytical Chemistry 2019, 99, 557–567. [Google Scholar] [CrossRef]
- Lin, X.-P.; Wang, X.-Q.; Wang, J.; Yuan, Y.-W.; Di, S.-S.; Wang, Z.-W.; Xu, H.; Zhao, H.-Y.; Zhao, C.-S.; Ding, W.; Qi, P.-P. Magnetic covalent organic framework as a solid-phase extraction absorbent for sensitive determination of trace organophosphorus pesticides in fatty milk. Journal of Chromatography A 2020, 1627, 461387. [Google Scholar] [CrossRef]
- Shirani, M.; Akbari-adergani, B.; Jazi, M.B.; Akbari, A. Green ultrasound assisted magnetic nanofluid-based liquid phase microextraction coupled with gas chromatography-mass spectrometry for determination of permethrin, deltamethrin, and cypermethrin residues. Microchim Acta 2019, 186, 674. [Google Scholar] [CrossRef]
- Hasan, G.M. M. A.; Das, A.K.; Satter, M.A. Multi residue analysis of organochlorine pesticides in fish, milk, egg and their feed by GC-MS/MS and their impact assessment on consumers health in Bangladesh. NFS Journal 2022, 27, 28–35. [Google Scholar] [CrossRef]
- Manav, Ö.G.; Dinç-Zor, Ş.; Alpdoğan, G. Optimization of a modified QuEChERS method by means of experimental design for multiresidue determination of pesticides in milk and dairy products by GC–MS. Microchemical Journal 2019, 144, 124–129. [Google Scholar] [CrossRef]
- Wanniatie, V.; Sudarwanto, M.B.; Purnawarman, T.; Jayanegara, A. Chemical compositions, contaminants, and residues of organic and conventional goat milk in Bogor District, Indonesia. Vet World 2019, 12, 1218–1224. [Google Scholar] [CrossRef]
- Koleini, F.; Balsini, P.; Parastar, H. Evaluation of partial least-squares regression with multivariate analytical figures of merit for determination of 10 pesticides in milk. International Journal of Environmental Analytical Chemistry 2022, 102, 1900–1910. [Google Scholar] [CrossRef]
- Jouyban, A.; Farajzadeh, M.A.; Afshar Mogaddam, M.R. In matrix formation of deep eutectic solvent used in liquid phase extraction coupled with solidification of organic droplets dispersive liquid-liquid microextraction; application in determination of some pesticides in milk samples. Talanta 2020, 206, 120169. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin Microbiol Rev 2003, 16, 497–516. [Google Scholar] [CrossRef]
- Binder, E.M. Managing the risk of mycotoxins in modern feed production. Animal Feed Science and Technology 2007, 133, 149–166. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. International Journal of Environmental Research and Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.I.; Miller, J.D. A Concise History of Mycotoxin Research. J. Agric. Food Chem. 2017, 65, 7021–7033. [Google Scholar] [CrossRef]
- Schincaglia, A.; Aspromonte, J.; Franchina, F.A.; Chenet, T.; Pasti, L.; Cavazzini, A.; Purcaro, G.; Beccaria, M. Current Developments of Analytical Methodologies for Aflatoxins’ Determination in Food during the Last Decade (2013–2022), with a Particular Focus on Nuts and Nut Products. Foods 2023, 12, 527. [Google Scholar] [CrossRef]
- Khan, R.; Ghazali, F.M.; Mahyudin, N.A.; Samsudin, N.I. P. Aflatoxin Biosynthesis, Genetic Regulation, Toxicity, and Control Strategies: A Review. Journal of Fungi 2021, 7, 606. [Google Scholar] [CrossRef] [PubMed]
- Bashiry, M.; Javanmardi, F.; Sadeghi, E.; Shokri, S.; Hossieni, H.; Oliveira, C.A. F.; Mousavi Khaneghah, A. The prevalence of aflatoxins in commercial baby food products: A global systematic review, meta-analysis, and risk assessment study. Trends in Food Science & Technology 2021, 114, 100–115. [Google Scholar]
- Flores-Flores, M.E.; González-Peñas, E. Short communication: Analysis of mycotoxins in Spanish milk. J Dairy Sci 2018, 101, 113–117. [Google Scholar] [CrossRef]
- Iarc, Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. 2002.
- Min, L.; Li, D.; Tong, X.; Sun, H.; Chen, W.; Wang, G.; Zheng, N.; Wang, J. The challenges of global occurrence of aflatoxin M1 contamination and the reduction of aflatoxin M1 in milk over the past decade. Food Control 2020, 117, 107352. [Google Scholar] [CrossRef]
- Turna, N.S.; Wu, F. Aflatoxin M1 in milk: A global occurrence, intake, & exposure assessment. Trends in Food Science & Technology 2021, 110, 183–192. [Google Scholar]
- Flores-Flores, M.E.; González-Peñas, E. Analysis of Mycotoxins in Peruvian Evaporated Cow Milk. Beverages 2018, 4, 34. [Google Scholar]
- Flores-Flores, M.E.; Lizarraga, E.; López de Cerain, A.; González-Peñas, E. Presence of mycotoxins in animal milk: A review. Food Control 2015, 53, 163–176. [Google Scholar] [CrossRef]
- González-Jartín, J.M.; Rodríguez-Cañás, I.; Alfonso, A.; Sainz, M.J.; Vieytes, M.R.; Gomes, A.; Ramos, I.; Botana, L.M. Multianalyte method for the determination of regulated, emerging and modified mycotoxins in milk: QuEChERS extraction followed by UHPLC–MS/MS analysis. Food Chemistry 2021, 356, 129647. [Google Scholar] [CrossRef]
- Sun, F.; Wu, P.; Abdallah, M.F.; Tan, H.; Li, Y.; Yang, S. One sample multi-point calibration curve as a novel approach for quantitative LC-MS analysis: The quantitation of six aflatoxins in milk and oat-based milk as an example. Food Chemistry 2023, 420, 135593. [Google Scholar] [CrossRef]
- Ansari, M.Z.; Kumar, A.; Ahari, D.; Priyadarshi, A.; Lolla, P.; Bhandari, R.; Swaminathan, R. Protein charge transfer absorption spectra: an intrinsic probe to monitor structural and oligomeric transitions in proteins. Faraday Discussions 2018, 207, 91–113. [Google Scholar] [CrossRef]
- Zheng, B.; Yu, Y.; Wang, M.; Wang, J.; Xu, H. Qualitative-quantitative analysis of multi-mycotoxin in milk using the high-performance liquid chromatography-tandem mass spectrometry coupled with the quick, easy, cheap, effective, rugged and safe method. Journal of Separation Science 2022, 45, 432–440. [Google Scholar] [CrossRef]
- Rodríguez-Carrasco, Y.; Izzo, L.; Gaspari, A.; Graziani, G.; Mañes, J.; Ritieni, A. Simultaneous Determination of AFB1 and AFM1 in Milk Samples by Ultra High Performance Liquid Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Beverages 2018, 4, 43. [Google Scholar] [CrossRef]
- Panara, A.; Katsa, M.; Kostakis, M.; Bizani, E.; Thomaidis, N.S. Monitoring of Aflatoxin M1 in Various Origins Greek Milk Samples Using Liquid Chromatography Tandem Mass Spectrometry. Separations 2022, 9, 58. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, Y.C.; Bai, X.L.; Liu, Y.M.; Wu, G.F.; Yang, F.S.; Liao, X. Multi-mycotoxins analysis in liquid milk by UHPLC-Q-Exactive HRMS after magnetic solid-phase extraction based on PEGylated multi-walled carbon nanotubes. Food Chem 2020, 305, 125429. [Google Scholar] [CrossRef]
- Leite, M.; Freitas, A.; Barbosa, J.; Ramos, F. Mycotoxins in Raw Bovine Milk: UHPLC-QTrap-MS/MS Method as a Biosafety Control Tool. Toxins 2023, 15, 173. [Google Scholar] [CrossRef]
- Pandey, A.K.; Shakya, S.; Patyal, A.; Ali, S.L.; Bhonsle, D.; Chandrakar, C.; Kumar, A.; Khan, R.; Hattimare, D. Detection of aflatoxin M1 in bovine milk from different agro-climatic zones of Chhattisgarh, India, using HPLC-FLD and assessment of human health risks. Mycotoxin Research 2021, 37, 265–273. [Google Scholar] [CrossRef]
- Maggira, M.; Ioannidou, M.; Sakaridis, I.; Samouris, G. Determination of Aflatoxin M1 in Raw Milk Using an HPLC-FL Method in Comparison with Commercial ELISA Kits—Application in Raw Milk Samples from Various Regions of Greece. Veterinary Sciences 2021, 8, 46. [Google Scholar] [CrossRef]
- Pietruszka, K.; Panasiuk, Ł.; Jedziniak, P. Survey of the enniatins and beauvericin in raw and UHT cow's milk in Poland. Journal of Veterinary Research 2023, 67, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Marimón Sibaja, K.V.; Gonçalves, K.D. M.; Garcia, S.D. O.; Feltrin, A.C. P.; Nogueira, W.V.; Badiale-Furlong, E.; Garda-Buffon, J. Aflatoxin M1 and B1 in Colombian milk powder and estimated risk exposure. Food Additives & Contaminants: Part B 2019, 12, 97–104. [Google Scholar]
- Khaneghahi Abyaneh, H.; Bahonar, A.; Noori, N.; Yazdanpanah, H.; Shojaee AliAbadi, M.H. Exposure to Aflatoxin M1 through Milk Consumption in Tehran Population, Iran. Iran J Pharm Res 2019, 18, 1332–1340. [Google Scholar] [PubMed]
- Pape-Zambito, D.A.; Roberts, R.F.; Kensinger, R.S. Estrone and 17β-estradiol concentrations in pasteurized-homogenized milk and commercial dairy products. Journal of Dairy Science 2010, 93, 2533–2540. [Google Scholar] [CrossRef] [PubMed]
- Bártíková, H.; Podlipná, R.; Skálová, L. Veterinary drugs in the environment and their toxicity to plants. Chemosphere 2016, 144, 2290–2301. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Chen, C.; Shi, P.; Yue, L. Determination of melamine in milk based on β-cyclodextrin modified carbon nanoparticles via host–guest recognition. Food Chemistry 2021, 338, 127769. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, S.; Demir, N. Development of a novel IMAC sorbent for the identification of melamine in dairy products by HPLC. Journal of Food Composition and Analysis 2021, 100, 103931. [Google Scholar] [CrossRef]
- Hau, A.K.-c.; Kwan, T.H.; Li, P.K.-t. Melamine Toxicity and the Kidney. Journal of the American Society of Nephrology 2009, 20, 245. [Google Scholar] [CrossRef]
- Ogasawara, H.; Imaida, K.; Ishiwata, H.; Toyoda, K.; Kawanishi, T.; Uneyama, C.; Hayashi, S.; Takahashi, M.; Hayashi, Y. Urinary bladder carcinogenesis induced by melamine in F344 male rats: correlation between carcinogenicity and urolith formation. Carcinogenesis 1995, 16, 2773–2777. [Google Scholar] [CrossRef]
- Ceniti, C.; Spina, A.A.; Piras, C.; Oppedisano, F.; Tilocca, B.; Roncada, P.; Britti, D.; Morittu, V.M. Recent Advances in the Determination of Milk Adulterants and Contaminants by Mid-Infrared Spectroscopy. Foods 2023, 12, 2917. [Google Scholar] [CrossRef]
- Rajpoot, M.; Bhattacharya, R.; Sharma, S.; Gupta, S.; Sharma, V.; Sharma, A.K. Melamine contamination and associated health risks: Gut microbiota does make a difference. Biotechnology & Applied Biochemistry 2021, 68, 1271–1280. [Google Scholar]
- Strashnov, I.; Karunarathna, N.B.; Fernando, B.R.; Dissanayake, C.; Binduhewa, K.M. An isotope dilution liquid chromatography-mass spectrometry method for detection of melamine in milk powder. Food Additives & Contaminants: Part A 2021, 38, 1805–1816. [Google Scholar]
- Baan, R.; Grosse, Y.; Straif, K.; Secretan, B.; Ghissassi, F.E.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; Cogliano, V. A review of human carcinogens—Part F: Chemical agents and related occupations. The Lancet Oncology 2009, 10, 1143–1144. [Google Scholar] [CrossRef]
- Shetty, S.A.; Rangiah, K. Simple click chemistry-based derivatization to quantify endogenous formaldehyde in milk using ultra-high-performance liquid chromatography/tandem mass spectrometry in selected reaction monitoring mode. Rapid Communications in Mass Spectrometry 2020, 34, e8865. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, D.O. Exposure to and health effects of volatile PCBs. Reviews on environmental health 2015, 30, 81–92. [Google Scholar] [CrossRef]
- Amirdivani, S.; Khorshidian, N.; Ghobadi Dana, M.; Mohammadi, R.; Mortazavian, A.M.; Quiterio de Souza, S.L.; Barbosa Rocha, H.; Raices, R. Polycyclic aromatic hydrocarbons in milk and dairy products. International Journal of Dairy Technology 2019, 72, 120–131. [Google Scholar] [CrossRef]
- Nisbet, I.C. T.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine 2015, 5, 182–189. [Google Scholar] [CrossRef]
- Hill, N.I.; Becanova, J.; Lohmann, R. A sensitive method for the detection of legacy and emerging per- and polyfluorinated alkyl substances (PFAS) in dairy milk. Anal. Bioanal. Chem. 2022, 414, 1235–1243. [Google Scholar] [CrossRef]
- Abafe, O.A.; Macheka, L.R.; Olowoyo, J.O. Confirmatory Analysis of Per and Polyfluoroalkyl Substances in Milk and Infant Formula Using UHPLC–MS/MS. Molecules 2021, 26, 3664. [Google Scholar] [CrossRef]
- Sun, X.; Ji, W.; Hou, S.; Wang, X. Facile synthesis of trifluoromethyl covalent organic framework for the efficient microextraction of per-and polyfluorinated alkyl substances from milk products. Journal of Chromatography A 2020, 1623, 461197. [Google Scholar] [CrossRef]
- Gallocchio, F.; Moressa, A.; Zonta, G.; Angeletti, R.; Lega, F. Fast and Sensitive Analysis of Short- and Long-Chain Perfluoroalkyl Substances in Foods of Animal Origin. Molecules 2022, 27, 7899. [Google Scholar] [CrossRef]
- Ren, J.; Lu, Y.; Han, Y.; Qiao, F.; Yan, H. Novel molecularly imprinted phenolic resin–dispersive filter extraction for rapid determination of perfluorooctanoic acid and perfluorooctane sulfonate in milk. Food Chemistry 2023, 400, 134062. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, L.; Li, B. Magnetic molecular imprinting polymers based on three-dimensional (3D) graphene-carbon nanotube hybrid composites for analysis of melamine in milk powder. Food Chemistry 2018, 255, 226–234. [Google Scholar] [CrossRef] [PubMed]
- García Londoño, V.A.; Puñales, M.; Reynoso, M.; Resnik, S. Melamine contamination in milk powder in Uruguay. Food Additives & Contaminants: Part B 2018, 11, 15–19. [Google Scholar]
- Li, N.; Zhao, T.; Du, L.; Zhang, Z.; Nian, Q.; Wang, M. Fast and simple determination of estrogens in milk powders by magnetic solid-phase extraction using carbon nitride composites prior to HPLC. Anal. Bioanal. Chem. 2021, 413, 215–223. [Google Scholar] [CrossRef]
- Liu, K.; Kang, K.; Li, N.; An, J.; Lian, K.; Kang, W. Simultaneous Determination of Five Hormones in Milk by Automated Online Solid-Phase Extraction Coupled to High-Performance Liquid Chromatography. J. AOAC Int. 2020, 103, 265–271. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, C.; Lian, J.; Liang, N.; Zhao, L. Development of extraction separation technology based on deep eutectic solvent and magnetic nanoparticles for determination of three sex hormones in milk. Journal of Chromatography B 2021, 1166, 122558. [Google Scholar] [CrossRef]
- Lu, Y.; Shen, Q.; Zhai, C.; Yan, H.; Shen, S. Ant nest-like hierarchical porous imprinted resin-dispersive solid-phase extraction for selective extraction and determination of polychlorinated biphenyls in milk. Food Chemistry 2023, 406, 135076. [Google Scholar] [CrossRef]
- Shariatifar, N.; Dadgar, M.; Fakhri, Y.; Shahsavari, S.; Moazzen, M.; Ahmadloo, M.; Kiani, A.; Aeenehvand, S.; Nazmara, S.; Mousavi Khanegah, A. Levels of polycyclic aromatic hydrocarbons in milk and milk powder samples and their likely risk assessment in Iranian population. Journal of Food Composition and Analysis 2020, 85, 103331. [Google Scholar] [CrossRef]
- Faria, I.D. L.; Gouvêa, M.M.; Pereira Netto, A.D.; de Carvalho Marques, F.F. Determination of formaldehyde in bovine milk by micellar electrokinetic chromatography with diode array detection. LWT 2022, 163, 113473. [Google Scholar] [CrossRef]
- Hajrulai-Musliu, Z.; Uzunov, R.; Jovanov, S.; Kerluku, M.; Jankuloski, D.; Stojkovski, V.; Pendovski, L.; Sasanya, J.J. Determination of Veterinary Drug Residues, Mycotoxins, and Pesticide Residues in Bovine Milk by Liquid Chromatography Electrospray Ionisation -tandem Mass Spectrometry. Journal of Veterinary Research 2022, 66, 215–224. [Google Scholar] [CrossRef]
- Park, J.-A.; Abd El-Aty, A.M.; Zheng, W.; Kim, S.-K.; Cho, S.-H.; Choi, J.-m.; Hacımüftüo, A.; Jeong, J.H.; Wang, J.; Shim, J.-H.; Shin, H.-C. Simultaneous determination of clanobutin, dichlorvos, and naftazone in pork, beef, chicken, milk, and egg using liquid chromatography-tandem mass spectrometry. Food Chemistry 2018, 252, 40–48. [Google Scholar] [CrossRef]
- Liu, X.-L.; Wang, Y.-H.; Ren, S.-Y.; Li, S.; Wang, Y.; Han, D.-P.; Qin, K.; Peng, Y.; Han, T.; Gao, Z.-X.; Cui, J.-Z.; Zhou, H.-Y. Fabrication of Magnetic Al-Based Fe3O4@MIL-53 Metal Organic Framework for Capture of Multi-Pollutants Residue in Milk Followed by HPLC-UV. Molecules 2022, 27, 2088. [Google Scholar] [CrossRef] [PubMed]

| Target EPs | Category | Extraction method |
Analysis technique | Matrix | Analytical parameters | Conc. in real samples | Country | Ref |
|---|---|---|---|---|---|---|---|---|
| Tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC), doxycycline (DC) | TCs Antibiotics | FPSE | HPLC-UV | Milk | LOD: 15 μg/kg | ND | Greece | [101] |
| LOQ: 50 μg/kg | ||||||||
| CCα:103.2 - 108.1 μg/kg | ||||||||
| CCβ:108.6 - 114.3 μg/kg | ||||||||
| R: 88.9 -122.4% | ||||||||
| RSD: ≤14.5% | ||||||||
| TC, OTC, CTC | TCs Antibiotics | MSPD | UHPLC–MS/MS | Milk powder | LOD: 0.217 - 0.318 ng/g | ND | China | [102] |
| LOQ: 0.723 – 1.060 ng/g | ||||||||
| LR: 1-100 ng/g R2: 0.998-0.999 | ||||||||
| R: 84.7 - 93.9% | ||||||||
| RSD: <7.5% | ||||||||
|
TC, OTC, DC |
TCs antibiotics | MSPE-DLLME |
HPLC-UV | Bovine milk | LOD: 1.8–2.9 μg/L | Spiked | Iran | [51] |
| LOQ: 6.1–9.7 μg/L | ||||||||
| LR: 10.0–200.0 μg/L | ||||||||
| R2: > 0.9929 | ||||||||
| RSD: 2.5- 8.8% | ||||||||
| R: 70.6 - 121.5% | ||||||||
| OTC, CTC, TC | TCs Antibiotics | MSPE | HPLC-UV | Milk | LOD: 1.29 -2.31 ng/mL | ND | China | [103] |
| LOQ: 4.26 – 7.62 ng/mL | ||||||||
| LR: 5–250 ng/mL | ||||||||
| R: 79–109 % | ||||||||
| RSD: <7.25% | ||||||||
| TC, OTC, CTC, DC | TCs Antibiotics | MSPE | HPLC-UV | Milk | LOD: 1.03 - 1.31 μg/L | ND | China | [100] |
| LOQ: 3.46 - 4.41 μg/L | ||||||||
| LR: 5.0–700 μg/L R2: 0.9991 - 0.9996 | ||||||||
| R: 86.7 - 98.6% | ||||||||
| RSD: 1.4–5.7% | ||||||||
| OTC, TC, CTC, DC | TCs Antibiotics | QuEChERS |
HPLC-DAD | Milk | LOD: 15 μg/kg | ND | Greece | [104] |
| LOQ: 50 μg/kg | ||||||||
| CCα: 100.3-105.6 μg/kg | ||||||||
| CCβ: 100.6 -109.7 μg/kg | ||||||||
| R: 83.07% -106.3% | ||||||||
| RSD: <15.5% | ||||||||
| Sulfadiazine (SD), sulfapyridine (SP), sulfathiazole (SZ), sulfamethazine (SMZ), sulfamethoxypyridazine (SMP), sulfachloropyridazine (SCP), sulfamethoxazole (SMX), sulfisoxazole (SIX), sulfadimethoxine (SDM), sulfaquinoxaline (SQX) | SAs antibiotics | SPME | HPLC-DAD | Milk | LOD: 0.077–0.350 μg/L | NS | Greece | [105] |
| LOQ: 0.23-1.05 μg/L | ||||||||
| LR: 0.5–150 μg/L R2: > 0.9964 | ||||||||
| R: 88 -97% | ||||||||
| RSD: <10% | ||||||||
| CCα:111.2 - 113.6 μg/L | ||||||||
| CCβ:122.6 -127.4 μg/L | ||||||||
| Sulfanilamide (SN), SD, SMZ, sulfamerazine (SM), SP, SZ, SMP, SMX, SDM | SAs Antibiotics |
SPE | HPLC-UV | Milk | LOD: 3.0–12.3 μg/kg | ND |
China | [106] |
| LOQ: 10–43 μg/kg | ||||||||
| LR:20–1000 μg/kg | ||||||||
| R: 80.7–101.3% | ||||||||
| RSD: <8.5% | ||||||||
|
SN, SD, SZ, and sulfamethizole (SMT) |
SAs antibiotics |
CPME | HPLC-DAD |
Milk | LOD: 16.7 μg/kg | ND | Greece | [107] |
| LOQ: 50 μg/kg | ||||||||
| LR: 50–2000 μg/L | ||||||||
| CCα: 104.5–111.4 μg/kg | ||||||||
| CCβ: 109.4–118.1 μg/kg | ||||||||
| Absolute R: 12.1–18.1% | ||||||||
| RSD: < 11.2% | ||||||||
|
SZ, SME, SDM, Sulfamonomethoxine (SMM) |
SAs Antibiotics |
d-MSPE |
HPLC-DAD |
Milk | LOD: 2.5, 5.0 μg/kg | SME: 15.1 μg/kg |
Thailand | [108] |
| LOQ: 7.5 – 10.0 μg/kg | ||||||||
| LR: 2.5 - 150.0 μg/kg R2: > 0.997 | ||||||||
| R: 83.0 - 99.2% | ||||||||
| RSD: < 6% | ||||||||
| Ciprofloxacin (CIP), fleroxacin (FLE), and oxolinic acid (OXO), Danofloxacin (DAN), difloxacin (DIF), flumequine (FLU), lomefloxacin (LOM) marbofloxacin (MAR), nalidixic acid (NAL), norfloxacin (NOR), pefloxacin (PEF), pipemidic acid (PIP), sarafloxacin (SAR), enrofloxacin (ENR), levofloxacin (LEV), trovafloxacin (TRFX), orbifloxacin (ORB), ofloxacin (OFl), and cinoxacin (CIN) | Qs Antibiotics | QuEChERS | UPLC–MS/MS | goat’s milk | LOQ: 5 ppb | ND | Taiwan | [32] |
| R2: >0.9853 | ||||||||
| R: 73.4 –114.2% | ||||||||
| CV: <15% | ||||||||
| DIF, ORB, Sparfloxacin (SPA), SAR, FLE, MAR, OFL, ENR, DAN, LOM, PEF, CIP, ENO, NOR, PIP, CIN, OXO, NAL | Qs Antibiotics | MSPE | HPLC-MS/MS |
Milk | LOD: 3.1- 13.3 ng/L | CIP (2 μg/L), DAN (0.66 μg/L), (One sample) |
China | [109] |
| LOQ: 10.4 - 44.2 ng/L | ||||||||
| LR: 0.05–10 μg/L R2: 0.9975- 0.9996 | ||||||||
| R: 82.4 - 103.9% | ||||||||
| RSD: 2.9 –15.1% | ||||||||
| OFL, NOR, CIP, ENR, DIF, PEF, DAN | Qs antibiotics | MSPE | HPLC–MS/MS |
Milk | LOD: 0.35 - 1.5 μg/L | ND | China | [110] |
| LOQ: 1.2-4 μg/L | ||||||||
| LR: 1.5–200 μg/L R2: > 0.99 | ||||||||
| R: 75 -88.3 % | ||||||||
| RSD: 5.3 -9.1% | ||||||||
| CIN, CIP, DAN, DIF, Enoxacin (ENO), ENR, FLU LOM, MAR, Moxifloxacin (MOX), NAL, NOR, OFL, OXO, PIP, Piromidic acid (PIRO), SAR | Qs Antibiotics | SBSE | UHPLC–MS/MS | Raw cow milk | LOD: 0.1-1.0 μg/kg | CIP, ENR and MAR 2.7 - 35.3 μg/kg |
Spain | [111] |
| LOQ: 0.5 – 4.0 μg/kg | ||||||||
| LR: 0.5 – 150 μg/kg R2: 0.99-0.999 | ||||||||
| R: 88.0–114.0% | ||||||||
| RSD: 2.0–14.0% | ||||||||
| CCα: 30.7–106.1 μg/kg | ||||||||
| CCβ: 31.3–122.0 μg/kg | ||||||||
| OFL, NOR, CIP | Qs antibiotics | SPE |
HPLC-FLD | cow milk |
LOD: 39, 30, 33 ng/L | ND | Spain | [112] |
| LOQ: 120, 92, 100 ng/L | ||||||||
| LR: 1.8–250 μg/L | ||||||||
| R: 60 - 70 % | ||||||||
| RSD: 4–13% | ||||||||
|
CIP, ENR, NOR, LOM, ENO, SPA |
Qs antibiotics |
SPE |
HPLC-UV |
Milk | LOD: 2.8–5.1 ng/g | ND | China | ([47] |
| LOQ: 9.5-17 ng/g | ||||||||
| LR: 10–2000 ng/g R2: 0.9972 - 0.9997 | ||||||||
| R: 85.8% - 117.9% | ||||||||
| RSD: ≤ 9.4% | ||||||||
| CCα: 102.1-105.1 ng/g | ||||||||
| CCβ: 108.3 - 116.0 ng/g | ||||||||
| CIP, ENR, LOM, PEF, LEV gatifloxacin (GAT) | Qs Antibiotics | MSPE | HPLC-DAD | Milk | LOD: 0.25 - 0.5 ng/g | ND | China | [113] |
| LR: 2.5-1500 ng/g R2: >0.9996 | ||||||||
| R: 81.05 - 98.75 | ||||||||
| RSD: 1.5 - 4.3% | ||||||||
| PEF, CIP, ENR, LOM, SAR | Qs Antibiotics | MSPE | HPLC-MS/MS | Milk | LOD: 0.04–0.10 ng/g | Spiked | China | [114] |
| LOQ: 0.1–0.2 ng/g | ||||||||
| LR: 0.1–200 ng/g r: 0.9991 - 0.9997 | ||||||||
| R: 78.1 - 95.2 % | ||||||||
| RSD: 1.2 - 7.9 % | ||||||||
| ENO, FLE, OFL, NOR, PEF, LOM | Qs Antibiotics | MSPE | HPLC-UV | Milk | LOD: 0.05 - 0.20 μg/L | ND | China | [71] |
| LOQ: 0.19 – 0.71 μg/L | ||||||||
| LR: 0.5 - 200 μg/L r : 0.9982- 0.9996 | ||||||||
| R: 90.4 - 101.2% | ||||||||
| RSD: 3.5 - 4.7% | ||||||||
|
Ampicillin, benzylpenicillin, amoxicillin, oxacillin, and cloxacillin |
β-lactams Antibiotics | D-m-SPE |
UPLC–MS/MS | cow, goat and sheep milk | LOD: 0.03–0.20 μg/kg | ND |
Iran | [115] |
| LOQ: 0.17 - 0.68 μg/kg | ||||||||
| LR: 0.1–300 μg/kg R2: 0.9978- 0.9995 | ||||||||
| R: 87–107% | ||||||||
| RSD: ≤ 5.8% | ||||||||
| CCα: 4.1–31.0 μg/kg | ||||||||
| CCβ: 4.3 - 32.1 μg/kg | ||||||||
| Ampicillin | β-lactam Antibiotics | EME |
HPLC-UV | Cow milk | LOD: 0.6 μg/L | ND | Iran | [94] |
| LR: 2–100 μg/L | ||||||||
| R2: 0.995 | ||||||||
| R: 37–45% | ||||||||
| RSD: <7.1% | ||||||||
| 32 antibiotics | β-lactam antibiotics |
d-SPE |
UHPLC-MS/MS | Bovine milk | LOD: 0.0090 - 1.5 μg/kg | NS | Ireland | [116] |
| LOQ: 0.030 - 5.0 μg/kg | ||||||||
| R2 ≥ 0.98 | ||||||||
| R: 91 - 130% | ||||||||
| RSD: 1.4 -38.6% | ||||||||
| CCα: 2.1–133 μg/kg | ||||||||
| CCβ: 2.4 – 182 μg/kg | ||||||||
| Ceftiofur | β-lactam Antibiotics | Online SPE | HPLC-MS/MS | bovine milk |
LOD: 0.1 μg /L | ND | Brazil | [117] |
| LOQ: 0.7 μg /L | ||||||||
| R2: > 0.98 | ||||||||
| R: 73.4 - 111.3% | ||||||||
| RSD: < 15% | ||||||||
| 31 compounds | Macrolides Antibiotics |
QuEChERS | UPLC–MS/MS | Milk | LOD: 0.1 – 0.5 μg/L | LOD<C<LOQ |
China | [118] |
| LOQ: 0.5 – 2.0 μg/L | ||||||||
| LR: 1 - 200 μg/L R2: > 0.990 | ||||||||
| R: 81.07 – 110.1% | ||||||||
| RSD: <5.1% | ||||||||
| Azithromycin (AZI), clarithromycin (CLA), erythromycin (ERY), lincomycin (LIN), roxithromycin (ROX) | Macrolide antibiotics | mini-SPE | UHPLC-Q-TOF/MS | bovine milk | LOD: 0.017–0.76 μg/kg | LIN: 2.16 μg/kg AZI:174.94 μg/kg ERY: 7.91 μg/kg CLA: 24.04 μg/kg ROX: 13.87 μg/kg | China | [119] |
| LOQ: 0.054–2.52 μg/kg | ||||||||
| MDL: 0.027–1.01 μg/kg | ||||||||
| MQL: 0.026–0.96 μg/kg | ||||||||
| R2: > 0.99 | ||||||||
| R: 77.91 – 105.34 % | ||||||||
| Gamithromycin | Semisynthetic macrolide Antibiotics | SPE | UHPLC-MS/MS | Milk | LOD: 0.30 – 0.40 μg/kg | ND | China | [120] |
| LOQ: 0.80 – 1.0 μg/kg | ||||||||
| LR: 1.0 – 200 μg/kg R2: > 0.99 | ||||||||
| R: 109.8 - 114.8% | ||||||||
| RSD: 1.4 - 6.8% | ||||||||
|
Lincomycin (LIN) |
Lincosamide Antibiotics | CSMISPE | HPLC-UV | Pasteurized milk |
LOD: 0.02 μg/mL | 0.10-0.61 μg/mL |
Iran | [66] |
| LOQ: 0.08 μg/mL | ||||||||
| LR: 0.08-2 μg/mL R2: 0.999 | ||||||||
| R: 80-89% | ||||||||
| RSD: ≤ 4.03% | ||||||||
| Vancomycin, Teicoplanin, Telavancin, Oritavancin, Dalbavancin | Glycopeptide Antibiotics |
SPE | UHPLC–MS/MS | Milk | LOD: 0.33 μg/kg | Spiked | China | [121] |
| LOQ: 1.00 μg/kg | ||||||||
| R2: 0.9987 - 0.9999 | ||||||||
| R: 83 - 102% | ||||||||
| RSD: 1-6.8% | ||||||||
| Vancomycin and Norvancomycin | Glycopeptide antibiotics |
Online SPE | LC-HRMS |
Milk | LOD: 0.15 μg/kg | Spiked | China | [44] |
| LOQ: 0.5 μg/kg | ||||||||
| LR: 0-200 ng/mL R2: > 0.9983 | ||||||||
| R: 80.00–92.96%, 80.68–91.31% | ||||||||
| RSD: 4.90– 9.35% | ||||||||
| Vancomycin and norvancomycin | Glycopeptide antibiotics |
SMISPE |
LC–MS/MS | Milk | LOD: 0.5 μg/kg | ND |
China | [122] |
| LOQ: 1.0 μg/kg | ||||||||
| LR: 0.5 -50 μg/kg | ||||||||
| R: 83.3% - 92.1% | ||||||||
| RSD: < 16.8% | ||||||||
| Chloramphenicol (CAP) | Amphenicol antibiotics | MSPE | HPLC-UV | Milk | LOD: 0.24 μg/L | ND | China | [123] |
| LOQ: 0.79 μg/L | ||||||||
| LR: 7- 1.0 × 103 μg/L R2: 0.9994 | ||||||||
| R: 80.5 - 105.0% | ||||||||
| RSD: 5.3-8.9% | ||||||||
|
Chloramphenicol (CAP) |
Amphenicol antibiotics | SS-DMNF-ME |
HPLC-UV | Milk | LOD: 0.22–0.25 ng/mL | ND | Iran | [124] |
| LOQ: 0.73–0.85 ng/mL | ||||||||
| LR: 0.9–250 ng/mL R2: ≥ 0.982 | ||||||||
| R: 91.4% – 95.1% | ||||||||
| RSD: ≤4.16 | ||||||||
| Closantel, Nitroxynil, Niclosamide, Rafoxanide, Eprinomectin, Emamectin, Levamisole, Cymiazole, Praziquantel, Tetramisole, Thiophanate, Morantel, Pyrantel, Fluazuron, Guaifenesin, Carbendazim, Cambendazole,Trichlorfon | Anthelmintics |
LLE | LC-MS/MS |
Milk | LOD: 0.1-5 μg/kg | ND | Korea | [125] |
| LOQ: 0.4-10 μg/kg | ||||||||
| R2: ≥0.9752 | ||||||||
| R: 64.6 -112.6% | ||||||||
| RSD: ≤13.4 | ||||||||
| Albendazole (ABZ), albendazole sulfoxide (ABZ-SO), benomyl (BEN), carbendazim (CBZ), fenbendazole (FBZ), fenbendazole sulfone (FBZ-SO2), fenbendazole sulfoxide (FBZ-SO), mebendazole (MBZ), mebendazole-amine (MBZ-NH2), thiabendazole (TBZ), 5-hydroxy-thiabendazole (5-OH-TBZ), triclabenda- zole (TCB), triclabendazole sulfone (TCB-SO2), triclabendazole sulfoxide (TCB-SO), Albendazole-2-aminosulfone (ABZ-NH2- SO2) | Anthelmintics | SALLE | CLC-UV |
Cow, sheep and goat milk |
LOD: 1.0 - 2.8 μg/kg | ND | Spain | [55] |
| LOQ: 3.2 - 9.5 μg/kg | ||||||||
| LR:3.2–200 μg/kg R2: > 0.9985 | ||||||||
| R:79.1- 99.6% | ||||||||
| RSD: 1.6 -14.2% | ||||||||
| Mebendazole | Anthelmintics | BSASLE + BUASLE | MLC-DAD | Milk | LOD: 0.2 ppm | 1-7.4 ppm |
India | [54] |
| LOQ: 0.6 ppm | ||||||||
| r2 = 0.9996 | ||||||||
| R: 98.5-99.8% | ||||||||
| RSD: <5% | ||||||||
| Salicylic acid (SA), oxaprozin (OXP), diclofenac (DCF) and ibuprofen (IBF). | NSAIDs | UA-HDES- DLLME |
HPLC-UV | Milk | LOD: 0.5-1 μg/L | ND | China | [126] |
| LOQ: 1-5 μg/L | ||||||||
| LR: 5–2000 μg/L R2: 0.994-0.999 | ||||||||
| R: 65.88 - 110.80% | ||||||||
| RSD: 1.11 - 16.9% | ||||||||
| Ketoprofen (Ket), flurbiprofen (Flu), ibuprofen (Ibu), naproxen (Nap), and diclofenac sodium (DS) | NSAIDs | BSE |
UPLC-DAD | Milk | LOD:1.14-4.50 ng/mL | ND | China | [127] |
| LOQ: 3.76-14.85 ng/mL | ||||||||
| LR: 10–1000 ng/mL R2: 0.9988 - 0.9998 | ||||||||
| R: 80.8% to 110.2% | ||||||||
| RSD: 2.3-3.5% | ||||||||
| Diclofenac sodium (DS) | NSAIDs | MSPE | HPLC-MS/UV |
Milk | LOD: 10 ng/kg | 28–68 ng/kg |
China | [128] |
| LOQ: 25 ng/kg | ||||||||
| LR: 50–2000 ng/kg R2: 0.9996 | ||||||||
| R: 87–103% | ||||||||
| RSD: 2.4–11.3% | ||||||||
| Spironolactone (SPRL), canrenone (CR), chlorothiazide (CTZ), hydrochlorothiazide (HCTZ), acetazolamide (AZ), furosemide (FSM), 4-amino-6-chlorobenzene-1,3- disulfonamide (ACB) | Diuretics | modified QuEChERS | HPLC–MS/MS | Milk | LOQ: 0.5-1.0 μg/kg | ND | China[129] | [130] |
| R2: 0.9954 - 0.9999 | ||||||||
| R: 73-113.9% | ||||||||
| RSD: 2.45 -10% | ||||||||
|
Chloramphenicol (CAP)Tetracycline (TC) |
Multiclass Antibiotics | MSPE | HPLC-DAD | Milk | LOD: 3.02, 3.52 ng/mL | CAP: (one sample): 53.3 ng/mL TC: (one sample): 75.8 ng/mL |
Turkey | [52] |
| LOQ: 9.63, 9.83 ng/mL | ||||||||
| LR: 10.0–600.0 ng/mL R2: 0.9954, 0.9973 | ||||||||
| R: 94.6 –105.4% | ||||||||
| RSD: <4.0% | ||||||||
| SMM, OTC, CEF, MAR | Multiclass Antibiotics | SPE |
HPLC-DAD |
Milk | LOD: 0.02 μg/mL | NS | Italy | [129] |
| LOQ: 0.02 μg/mL | ||||||||
| LR: 0.02–2.00 μg/mL R2: 0.993–0.998 | ||||||||
| R: 61.4% - 99.3% | ||||||||
|
62 analytes |
Multiclass Antibiotics | SPE | UPLC-quadrupole/electrostatic field orbitrap- HRMS | Goat milk | LOD: 0.5 - 1.0 μg/kg | Metronidazole: 2.45 & 5.02 μg/kg Enrofloxacin: 112.4 μg/kg |
China | [131] |
| LOQ: 5.0 -10.0 μg/kg | ||||||||
| LR: 0.5 –100 μg/L R2: 0.9901–0.9998 | ||||||||
| R: 60.1 - 110.0% | ||||||||
| RSD: <15% | ||||||||
| DC, TC, OTC, PNG, CAP, CIP, ENR | Multiclass antibiotics | MIL–based AALLME |
HPLC–DAD | Milk | LOD: 0.09–0.21 ng/mL | TC:56–112 ng/mL OTC: 89–149 ng/mL CAP: 41 ng/mL (one sample) |
Iran | [132] |
| LOQ: 0.29–0.71 ng/mL | ||||||||
| LR: 0.71–500 ng/mL R2: ≥ 0.994 | ||||||||
| R: 79–91% | ||||||||
| RSD: 3.6–5.2% | ||||||||
| 22 compounds | Multiclass Antibiotics | MSPE | UPLC-MS/MS | Bovine milk | LOD: 0.04–0.19 μg/kg | 0.54–97.18 μg/kg |
Iran | [40] |
| LOQ: 0.13-0.64 μg/kg | ||||||||
| LR: 0.2–800 μg/kg | ||||||||
| R2: 0.9958 - 0.9992 | ||||||||
| R: 85.9 - 107.5% | ||||||||
| RSD: < 9.2% | ||||||||
| CCα: 0.10 - 111.3 μg/kg | ||||||||
| CCβ: 0.13 - 125.8 μg/kg | ||||||||
| 103 analytes | veterinary drugs | Modified QuEChERS | UPLC-MS/MS |
Cow milk and milk powder |
LOD: 0.1-25 μg/kg | LIN: 10.2 ± 1.5 μg/kg (one sample) |
China | [133] |
| LOQ:0.5-50 μg/kg | ||||||||
| R2: 0.9902 - 0.9998 | ||||||||
| R: 31.1 - 120.7% | ||||||||
| RSD: 2.34 to 19.2% | ||||||||
| 25 analytes | Multiclass veterinary drugs | LLE | UHPLC–MS/MS |
commercial milk samples |
LOQ : 0.1 – 4 ng/g | Clorprenaline: 0.5 ng/g and 0.47 ng/g hydrocortisone 0.78 ng/g (one sample) |
China | [134] |
| CCα: 0.008 - 113.68 ng/g | ||||||||
| CCβ: 0.01 - 125.75 ng/g | ||||||||
| LR: 0.1- 384 ng/mL R2: 0.9901- 0.9990 | ||||||||
| R: 65.9% - 123.5% | ||||||||
| RSD: ≤11.1% | ||||||||
| 132 analytes | Multiclass veterinary drugs | MSPE | HPLC-MS/MS | Milk | LOD: 0.015- 0.3 μg/kg | OCT: 1.5 μg/kg, CAP: 4.1 μg/kg, SMZ, LIN: 5.6 μg/kg CIP: 12.2 μg/kg |
Russia | [135] |
| LOQ: 0.05 -1 μg/kg | ||||||||
| R2: <0.990 | ||||||||
| R: 72 – 120% | ||||||||
| RSD: <20% | ||||||||
| 66 analytes | Multiclass Veterinary drugs | d-SPE and SPE | UHPLC-MS/MS | Cow milk | LOQ: 0.02 - 18.25 μg/kg | Danofloxacin 0.7– 1.5 μg/kg |
Spain | [136] |
| CCα: 0.01 -150.07 μg/kg | ||||||||
| CCβ: 0.04 -150.14 μg/kg | ||||||||
| R2: > 0.998 | ||||||||
| R: 70-120% | ||||||||
| RSD: ≤ 19.4% | ||||||||
| 57 analytes | Multiclass veterinary drugs | modified QuEChERS | UPLC-MS/MS | Milk | LOD: 0.1~3.8 μg/kg | flumequine and pipemidic |
China | [137] |
| LOQ: 0.2~6.3 μg/kg | ||||||||
| LR: 2~500 μg/kg R2: ≥ 0.999 | ||||||||
| R: 60.7% - 116.0% | ||||||||
| 16 analytes | Multiclass veterinary drugs | d-SPE & LLE | LC–MS/MS | Bovine and caprine milk | CCα: 0.023 - <5.0 μg/kg | Blank samples are spiked | Netherlands | [26] |
| CCβ: 0.045 – 5.0 μg/kg | ||||||||
| LR: 5–250 μg/L R2: ≥0.990 | ||||||||
| 18 analytes | Multiclass veterinary drugs | modified QuEChERS | UHPLC-HR-Orbitrap-MS | Milk | LOD: 0.09 -15.1 μg/kg | Imidocarb: 18 μg/kg (one sample) | Greece | [85] |
| LOQ: 0.28–10 μg/kg | ||||||||
| R2: > 0.9903 | ||||||||
| R: 65.1–120.1% | ||||||||
| LOD, Limit of detection; LOQ, Limit of quantification; LR, linear range; R2, determination coefficient; R, recovery; RSD%, Relative standard deviation; CCα, decision limit; CCβ, detection capability; CV, coefficient of variation; ND, not detected; NS, not specified; MDL, method detection limit; MQL, method quantification limit; SPE, solid phase extraction;MSPE, magnetic solid phase extraction; FPSE, fabric phase sorptive extraction; LLE, liquid-liquid extraction; dSPE, dispersive solid phase extraction; D-m-SPE, dispersive micro solid phase extraction; EME, electromembrane microextraction; CPME, Capsule phase microextraction; DLLME, dispersive liquid-liquid microextraction; SPME, solid phase microextraction; SALLE, salting out assisted liquid-liquid extraction; CSMISPE, core–shell molecularly imprinted solid phase extraction, SMISPE, Surface molecularly imprinted solid-phase extraction; SS-DMNF-ME, Syringe-to-syringe dispersive magnetic nanofluid microextraction, BSASLE + BUASLE, batch stirring-assisted solid-to-liquid extraction and batch ultrasound-assisted solid-to-liquid extraction, UA-HDES-DLLME, ultrasound-assisted hydrophobic deep eutectic solvents- dispersive liquid–liquid microextraction;BSE, bar sorptive extraction; MIL–based AALLME, Magnetic ionic liquid–based air–assisted dispersive liquid–liquid microextraction; TCs, tetracyclines; SAs, sulfonamides; Qs, quinolones; NASIDs, non- steroidal anti-inflammatory drugs; CLC, capillary liquid chromatography; MLC, micellar liquid chromatography. | ||||||||
| Target EDCs | Extraction method |
Analysis technique | Matrix | Analytical parameters | Conc. In real samples | Country | Ref |
|---|---|---|---|---|---|---|---|
| Bisphenol A (BPA), bisphenol BP (BPBP), bisphenol C (BPC), bisphenol F (BPF), bisphenol FL (BPFL), bisphenol G (BPG), bisphenol M (BPM), bisphenol S (BPS), bisphenol Z (PBZ), bisphenol A diglycidyl ether (BADGE), bisohenol A (2,3-dihydrox- ypropyl) glycidyl ether (BADGE⋅H2O), bisphenol A bis (2,3-dihydrox- ypropyl) ether (BADGE⋅2 H2O), bisphenol A (3-chloro-2-hydroxypropyl) glycidyl ether (BADGE⋅HCl), bisphenol A (3-chloro-2hydroxypropyl) (2,3-dihydroxypropyl) ether (BADGE⋅H2O⋅HCl), bisphenol A bis(3- chloro-2-hydroxypropyl) ether (BADGE⋅2HCl), bisphenol F diglycidyl ether (BFDGE), bisphenol F bis(2,3-dihydroxypropyl) ether (BFDGE⋅2 H2O), bisphenol F bis (3-chloro-2-hydroxypropyl) ether (BFDGE⋅2HCl) | UA- solvent extraction of porous membrane-packed samples | HPLC–MS/MS | Infants and toddlers Ready-to-feed milk and powdered milk | LOD: 0.24–0.40 ng/g | 0.53–18.5 ng/g | Poland | [36] |
| LOQ: 0.72–1.2 ng/g | |||||||
| LR: 1-50 ng/ml R2: > 0.9962 | |||||||
| R: 31–120% | |||||||
| RSD: 0.3 - 10% | |||||||
| BPA, BPAF, BPC, BADGE, BFDGE | Online SPE | HPLC-FLD | Cow and goat milk | LOD: 1.5 - 2.25 μg/kg | NS | Czech Republic | [143] |
| LOQ: 5 - 7.5 μg/kg | |||||||
| LR: 2.5–100 μg/kg | |||||||
| R: 93.0–139.2% | |||||||
| RSD: <10% | |||||||
| BPA | SPE | HPLC-DAD | Bovine Milk |
LOD: 1.3 ng/mL | Spiked | China | [150] |
| LR: 0.02–2 mg/mL R2: 0.9998 | |||||||
| R: 96.4 - 102.8 % | |||||||
| RSD: 1.5 – 6.3 % | |||||||
|
BBA |
SPE | LC-FLD |
Cow milk filled in plastic baby bottles of different brands | LOD: 3.75 ng/mL LOQ: 12.51 ng/mL LR: 40.0–120.0 ng/mL R2: 0.9970 R: 83 -88% RSD%: 2.21%, 9.55% |
BPA: <LOQ - 102.18 ng/mL |
Italy | [65] |
| BPS | LC-UV | LOD: 80.00 ng/L LOQ: 260.00 ng/mL LR: 1.0–3.0 μg/mL R2: 0.9989 R: 95 -108% RSD: 1.81%, 5.03% |
ND | ||||
| BPA, BADGE, BPAF, BPAP, BPB, BPBP, BPC, BPE, BPF, BFDGE, BPM, BPP, BPZ, 4-Octylphenol (4-OP) 4-tert-Octylphenol (4-t-OP) 4-Nonylphenol (4-NP) | dSPE + QuEChERS |
HPLC–FLD |
Raw buffalo milk and retail bovine milk |
LOD: 0.2, 0.6 ng/g | Raw buffalo milk: 4-t-OP : 1.41 ng/g BFDGE: 1.10 and 1.33 ng/g BPF, BPC, and 4-NP: between LODs and LOQs Retail bovine milk: BPA: 1.11 - 3.05 ng/g BPP, BPM, 4-t-OP, 4-OP : >LOD detected but not quantified |
Italy | [33] |
| LOQ: 1.0, 3.0 ng/g | |||||||
| BPA, BADGE, BPAF, BPAP, BPB, BPBP, BPC, BPE, BPF, BFDGE, BPG, BPM, BPP, BPS, BPZ , Bisphenol PH (BPPH), Bisphenol TMC (BPTMC) | SPE | UHPLC–MS/MS | Raw Buffalo milk and retail bovine milk |
LOD: 0.03–1.5 ng/mL | Raw buffalo milk: BPA: 0.5–5.6 ng/mL BPF: 0.5–8.7 ng/mL BPAF: 3.0 ng/mL Retail bovine milk: BPA: ND - 2.8 ng/mL BPF: ND – 10.6 ng/mL |
Italy | [33] |
| LOQ: 0.1–5.0 ng /mL | |||||||
| BPA, BPB, BPAF, BPC | MSPE | HPLC-UV | Milk | LOD: 0.011 – 0.36 ng/mL | BPA: 0.79- 4.56 ng/mL |
China | [151] |
| LOQ: 0.035 - 0.120 ng/mL | |||||||
| LR: 0.05–100 ng/mL R2: 0.9980–0.9998 | |||||||
| R: 85.70–119.7% | |||||||
| RSD: 0.12 - 5.02% | |||||||
| BPA, BADGE, BPAF, BPAP, BPB, BPBP, BPC, BPE, BPF, BFDGE, BPG, BPM, BPP, BPPH, BPS, BPTMC and BPZ | SPE | UHPLC-MS/MS | Bovine and buffalo milk |
LOD: 0.03 – 0.6 ng/mL | 0.1–2.0 ng/mL |
Italy | [33] |
| LOQ: 0.1 – 5.0 ng/mL | |||||||
| R2: > 0.95 | |||||||
|
BPA |
SPE | HPLC-FLD | Raw cow milk | LOD: 0.01 μg/kg | 0.035 - 2.776 μg/L |
Italy | [146] |
| LOQ: 0.03 μg/kg | |||||||
| LR: 0.03 -100 μg/L R2: 0.9969 | |||||||
| R: 70 - 100% | |||||||
| RSD: ≤ 10% | |||||||
| BPA | DME | HPLC-FLD | Skim milk samples |
LOD: 0.016 μg/L | ND | China | [152] |
| LOQ: 0.050 μg/L | |||||||
| LR: 0.1–50 μg/L R2: 0.9964 | |||||||
| R: 80.7% - 102.4% | |||||||
| RSD: <4.2% | |||||||
| BPA, BPF, BPAF, 4-CP | UA-DLLME | HPLC-UV |
commercial boxed milk |
LOD: 0.25–1 μg/L | ND | China | [153] |
| LOQ: 0.5–1 μg/L | |||||||
| LR: 0.5–400 μg/L R2: 0 .9976 - 0.9988 | |||||||
| R: 82.77− 118.92% | |||||||
| RSD: < 14% | |||||||
| BPA | SPE | HPLC-FLD | Milk | LOD: 0.03 μg/L | <LOQ - 2.833 μg/L |
Italy | [154] |
| LOQ: 0.1 μg/L | |||||||
| LR: 0.1–100 μg/L R2: 0.999 | |||||||
| R: 78.4-107.2% | |||||||
| RSD%: 1.9 – 11.3% | |||||||
| Nonylphenol (NP), BPA, Hexestrol (HEX) | MSPE |
HPLC-UV |
Milk |
LOD: 0.1 – 0.3 μg/L | ND | China | [35] |
| LR: 0.04~50 mg/L R2: 0.9978 - 0.9992 | |||||||
| R: 89.9 - 98.7 % | |||||||
| RSD: <3% | |||||||
| BPA, NP, octylphenol (OP), 4-n-nonylphenol (4NP) | QuEChERS | LC-LTQ/Orbitrap MS | Milk | LOD: 0.05–5 ng/g | BPA: MDL-10.4 μg/Kg OP: <4.5 μg/Kg NP & 4NP: <428.7 μg/Kg |
Greece | [155] |
| LOQ: 0.1–20 ng/g | |||||||
| LR: 0.1–200 ng/g R2: 0.9966- 0.9999 | |||||||
| R: 91- 108% | |||||||
| RSD: 0.9 - 11.7% | |||||||
| BPA, α-Estradiol (α-E2), genic EDCs; 17α-ethinyl estradiol (17α-EE2), estrone (E1), diethylstilboe- strol (DES), and hexestrol (HEX) | FPSE |
HPLC-UV & LC-MS/MS for confirmation |
Milk | LOD: 7.5 – 15 ng/mL | All spiked | USA | [14] |
| LOQ: 25.0 - 50.0 ng/mL | |||||||
| LR: 25-20000 ng/mL | |||||||
| R: 13.7 - 69.2 % | |||||||
| RSD: 3.6 – 13.9 | |||||||
| BPA | SPE | HPLC-FLD | Raw cow milk | LOD: 0.01μg/kg | ND- 2.340 μg/L | Italy | [156] |
| LOQ: 0.03 μg/kg | |||||||
| LR: 0.03-100 μg/L | |||||||
| BPF | SPE | HPLC-FLD | Milk | LOD: 0.03 μg/L | <LOQ - 2.956 μg/L | Italy | [157] |
| LOQ: 0.1 μg/L | |||||||
| LR: 0.1 - 100 μg/L R2: 0.999 | |||||||
| R: 97.60 - 107.16% | |||||||
| RSD: <15% | |||||||
|
BFDGE·2H2O, BADGE·2H2O, BFGDGE·H2O, BPE, BPA,BPB, BPC, para-para-BFDGE, BADGE |
QuEChERS | HPLC–FLD | Milk | LOD: 1.0 – 3.1 μg/kg | BPA: 13.74 μg/ kg (one sample) BADGE·2H2O: 15.80 μg/kg (one sample) BFDGE·2H2O: 16.23 and 17.82 μg/kg |
China | [86] |
| LOQ: 3.5 – 9.8 μg/kg | |||||||
| LR: 5–100 μg/kg R2: 0.9942 - 0.9997 | |||||||
| R: 75.82 – 93.86% | |||||||
| RSD: 2.6 - 11.1% | |||||||
| BPF | SPE | HPLC-FLD | Milk | LOD: 0.03 μg/L | < LOQ - 2.686 μg/L | Italy | [154] |
| LOQ: 0.1 μg/L | |||||||
| LR: 0.1-100 μg/L R2: 0.999 | |||||||
| R: 97.60 -107.16% | |||||||
| RSD: <15% | |||||||
| Methylparaben ( Me-P), ethylparaben ( Et-P ), propyl- paraben (Pr-P), butylparaben (BP), benzylparaben (BzP), BPA, BPS, BPF, BPB, BPE, BPAF | QuEChERS +d-SPE | HPLC-MS/MS |
Raw and processed cow milk |
LOD: 0.01 – 0.2 ng/mL | Bisphenols: <LOD – 1.71 ng/mL Parabens: <LOD – 1.40 ng/mL |
Poland | [147] |
| LOQ: 0.03 – 0.73 ng/mL | |||||||
| LR: 0.5 – 2000 ng/mL R2: 0.9988 – 0.9997 | |||||||
| R: 80.1% - 115.5% | |||||||
| RSD: 1.8 – 9.4 % | |||||||
|
Me-P, Et-P, Pr-P |
SC-μSPE |
HPLC-UV | Milk | LOD: 3.0 - 7.0 ng/mL | < LOQ - 130.3 ng /mL |
Iran | [149] |
| LOQ: 10 -20 ng/mL | |||||||
| LR: 10-1000 ng/mL R2: 0.9960 - 0.9971 | |||||||
| R: 81.7–97.8% | |||||||
| RSD: 2.7-8.6% | |||||||
| Estrone E1, 17β-Estradiol (E2) , Estriol E3 and BPA | MSPE | HPLC-MS/MS | Cow milk | LOD: 0.37 – 0.85 μg/L | ND | China | [158] |
| LOQ: 1.31 - 2.94 μg/L | |||||||
| LR: 0.25 –100 μg/L R2: ≥ 0.9983 | |||||||
| R: 92.1 - 118.3 % | |||||||
| RSD: ≤ 7.2 % | |||||||
| BBP, benzyl butyl phthalate; DEHP, bis (2-ethylhexyl) phthalate; DIDP, diisodecyl phthalate; DIHP, diisoheptyl phthalate; DNOP, di-n-octyl phthalate; DPP, dipentyl phthalate. | MSPE |
GC-MS/MS |
Milk | LOD: 0.8–2.1 μg/L | ND | China | [60] |
| LOQ: 2.7– 7.0 μg/L | |||||||
| LR: 3.0– 100 μg/L | |||||||
| R: 76.8–99.2% | |||||||
| RSD: ≤ 7.3% | |||||||
| BBP, butyl benzyl phthalate; BPA, bisphenol A; DBP, dibutyl-o-phthalate, DEHP, di(2-ethylhexyl) phathalate; DEP, diethyl-o-phthalate; DNOP, di-n-octyl phthalate | PFSPE |
GC-MS | Milk |
LOD: 0.01 - 0.06 μg/L | DEP: ND- 2.18 μg/L DBP: ND- 1.5 μg/L BPA: 0.28 – 2 μg/L BBP: 10.98 – 16.0 μg/L DEHP: ND- 16.20 μg/L DNOP: 0.27 – 0.50 μg/L |
China | [59] |
| LOQ: 0.05 - 0.53 μg/L | |||||||
| LR: 0.1 – 50 μg/L R2: 0.9925–0.9987 | |||||||
| R: 89.6 – 118.0% | |||||||
| RSD: 0.6 - 10.9% | |||||||
| Phenol, 2,5-Dimethylphenol, 4-Chlorophenol, 3,4-Dimethylphenol, 4-Chloro-3-methylphenol, 4-tert-Butylphenol, 2-tert-Butyl-4-methylphenol, 4-Pentylphenol, 2-Phenylphenol, 4-Hexylphenol, 4-tert-Octylphenol, 4-Heptylphenol, Nonylphenol, 4-Phenylphenol, Pentachlorophenol, Triclosan, Bisphenol F, Bisphenol A, Bisphenol B, Bisphenol Z, Bisphenol S | SPE |
GC-MS | cow, goat, and sheep milk | LOD: 6 - 35 ng/kg | BPA: 30–940 ng/kg BPZ: 96–1100 ng/kg BPF: 270–950 ng/kg NP: 58–390 ng/kg 4-t-BP: 310–2100 ng/kg 3,4-DMP: 130–1800 ng/kg |
Spain | [159] |
| LR: 20− 10 000 ng/kg R2: 0.994-0.999 | |||||||
| R: 86–106% | |||||||
| 2-chlorophenol, o-cresolm-cresol, 2,4-dichlorophenol, 4-tert-butylphenol, 4-chlorophenol, 4-tertoctylphenol, alpha-naphthol | EA–SPME |
GC–FID |
Milk |
LOD: 0.001-0.1 μg/L | ND- 31.07 μg/L |
China | [57] |
| LOQ: 0.1 μg/L | |||||||
| LR: 0.005-50 μg/L R2: > 0.99 | |||||||
| R: 87.3-118.9% | |||||||
| RSD: 1.9-12.3% | |||||||
| metylparaben, ethyl- paraben, propylparaben, isopropylparaben, butylparaben, isobutylparaben, benzyl- paraben, dichlovos, dimethoate, diazinon, bromophos methyl, chloropyrifos, fenthion, fenthion sulphoxide, parathion methyl, malathion, methidathion, nonylphenol, 4-tert-ocylphenol, 2-phenylphenol, 4-phenylphenol, BPA and triclosan (TCS) | SPE | GC-MS | cow, sheep and goat milk |
LOD: 6-40 ng/kg | ethylparaben 120– 3100 ng/kg 2-phenylphenol: 130–2000 ng/kg BPA: 980–4600 ng/kg 4-Phenylphenol: 130 – 230 ng/kg Butylparaben: 620 ng/kg |
Spain | [160] |
| LR: 20-10,000 ng/kg | |||||||
| R: 80 -107% | |||||||
| RSD: 2.6–7.1% | |||||||
| Mep, EtP, n-Prp, propyl 4-hydroxybenzoate; n-Bup, butylparaben; i-Prp, isopropyl 4-hydroxybenzoate; i-BuP, isobutylparaben | MSPE |
GC–MS |
Milk | LOD: 0.1 ng/mL | NS | China | [161] |
| LOQ: 0.5 ng/mL | |||||||
| LR: 0.1–600 ng/mL R2: 0.9991 – 0.9997 | |||||||
| R: 95-105 % | |||||||
| RSD: 2.7-5.0 % | |||||||
| LOD, Limit of detection; LOQ, Limit of quantification; LR, linear range; R2, determination coefficient; R, recovery; RSD%, Relative standard deviation; CCα, decision limit; CCβ, detection capability; CV, coefficient of variation; ND, not detected; NS, not specified; UA, ultrasound assisted; SPE, solid phase extraction; dSPE, dispersive solid phase extraction; MSPE, magnetic solid phase extraction; DME, dispersive-membrane-solid-phase-extraction; UA-DLLME, ultrasound-assisted dispersive liquid-liquid microextraction ; FPSE, fabric phase sorptive extraction; SC-μSPE, spin-column micro solid phase extraction; PFSPE, Packed-nanofiber solid-phase extraction; EA-SPME, Electrochemical assistance solid-phase microextraction. | |||||||
| Target pesticides | Extraction method |
Analysis technique | Matrix | Analytical parameters | Conc. In real samples | Country | Ref |
|---|---|---|---|---|---|---|---|
| Lindane, Alachlor, Aldrin, Bromophos methyl, Heptachlor epoxide, α-Endosulfan, Hexaconazole, Dieldrin, Endrin, β-Endosulfan, Diazinon, Endosulfan- sulfate, Bromopropylate, Fenpropathrin, Tetradifon, Fenvalerate | QuEChERS-TA-SFOD |
GC-μECD |
Pasteurized bovine milk |
LOD: 0.01 -0.11 μg/kg | 1.24–4.68 μg/kg |
Iran | [162] |
| LOQ: 0.03– 0.38 μg/kg | |||||||
| LR: 0.03–250 μg/kg | |||||||
| R: 61–119% | |||||||
| RSD: 2.1–18.2% | |||||||
| Acetamiprid, Azinphos-methyl, Azoxystrobin, Benalaxyl, Boscalid, Bupirimate, Carbaryl, Carbendazim, Cymoxanil, Cyprodinil, Dichlorvos, Dimethoate, Fenthion sulfoxide, Imidacloprid, Iprovalicarb, Metalaxyl, Myclobutanil, Tebuconazole, Thiacloprid, Thiamethoxam | Modified QuEChERS |
UHPLC- LTQ/Orbitrap MS |
Full fat Cow and goat milk | LOD: 0.2 -8.1 μg/kg | carbendazim <LOQ one sample |
Greece | [165] |
| LOQ: 0.61 – 24.8 μg/kg | |||||||
| LR: 1–250 μg/kg R2: ≥ 0.9918 | |||||||
| R: 79.5–119.5% | |||||||
| RSD: ≤ 11.7% | |||||||
| Imidacloprid, Acetamiprid, Nitenpyram, Thiacloprid | DSPE–SFOD–DLLME | HPLC–DAD | pasteurized semi-skimmed cow milk |
LOD: 0.13–0.21 ng/mL | All samples are spiked | Iran | [163] |
| LOQ: 0.43–0.70 ng/mL | |||||||
| LR: 0.70–500 ng/mL | |||||||
| R: 73%–85% | |||||||
| RSD: 1.4–5.1 | |||||||
| 195 pesticides | modified QuEChERS | LC-Q-TOF/MS | raw milk | screening detection limits (SDL): 0.1–20 μg/kg | ND | China | [31] |
| LOQ: 0.1–50 μg/kg | |||||||
| LR: 1–200 μg/kg R2: >0.99 | |||||||
| R: 70.0% - 120.0 | |||||||
| RSD: < 20 | |||||||
|
Dimethoate, Imidacloprid, Pirimicarb, Carbaryl, Fenitrothion, Hexythiazox, Phosalone |
OPD-SPME-DES |
HPLC-MS/MS | pasteurized cow milk | LOD: 0.09-0.27 ng/mL | ND | Iran | [41] |
| LOQ: 0.31-0.93 ng/mL | |||||||
| LR: 0.93-500 ng/mL | |||||||
| R: 81-94% | |||||||
| RSD: < 9% | |||||||
|
Imidacloprid, Thiamethoxam, Thiacloprid, Clothianidin, Acetamiprid |
SPE | LC–MS/MS | Sheep and Cow Milk | LOD: 0.5 μg/kg | ND | Jordan | [166] |
| LOQ: 1 μg/kg | |||||||
| LR: 1–100 μg/kg R2: > 0.999 | |||||||
| R: 75.1 - 88.3% | |||||||
| RSD: 4.3 - 31.2% | |||||||
|
Azinphos-methyl, Parathion- methyl, Phosalone, Diazinon, Chloropyrifos |
DSPE–DLLME | HPLC–DAD | Milk | LOD: 0.17–0.36 ng/mL | Chloropyrifos in one sample: 19 ± 0.8 ng/mL |
Iran | [167] |
| LOQ: 0.57–1.34 ng/mL | |||||||
| LR: 1.34–1000 ng/mL R2: 0.992 – 0.996 | |||||||
| R: 79–92% | |||||||
| RSD: ≤7.2% | |||||||
| Metolcarb, Carbaryl, Isoprocarb, Bassa, Diethofencarb | SPE | HPLC-DAD | Milk | LOD: 0.12 -0.40 ng/mL | ND | China | [168] |
| LOQ: 0.36 -1.20 ng/mL | |||||||
| LR: 1.0-320.0 ng/mL | |||||||
| R: 86.0 to 110.0% | |||||||
| RSD: 4.9 -6.3 | |||||||
|
spinosyn A and D, temephos, piperonyl butoxide |
LLE followed by QuEChERS | LC-MS/MS | Milk | LOD: 0.1–1.4 μg/kg | ND | Korea | [169] |
| LOQ: 0.3-4.1 μg/L | |||||||
| LR: 1.5-50 μg/kg R2: 0.983 - 0.996 | |||||||
| R: 78-99% | |||||||
| RSD: <8% | |||||||
| tebufenozide (TEB) and indoxacarb (IND) | LLE | LC-MS/MS | Milk | LOD: 5, 1 μg/kg | ND | Korea | [79] |
| LOQ: 10, 3 μg/kg | |||||||
| LR: 5–50 μg/kg R2: 0.998 -0.9993 | |||||||
| R: 87.79 -114.93 % | |||||||
| RSD: < 6.4% | |||||||
| α-HCH, HCB, β-HCH, lindane, δ-HCH, chlorthalonil, heptachlor, aldrin, chlorpyrifos, bromophos, α-endosulfan, dieldrin, p,p’-DDE, p,p’-DDD, p,p’-DDT | Modified QuEChERS |
GC-ECD |
Cow Milk |
LOD: 0.00015 - 0.0009 mg/kg | - | Iran | [37] |
| LOQ: 0.0005 - 0.003 mg/kg | |||||||
| LR: 0.0005–0.5 mg/kg R2: 0.9943 - 0.9995 | |||||||
| R: 65 -118% | |||||||
| RSD: 1-15% | |||||||
| Carbendazim, thiabendazole, dichlorvos, carbofuran, dimethoate, carboxin, pirimicarb, terbutryn, thiacloprid, imidacloprid, trichlorfon, fenitrothion, fenthion, cyproconazole, thiamethoxam, tridemorph, fenamiphos, diazinon, pirimiphos-methyl, tebuconazole, butachlor, fenamidone, kresoxim-methyl, sulfotep, diniconazole, malathion, bitertanol, propiconazole, thiophanate-methyl, clodinafop-propargyl, flamprop-isopropyl, phosalone, ethion, dimethomorph, nicosulfuron | Modified QuEChERS |
UHPLC-MS/MS |
Cow Milk | LOD: 0.0003 – 0.03 mg/kg | dimethoate in raw milk: 0.045 mg/kg |
Iran | [37] |
| LOQ: 0.001 - 0.05 mg/kg | |||||||
| LR: 0.001–0.5 mg/kg R2: 0.9830 - 0.9993 | |||||||
| R: 74- 121% | |||||||
| RSD: 1-17% | |||||||
| 156 pesticide residues | Modified QuEChERS |
LC–MS/MS | Milk |
LOD: 0.11–- 2.70 μg/kg | ND | Turkey | [170] |
| LOQ: 0.38–8.10 μg/kg | |||||||
| LR: 5 - 100 μg/kg R2: ≥ 0.99 | |||||||
| R: 70.38 - 116.40% | |||||||
| RSD: < 19% | |||||||
| Sulfoxaflor | modified QuEChERS | LC-MS/MS | Milk |
LOD: 1.8 μg/kg | < LOQ |
China | [171] |
| LOQ: 5.0 μg/kg | |||||||
| R2: 0.9990 | |||||||
| R: 81.1 - 95.0% | |||||||
| RSD: 2.3-11.2% | |||||||
| Coumaphos, Phosmet,Fonofos,Parathion, Pyridaphenthion, Phosalone, Temephos, Profenofos, Terbufos, Phenthoate, Ethion, Tetrachlorvinphos, Isazophos, Pirimiphos-ethyl, Fenthion, Phoxim, Methidathion, Triazophos, Pirimiphos-methyl, Dichlofenthion | MSPE | LC-MS/MS | Fatty whole milk |
LOD: 0.001-0.01 μg/L | Pirimiphos-methyl: 0.23 μg/L) (One sample) |
China | [172] |
| LOQ: 0.2-0.5 μg/L | |||||||
| LR: 0.2-250 μg/L R2: 0 .9978 -0.9999 | |||||||
| R: 0.0-105 % | |||||||
| RSD: <12.3 % | |||||||
| Carbofuran, Carbaryl, Propoxur, Aminocarb, Phenmedipham, Ethiofencarb, Desmedipham, Fenoxycarb, Pirimicarb, Bendiocarb, Methiocarb | LLE | UHPLC-MS/MS | Camel milk | LOD: 0.01 μg/kg | 0.345- 9.509 μg/kg |
UAE | [164] |
| LOQ: 0.03 - 0.04 μg/kg | |||||||
| LR: 0.00001 - 0.5 mg/kg R2: 0.9982 -1.0000 | |||||||
| R: 88 - 103% | |||||||
| RSD: ≤5% | |||||||
| Lindane, Diazinon, Fenitrothion, Malathion, Aldrin, α-Endosulfan, β-Endosulfan, Methoxychlor | DLLME |
GC-MS |
Bovine milk |
LOD: 0.90-5.00 ng/mL | ND | India | [81] |
| LOQ: 2.5 -15 ng/mL | |||||||
| LR: 2-1000 ng/mL R2: 0.995-0.999 | |||||||
| R: 86.15 - 112.45 % | |||||||
| RSD: 1.06 – 2.20 % | |||||||
| endrin andδ-keto endrin | modified QuEChERS | GC-μECD |
Milk | LOD: 0.003 mg/kg | ND | Korea | [61] |
| LOQ: 0.01 mg/kg | |||||||
| R2: 0.9979, 0.9966 | |||||||
| R: 84.27 - 105.29% | |||||||
| RSD: 2.12 - 7.59% | |||||||
|
41 multiclass pesticides |
QuEChERS | GC-ECD followed by GC-MS |
commercial liquid milk |
LOD: 0.001–0.02 μg/mL | below the LOQ |
India | [16] |
| LOQ: 0.002–0.05 μg/mL | |||||||
| LR: 0.002 - 1 μg/mL R2: >0.98 | |||||||
| R: 91.38 - 117.56% | |||||||
| RSD: <2.79% | |||||||
| Permethrin (Perm), deltamethrin (Del), and cypermethrin (Cyp) | USA-MNF-LPME | GC-MS | Cow milk | LOD: 2.8, 2.7 and 2.0 ng/mL | Per: 18.0 ng/L Del: 25.0 ng/L Cyp: 48.0 ng/L |
Iran | [173] |
| LOQ: 9.43, 8.95, and 6.47 ng/L | |||||||
| LR: 0.01–250 μg/L R2: 0.9991, 0.9995 | |||||||
| R: 91.0–105% | |||||||
| RSD: 3.5, 3.2, 2.8 % | |||||||
| chlorpyriphos, malathion, disulfoton, pirimiphos | d-SPE | GC-MS | commercial bovine milk | LOD: 0.36-0.95 μg/L | ND | Brazil | [58] |
| LOQ: 5.0 μg/L | |||||||
| LR: 5.0- 40.0 μg/L R2: 0.9902 -0.9963 | |||||||
| RSD: < 19.9% | |||||||
| α-HCH; β-HCH; γ-HCH; δ-HCH; Heptachlor; Aldrin; Heptachlor Epoxide; Trans-Chlordane; α- Endosulfan; Cis-Chlordane; p.p’-DDE; Endrin; β-Endosulfan; Endosulfan Sulfate; p.p’-DDT; Endrin Ketone; Methoxychlor; Phthalic Acid and p,p’-DDD. | QuEChERS |
GC-MS/MS | Cow milk | LOD: 0.011 - 0.034 μg/kg | p,p-DDE: 0.09 μg/kg p,p-DDT: 0.07 μg/kg |
Bangladesh | [174] |
| LOQ: 0.049 - 0.087 μg/kg | |||||||
| LR: 5 - 200 ppb R2: 0.92 - 0.99 | |||||||
| R: 79.23% - 98.65% | |||||||
| α- and β-hexachlorocyclohexane, lindane, hexachlorobenzene, p,p′-DDE, aldrin, dieldrin, and α-endosulfan | GDME | GC-ECD & GC-MS | Milk | LOD: 3.7 to 4.8 μg/L | aldrin was found in one sample below the LOD |
Brazil | [92] |
| LOQ: 12-16 μg/L | |||||||
| R2: 0.991 - 0.995 | |||||||
| R: 71- 99% | |||||||
| RSD: <10% | |||||||
| Alpha-Cypermethrin,Beta-Cyfluthrin, Bifenthrin, Bromopropylate, Chlorothalonil, Chlorpropham, Deltamethrin, Dicofol, Endosulfan alpha, Endosulfan beta, Endosulfan sulfate, Fenitrothion, Fenthion, Fenvalerate, Formothion, Kresoxim methyl, Lambda Cyhalothrin, Oxyfluorfen, Permethrin, Procymidone, Prothiofos, Tau-fluvalinate, Tetradifon, Trifluralin, Vinclozolin | QuEChERS | GC–MS | Milk |
LOD: 0.31 – 1.91 μg/kg | ND | Turkey | [175] |
| LOQ: 1.05 - 6.62 μg/kg | |||||||
| LR: 5 - 100 μg/kg R2: > 0.99 | |||||||
| R: 72.50–119.54% | |||||||
| RSD: 1.17 - 14.62% | |||||||
| Linden, Heptachlor, Aldrin, Dieldrin, Endrin, Endosulfan, Dichlorodiphenyltrichloroethane (DDT) | QuECheRS | GC-ECD | organic and conventional goat milk | LOD: 0.3 ppb |
ND | Indonesia |
[176] |
| Dichlorvos, Carbaryl, Atrazine, Ametryne, Diazinon, Pirimiphos-methyl, Carbofuran, Chlorpyrifos, Prothioconazole, Tebuconazole | QuChERS-DLLME | GC-FID | Milk | LOD: 4.2–27.4 ng/mL | Dichlorvos, Atrazine, Diazinon, Chlorpyrifos and Tebuconazole 2.49– 10.48 ng/mL |
Iran | [177] |
| LOQ: 11.89–82.23 ng/mL | |||||||
| LR: 0.5–100 ng/mL | |||||||
| R: 77.69–147.69% | |||||||
| RSD: 1.6–9.7% | |||||||
| Carbaryl, Hexythiazox, Pretilachlor, Iprodione, Famoxadone, Sethoxydim, Fenazaquin | In matrix-DES-SFO-DLLME | GC-FID | Cow milk |
LOD: 0.90–3.9 ng/mL | ND | Iran | [178] |
| LOQ: 3.1 -13 ng/mL | |||||||
| LR: 4.5–5000 ng/mL | |||||||
| R: 64 - 89% | |||||||
| RSD: 3.8–5.3% | |||||||
| LOD, Limit of detection; LOQ, Limit of quantification; LR, linear range; R2, determination coefficient; R, recovery; RSD%, Relative standard deviation; CCα, decision limit; CCβ, detection capability; CV, coefficient of variation; ND, not detected; NS, not specified; SPE, solid phase extraction;MSPE, magnetic solid phase extraction; LLE, liquid-liquid extraction;dSPE, dispersive solid phase extraction; DLLME, dispersive liquid-liquid microextraction; QuEChERS-TA-SFOD, QuEChERS-temperature-assisted-Solidification of floating organic droplet; OPD-SPME-DES, Organic polymer based dispersive solid phase microextraction-deep eutectic solvent; USA-MNF-LPME, ultrasound assisted magnetic nanofluid-based liquid phase microextraction; GDME, Gas-diffusion microextraction. | |||||||
| Target mycotoxins | Extraction method | Analysis technique | Matrix | Analytical parameters | Conc. in real samples | Country | Ref |
| Aflatoxin B1 (AFB1), Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1), Aflatoxin G2 (AFG2), Aflatoxin M1 (AFM1), Alternariol Methyl Ether (AME), Alternariol (AOH), Beauvericin (BEA), Cyclopiazonic Acid (CTA), Citrinin (CTN), Diacetoxyscirpenol (DAS), Deepoxy-deoxynivalenol (DOM-1), Deoxynivalenol (DON), 15 Acetyl-Deoxynivalenol (15 AC-DON), 3 Acetyl-Deoxynivalenol (3 AC-DON), Enniatin A (ENNA), Enniatin A1 (ENNA1), Enniatin B (ENNB), Enniatin B1 (ENNB1), Fusaric acid (FA), Fumonisin B1 (FB1), Fumonisin B2 (FB2), HT-2 toxin (HT-2), Hydrolyzed fumonisin B1 (Hydro-FB1), Mycophenolic acid (MPA), Neosolaniol (NEO), Ochratoxin A (OTA), Roquefortine C (RC), Sterigmatocystin (STC), T-2 toxin (T-2), Zearalenone (ZEN), Zearalanone (ZOL), α-Zearalenol (α-ZEN), α-Zearalanol (α-ZOL), β-Zearalenol (β-ZEN), β-Zearalanol (β-ZOL), Deoxynivalenol-3-glucoside (DON-3-Gluc), Fusarenon X (FX), Patulin (PAT), T-2 triol | QuEChERS | UHPLC-MS/MS |
Raw milk | LOD: 0.001 - 3.26 μg/L | T-2, RC, ENNA, ENNA1, ENNB, ENNB1 and BEA: <LOD - 4.76 µg/L |
Portugal |
[193] |
| LOQ: 0.002 - 10.76 μg/L | |||||||
| LR: 0.002 - 200 μg/L | |||||||
| R: 61.22 - 120.63% | |||||||
| RSD: <16% | |||||||
| AFB1, AFB2, AFG1, AFG2, AFM1, AFM2 | IAC | HPLC-MS/MS | Milk | LOD: 0.005 – 0.010 μg/L | AFM1: 0.072 μg/L (One sample) |
China | [194] |
| LOQ: 0.010 - 0.026 μg/L | |||||||
| LR: 0.010-10.0 μg/L R2: 0.988 - 0.997 | |||||||
| R: 85.5 - 106.2 % | |||||||
| RSD: < 12.5% | |||||||
| AFM1 | IAC | HPLC- FLD | Pasteurized cow milk gathered during different seasons | LOD: 0.0001 μg/L | 0.002 - 0.09 μg/L | Iran |
[195] |
| LOQ: 0.0005 μg/L | |||||||
| R2: > 0.999 | |||||||
| AFM1 | AALLME |
HPLC–FLD |
Unpasteurized milk | LOD: 0.9 ng/L | 46 – 96 ng/L | Iran | [83] |
| LOQ: 3 ng/L | |||||||
| LR: 3–3000 3 ng/L R2: 0.9976 | |||||||
| R: 87 ± 4% | |||||||
| RSD: ≤ 9% | |||||||
| OTA, AFM1 | DSPE - DLLME-SFO | HPLC-FLD |
Raw cow’s milk |
LOD: 0.25, 0.37 ng/L | OCT A: 35 – 43 ng/L AFM1: 15 - 182 ng/L |
Iran | [45] |
| LOQ: 0.83, 1.23 ng/L | |||||||
| LR: 0.83–105, 1.23 –105 R2: 0.998, 0.997 | |||||||
| R: 87, 75% | |||||||
| RSD: ≤ 5.1 | |||||||
| OTC, AFB1, AFB2 , AFG1 , AFG2 , AFM1, AFM2, HT-2 Toxin, T-2 Toxin, OTA, DON, OCT α, OCT B, ZEN, α-ZEN, α-ZOL, β-ZEN, β-ZOL, stachybotrylactam, and (S)-zearalanone | QuEChERS |
HPLC-MS/MS |
cow milk |
LOD: 0.007– 1.300 μg/kg | <LOD | China |
[196] |
| LOQ: 0.02–4.00 μg/kg | |||||||
| LR: 0.01–10 μg/L R2: ≥0.9933 | |||||||
| R: 80.00 - 112.50% | |||||||
| RSD: 2.67–14.97% | |||||||
| AFB1, AFB2, AFM1, AFM2 | ISDμSPE | HPLC-FLD |
Cow milk | LOD: 0.003 - 0.005 ng/mL | AFM1: 0.038 ng/mL (One sample) |
Malaysia |
[76] |
| LOQ: 0.01 - 0.02 ng/mL | |||||||
| LR: 0.01–1.0 ng/mL R2: 0.992 - 0.999 | |||||||
| R: 73.0 - 109.6% | |||||||
| RSD: < 17.3% | |||||||
| AFB1, AFM1 | QuEChERS | UHPLC-Q-Orbitrap HRMS | Milk | LOD: 0.001 μg/L | ND | Italy | [197] |
| LOQ: 0.002 μg/L | |||||||
| LR: 0.002 - 20 μg/L R2: >0.9990 | |||||||
| R: 75–96% | |||||||
| RSD: < 16 | |||||||
| AFM1 |
IAC | LC-FLD | Milk | LOD: 0.01 ng/mL | 10 - 77 ng/L | Morocco |
[75] |
| LOQ: 0.03 ng/mL | |||||||
| R: 87–95% | |||||||
| CV: <15% | |||||||
| AFM1, AFB1, AFB2, AFG1, AFG2, OTA, OTB, FB1, FB2, FB3, HT-2 and T-2 toxins, nivalenol (NIV), DON, DOM-1, 3 AC-DON, 15 AC-DON, DAS, FX, NEO, STC, and ZEN | LLE | LC–MS/MS |
Cow Milk |
LOD: 0.010 - 5.07 ng/mL | OCT A: <LOQ (0.2 ng/mL) | Peru | [187] |
| LR: 0.04 - 101.4 ng/mL R2: 0.9935 - 0.9997 | |||||||
| R: 61.2 - 83.9% | |||||||
| RSD: 3.8 – 11.8% | |||||||
| AFM1 | IAC | HPLC-FLD | Liquid and powder milk | LOD: 0.002 μg/L | 0.021 - 2.89 μg/L | Yemen | [46] |
| R2: 0.99995 | |||||||
| R: 102.94 - 108.31% | |||||||
| RSD: < 10% | |||||||
| AFM1 | IAC | UPLC-MS/MS | Cow, goat and sheep milk | LOD: 0.0027 μg/kg | <LOD - 0.0370 μg/kg | Greece | [198] |
| LOQ: 0.0089 μg/kg | |||||||
| LR: 0.75 - 22.5 μg/L R2: 0.997 | |||||||
| R: 77.9–81.0% | |||||||
| RSD: 6.1- 12% | |||||||
| AFB1, AFB2, AFG1, AFG2, AFM1, AFM2, OTA, ZEN, ZOL, α-ZEN, β- ZEN, α-ZOL, β-ZOL | MSPE |
UHPLC-Q-Exactive HRMS | Commercial liquid milk |
LOD: 0.005 - 0.050 μg/kg | 0.026 - 0.039 μg/kg |
China |
[199] |
| LOQ: 0.015 - 0.150 μg/kg | |||||||
| LR: 0.15 – 100 ng/mL R2: 0.9963 – 0.9999 | |||||||
| R: 81.8–106.4% | |||||||
| RSD: 2.1– 11.7% | |||||||
| AFB1, AFB2, AFG1, AFG2, OTA, ZEA | IAC | HPLC-FLD | Raw cow milk | LOD: 0.02 – 0.92 μg/kg | AFM1: <LOQ - 0.19 μg/kg | Egypt | [74] |
| LOQ: 0.06 – 2.8 μg/kg | |||||||
| AFB1, AFB2, AFG1, AFG2, AFM1, BEA, CTN, DON, ENNA, ENNB, FB1, FB2; Moniliformin (MON); MPA, NIV, OTA, Penicillic Acid (PA), PAT, Tenuazonic acid (TEA),Tentoxin TTX, ZEN. | modified QuEChERS | UHPLC-MS/MS | Raw cow milk | LOD: 0.001 -9.88 ng/mL | NS | Portugal |
[200] |
| LOQ: 0.005 -13.54 ng/mL | |||||||
| LR: 0.025 - 200 ng/mL R2: 0.9519 – 0.9996 | |||||||
| R: 67.5 - 119.8% | |||||||
| RSD: < 25% | |||||||
| AFM1 | DLLME | HPLC-FLD | Cow and buffalo milk | LOD: 0.002 μg/L | 0.01–9.18 μg/L |
India | [201] |
| LOQ: 0.007 μg/L | |||||||
| LR: 0.01 - 1.0 μg/L R2: 0.999 | |||||||
| R: 80.9 - 89.2 % | |||||||
| RSD: < 14% | |||||||
| AFM1, AFM2 | IAC | HPLC-FLD | Cow, goat and sheep milk | LOD: 11.99, 16.95 ng /kg | AFM1: 47.1 - 73.4 ng /kg AFM2: <LOQ |
Greece | [202] |
| CCα: 56.52, 57.27 ng /kg | |||||||
| CCβ: 63.97, 65.57 ng /kg | |||||||
| R2: 0.999, 0.996 | |||||||
| R: 74 –120 % | |||||||
| RSD: <17% | |||||||
| AFB1, AFM1, OTA, ZEN, α-ZEN, β-ZEN, ZOL, α-ZOL, β-ZOL | SPE | UHPLC-MS/MS |
Milk | LOD: 0.01–0.07 ng/mL | AFM1: 0.03–0.30 ng/mL ZEA: 0.3, 1.46 and 2.99 ng/mL |
China | [69] |
| LOQ: 0.02–0.18 ng/mL | |||||||
| LR: 0.02–200 ng/mL R2: ≥0.992 | |||||||
| R: 70.2–111.2% | |||||||
| RSD: 2.0–14.9% | |||||||
| ENNA, ENNA1, ENNB, ENNB1, BEA. |
LLE | LC-MS/MS | Cow milk | LOD: 0.088 - 0.099 μg/kg | ENNB: 0.157 -0.587 μg/kg BEA: 0.101- 6.17μg/kg |
Poland |
[203] |
| LOQ: 0.099 - 0.130 μg/kg | |||||||
| LR: 0.15–50 μg/kg | |||||||
| R: 72 – 99% | |||||||
| RSD: 3.4 – 17.5 % | |||||||
| AFM1, AFB1 | QuEChERS |
HPLC-FLD |
Milk powder | LOD: 0.038, 0.027 μg/kg | AFM1: 0.20–1.19 μg/kg |
Colombia |
[204] |
| LOQ: 0.125, 0.083 μg/kg | |||||||
| R: 65 - 110% | |||||||
| RSD: < 20% | |||||||
| AFM1 | IAC | HPLC-FLD |
Milk | LOD: 0.01 μg/L | 0.016 - 0.030 μg/kg |
Iran | [205] |
| LOQ: 0.03 μg/L | |||||||
| R2: > 0.98 | |||||||
| R: 90.6% (mean) | |||||||
| RSD: 5.7% | |||||||
| AFB1, AFB2, AFG1, AFG2, AFM1, AFM2, FB1, FB2, STE, ZEN. | MSPE |
HPLC–MS/MS |
Milk | LOD: 0.003-0.442 μg/kg | NS | China | [70] |
| LOQ: 0.008 - 1.219 μg/kg | |||||||
| LR: 0.02–200 μg/kg | |||||||
| R: 88.3 - 103.5% | |||||||
| RSD: 2.4 - 6.5% | |||||||
| LOD, Limit of detection; LOQ, Limit of quantification; LR, linear range; R2, determination coefficient; R, recovery; RSD%, Relative standard deviation; CCα, decision limit; CCβ, detection capability; CV, coefficient of variation; ND, not detected; NS, not specified; IAC, immunoaffinity column; SPE, solid phase extraction; LLE, liquid-liquid extraction; AALLME, air-assisted liquid-liquid microextraction; MSPE, magnetic solid phase extraction; DLLME, dispersive liquid-liquid microextraction; DSPE -DLLME-SFO, Dispersive solid phase extraction–dispersive liquid–liquid microextraction–solidification of organic drop; ISDμSPE, in-syringe dispersive micro-solid phase extraction. | |||||||
| Target EPs | Category | Extraction method | Analysis technique | Matrix | Analytical parameters | Conc. in real samples | Country | Ref | ||
|---|---|---|---|---|---|---|---|---|---|---|
| Perfluorobutanoic acid ( PFBA), Perfluoropeptanoic acid ( PFPeA), Perfluorohexanoic acid ( PFHxA), Perfluoroheptanoic acid ( PFHpA), Perfluorooctanoic acid (PFOA), Perfluorononanoic acid( PFNA), Perfluorodecanoic acid (PFDA), Perfluoroundecanoic acid ( PFUnDA), Perfluorododecanoic acid ( PFDoDA), Perfluorotridecanoic acid ( PFTriDA), Perfluorotetradecanoic acid (PFTeDA), Perfluorobutane sulfonate (PFBS) Perfluoropentane sulfonate ( PFPeS), Perfluorohexane sulfonate ( PFHxS*), Perfluoroheptane sulfonate (PFHpS), Perfluorooctane sulfonate (PFOS*), Perfluoro-4-ethylcyclohexanesulfonate (PFECHS), Perfluorononane sulfonate (PFNS), Perfluorodecane sulfonate (PFDS), Perfluorobutane sulfonamide (FBSA), Perfluorooctane sulfonamide (FOSA), N-methylperfluoro-1-octanesulfonamid (N-MeFOSA), N-ethylperfluoro-1-octanesulfonamide (N-EtFOSA), 4:2 fluorotelomer sulfonate (4:2 FtS), 6:2 fluorotelomer sulfonate (6:2 FtS), 8:2 fluorotelomer sulfonate (8:2 FtS) | PFAS |
SLE |
HPLC-MS/MS |
Cow milk |
LOD: 0.8 - 22ng/L (PFBA:144 ng/L) |
PFCA, PFSA, PASF: < MDL FTS <MDL–6.59 ng/L |
USA | [221] | ||
| R: 70 - 141% | ||||||||||
| PFBA, PFPeA, PFBS, PFHxA, PFHpA, PFOA, PFHxS, PFNA, PFOS, PFDA, PFUdA, PFDS, PFDoA, PFTrDA, and PFTeDA | PFAS |
QuEChERS | UHPLC-MS/MS |
Dairy milk and infant formulas | LOD: 0.005-0.05 ng/mL | The Σ15 PFAS in dairy milk: 0.08–15.51 ng/mL The Σ15 PFAS in infant formula: 0.01–5.24 ng/mL |
South Africa | [42] | ||
| LOQ: 0.005-0.05 ng/mL | ||||||||||
| R2: 0.987 -0.999 | ||||||||||
| R: 93- 120% | ||||||||||
| RSD: 3-18% | ||||||||||
| PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUdA, PFDoA, PFTrDA PFTeDA, PFBS, PFHxS, PFOS, PFDS | PFAS | QuEChERS |
UHPLC–MS/MS | Dairy milk and infant formula |
CCα: 30–50 ng/kg | Infant formulae: <LOQ–259 ng/ kg dairy milk: <LOQ–294 ng/kg |
South Africa | [222] | ||
| CCβ: 40–100 ng/kg | ||||||||||
| LOQ: 5–50 ng/kg | ||||||||||
| LR: 5–1200 ng/kg R2: 0.9843–0.9998 | ||||||||||
| R: 60–121% | ||||||||||
| RSD: 5–28% | ||||||||||
|
PFPA, PFBS, PFHpA, PFOA, PFHpS, PFNA, PFOS, PFDA |
PFAS | SPME |
UHPLC-MS/MS |
Milk and milk powder | LOD: 0.1–0.8 pg/g | ND-4.12 pg/g | China | [223] | ||
| LOQ: 0.4 - 2.5 pg/g | ||||||||||
| R2: ≥ 0.992 | ||||||||||
| R: 89.8–111% | ||||||||||
| RSD: ≤ 10% | ||||||||||
| PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA, PFBS, PFHxS, PFOS, | PFAS | QuEChERS | LC-MS/MS | Cow milk |
LOD: 7.78–16.35 ng/kg | NS | Italy | [224] | ||
| LOQ: ALL: 50 ng/kg GenX and C6O4 : 100 ng/kg | ||||||||||
| R: 91.3 – 121.8% | ||||||||||
| RSD: ≤ 10.9% | ||||||||||
| PFOA, PFOS | PFAS | DFE |
LC-MS/MS |
Milk | LOD: 0.006–0.022 ng/mL | 0.08 - 2.19 ng/mL |
China | [225] | ||
| LOQ: 0.020-0.072 ng/mL | ||||||||||
| LR: 0.05–100 ng/mL R2: ≥ 0.9998 | ||||||||||
| R: 94.7–109 % | ||||||||||
| RSD: ≤ 9.5 % | ||||||||||
| Melamine | Non-protein nitrogen supplement |
DLLME |
HPLC-UV |
Milk | LOD: 63.64 μg/kg | ND | Iran | [49] | ||
| LOQ: 210.03 μg/kg | ||||||||||
| LR: 210.03–1000 μg/kg | ||||||||||
| R2: 0.9898 | ||||||||||
| R: 72.5-104.0 % | ||||||||||
| RSD: <10.2 | ||||||||||
| Melamine | Non-protein nitrogen supplement | MSPE | UPLC-MS/MS | Milk powder | LOD: 0.00045 mg/kg | 0.023 mg/kg (One sample) |
China | [226] | ||
| R: 90.3-95.7% | ||||||||||
| RSD:0.3–4.7 % | ||||||||||
| Melamine | Non-protein nitrogen supplement |
SPE | HPLC-DAD | Milk powder |
LOD: 0.006 mg/kg | 0.017 -0.082 mg/kg | Uruguay |
[227] | ||
| LOQ: 0.019 mg/kg | ||||||||||
| R2: > 0.999 | ||||||||||
| R: ≥ 83.8% | ||||||||||
| RSD: 0.5 - 9.9% | ||||||||||
| Melamine | Non-protein nitrogen supplement |
LPME | HPLC-UV |
Milk | LOD: 0.03 mg/L | <LOD | Russia |
[48] | ||
| LOQ: 0.1 mg/L | ||||||||||
| LR: 0.1–30 mg/L R2: 0.994 | ||||||||||
| R: 95% | ||||||||||
| RSD: < 7% | ||||||||||
| Melamine | Non-protein nitrogen supplement | SPE | HPLC-FLD |
milk and infant formula | LOD: 0.005 -0.042 μg/mL | 0.18- 2.90 μg/mL |
Turkey |
[209] | ||
| LOQ: 0.015 - 0.126 μg/mL | ||||||||||
| R: 78-103% | ||||||||||
| RSD: ≤1.21 % | ||||||||||
| Prednisone (PRD), Hydrocortisone (HCOR), Methylprednisolone (MPRD), Dexamethasone (DXM), Betamethasone (BEM), Prednisone acetate (PRDA), Beclomethasone (BCM), Fludrocortisone acetate (FCORA), Dexamethasone acetate (DXMA), Fluocinolone acetonide (FCA), Halcinonide (HAL), Triamcinolone acetonide acetate (TCAA), Fluocinonide (FLC), Nandrolone (NAN), Methyltestosterone (MTES), Testosterone propionate (TESPR), Chlormadinone acetate (CHMA), Megestrol acetate (MGA), Medroxyprogesterone acetate (MXPROA), Estrone (E1), 17 α -Oestradiol (17α-E2), Estriol (E3) | Hormones | SPE | HPLC-MS/MS | Bovine milk | LOD: 0.10 - 1.20 μg/kg | NAN, MTES, MXPROA TESPR, HCOR, E1, 17α-E2, E3: 0.11 - 5.79 μg/kg |
China | [30] | ||
| LOQ: 0.33- 3.96 μg/kg | ||||||||||
| LR: 2.5 – 500 μg/kg R2: 0.9943- 0.9998 | ||||||||||
| R: 82.6 - 95.3% | ||||||||||
| Estrone (E1), 17β-Estradiol (β-E2), 17α-Ethynylestradiol (EE), Estriol (E3), Diethylstilbestrol (DES), Levonorgestrel (NOR), Norethisterone (NORET), Megestrol actetate (MGA), Progesterone (PRO), Testosterone (TES), Boldenone (BOL), Nandrolone (NAN), Cortisone (COR), Prednisone (PRD), Prednisolone (PRDNL) | Hormones | FPSE | UHPLC-MS/MS | Cow and goat milk | LOD: 0.012 - 1.242 ng/mL | ND | Spain | [27] | ||
| LOQ: 0.04-4.14 ng/mL | ||||||||||
| R: 17.91- 59.01% | ||||||||||
| β-E2, EE, E1, hexestrol (HEX) | Hormones | MSPE | HPLC-VWD-FLD | Milk powder | LOD: 0.5–0.9 μg/kg | ND | China | [228] | ||
| LOQ: 1.5–3 μg/kg | ||||||||||
| R: 75.1–97.2 % | ||||||||||
| RSD: ≤ 14.2 | ||||||||||
| E3, PRDA, HCOR, DES, E1 | Hormones | Online-SPE | HPLC-UV | Cow Milk | LOD: 0.004 - 0.054 μg/mL | ND | China | [229] | ||
| LOQ: 0.015 - 0.180 μg/mL | ||||||||||
| R: 70.82–112.90% | ||||||||||
| E2, TES, PRO | Hormones | VALLME-MSPE | HPLC-DAD | Milk | LOD: 1.0–1.3 ng/mL | 0.2 - 4.6 ng/mL |
China | [230] | ||
| LOQ: 2.5–4.5 ng/mL | ||||||||||
| R 80.1-116.4% | ||||||||||
| RSD: ≤ 13.9% | ||||||||||
| Progesterone (PRO), Trenbolone (TRB), Norethisterone (NORET), Gestodene (GSD), Altrenogest (ALT), Dienogestrel (DNG), Norgestrel (NOG), Demegestone (DMG), 17α-Hydoxy progesterone (17 α -HPRO), 21α-Hydoxy progesterone (21 α -HPRO), Megestrol (MEG), Medroxyprogesterone (MXPRO), Melengestrol (MLG), Chlormadinone (ChMD), Drospirenone (DROS), Cyproterone (CYP), Norethindrone acetate (NORA), Megestrol acetate (MGA), Medroxyprogesterone acetate (MXPROA), Melengestrol acetate (MLGA), Chlormadinone acetate (ChMDA) and Cyproterone acetate (CYPA) | Hormones | SPE | UHPLC- QE HF HRMS | Cow and ewe milk | LOD: 0.05 − 0.3 μg /kg | PRO: 0.48-54.2 μg/kg NOG: 1.45 ± 0.21 μg/kg GSD: 3.1 μg/kg MXPROA: 8.05, 152 μg/kg MXPRO: 13.5 μg/kg CYP: 61.2 ± 2.7 μg/kg |
China | [29] | ||
| LOQ: 0.2-1 μg /kg | ||||||||||
| R2: > 0.99 | ||||||||||
| R: 80.7- 108.3% | ||||||||||
| RSD: <15% | ||||||||||
| PCB81, PCB153, PCB105, PCB126, PCB157 | PCBs | DSPE | GC–MS/MS | Milk | LOD: 0.14 - 0.57 pg/g | <lOQ- 5.27 pg/g |
China | [231] | ||
| LOQ: 0.47 -1.90 pg/g | ||||||||||
| LR: 0.002–1.000 ng/g R2: 0.9995 - 0.9998 | ||||||||||
| R: 82.8 - 106 % | ||||||||||
| RSD: ≤ 6.6 % | ||||||||||
| PCB28, PCB52, PCB101, PCB138, PCB153, PCB180, PCB209, Napthalene (NA), 2-methylnapthalene (2-MNA), 1-methylnapthalene (1-MNA), Acenapthylene (AcNy), Acenapthalene (AcNA), Fluorene (FLN), Phenanthrene (PhN), Anthracene (ANT), Fluranthene (FLT), Pyrene (PY), Benzo (A) Anthacene (B-A-ANT), Chrysene (Chr), Benzo (B) Fluoranthene (B-B-FLT), Benzo (K) Fluranthene (B-K-FLT), Benzo (A) Pyrene (B-A-PY), Indeno (1, 2, 3-CD) Pyrene (IPY), Dibenz (A, H) Anthracene (DANT) | PCBs & PAHs | QuEChERS |
GC-MS/MS |
Cow milk | LOD: PCBs: 0.016 - 0.031 ng/g PAHs: 0.3, 1.0 ng/g |
PCBs: ND- 3.35 ± 0.87 ng/g B-A-ANT: 0.5497 ± 0.30 ng/g Chr: 1.077 ± 0.88 ng/g |
Bangladesh |
[34] | ||
| LOQ: PCBs: 0.059 - 0.08 ng/g PAHs: 1.0, 4.0 ng/g | ||||||||||
| R: PCBs: 77.53 - 92.49% PAHs: 67.90–99.76% | ||||||||||
| NA, AcNy, AcNA, FLN, PhN, ANT, FlT, PY, B-A-ANT, Chr, B-B-FLT, B-K-FLT, B-A-PY, IPY, DANT, Benzo[g,h,i] perylene (BPer) | PAHs | MSPE | GC–MS | Milk and powder milk | LOD: 0.040 - 0.075 μg/kg | 0.48 – 1.98 μg/kg |
Iran | [232] | ||
| LOQ: 0.121 - 0.227 μg/kg | ||||||||||
| R: 86.1 – 100.3 % | ||||||||||
| RSD: ≤10.1% | ||||||||||
| Furan | Toxic heterocyclic compounds | Automated HS- SPME |
GC-MS | Milk | LOD: 0.01 ng/g | ND | Korea | [72] | ||
| LOQ: 0.04 ng/g | ||||||||||
| R2: 0.9928 - 0.9990 | ||||||||||
| R: 88.93 - 95.22% | ||||||||||
| RSD%: 0.91-12.81% | ||||||||||
| RSD: ≤4.9 | ||||||||||
| Formaldehyde | Adulterants and preservatives | Derivatization, protein precipitation and solvent extraction | MEKC-UV/DAD | bovine milk |
LOD: 15.0 μg/L | < LOD- 0.13 ± 0.02 mg/kg |
Brazil |
[233] | ||
| LOQ: 50.0 μg/L | ||||||||||
| LR: 50.0–1000 μg/L R2: > 0.99 | ||||||||||
| R: 94.2 ± 0.7% | ||||||||||
| RSD: <3.9% | ||||||||||
| Formaldehyde | Adulterants and preservatives | Defatting, protein precipitation and derivatization | UHPLC-MS/MS | cow, goat and buffalo milk | LOD: 1 ng/mL | 134-255 ng/mL | India | )[216] | ||
| LOQ: 6.25 ng/mL | ||||||||||
| LR: 3.12 - 200 ng/mL R2: 0.997 - 0.999 | ||||||||||
| R: >95% | ||||||||||
| RSD: 2.84 - 8.02% | ||||||||||
|
54 analytes |
Veterinary drugs and mycotoxins | QuEChERS |
UHPLC- Q-Orbitrap HRMS | Milk | LOD: 0.001–0.010 ng/g | 0.007 – 4.530 ng/mL | Italy | [28] | ||
| LOQ: 0.005–0.030 ng/mL | ||||||||||
| R: 60 - 97% | ||||||||||
| RSD: <14% | ||||||||||
| 316 analytes | Veterinary drugs and pesticides | LLE + dSPE | LC-MS/MS and GC–MS/MS |
bovine milk |
LOQ: 0.02–25 ng/g | Vet drugs: 1.2–18.2 ng/g |
India | [39] | ||
| R2: ≥ 0.99 | ||||||||||
| R: 70 –120% for most of the compounds | ||||||||||
| 209 analytes | Veterinary drugs, mycotoxins and pesticides | QuEChERS |
UHPLC-Qtrap-MS |
Raw and commercial milk | LOD: 0.01- 1 μg/kg | Sulfamethazine: 1.79 μg/kg Cloxacillin: 7.12–69.70 μg/kg aflatoxin M1: 0.17, 0.24 μg/kg fipronil sulfone: 0.08 μg/kg imidacloprid: 6.24 μg/kg acetamiprid: 2.36–12.24 μg/kg |
China | [13] | ||
| LOQ: 0.05–5 μg/kg | ||||||||||
| R2: ≥ 0.99 | ||||||||||
| R: 51.20–129.76% | ||||||||||
| RSD: 0.82- 19.76% | ||||||||||
|
69 analytes |
Veterinary drugs, mycotoxins and pesticides | Solvent extraction and SPE | LC–MS/MS |
Bovine milk |
LOD: 0.0036 - 47.94 μg/L | Sulfadimethoxine: 27.4, 18.2 μg/L Enrofloxacin: 25.7 μg/L Tetracycline: 30.1 μg/L Oxytetracycline: 41.3 μg/L |
North Macedonia |
[234] | ||
| LOQ: 0 .053 - 59.43 μg/L | ||||||||||
| CCα: 0.062 - 211.32 μg/L | ||||||||||
| CCβ: 0.080 - 233.71 μg/L | ||||||||||
| R2: > 0.99 | ||||||||||
| R: 70.83 - 109% | ||||||||||
| CV: <24% | ||||||||||
| Clanobutin, dichlorvos, and naftazone | Pharmaceuticals and pesticides | LPE |
LC–MS/MS |
Milk | LOD: 0.04, 0.4,0.1 ng/g | ND | Korea | [235] | ||
| LOQ: 0.1,1,0.4 ng/g | ||||||||||
| LR: 5–50 ng/g R2: 0.9916, 0.9807, 0.9833 | ||||||||||
| R: 77.5 -108.2% | ||||||||||
| RSD: 0.9–12.9% | ||||||||||
| BPA, E2, DES, CAP | Hormones, EDCs & antibiotics | MSPE | HPLC-UV | Whole milk and skimmed milk | LOD: 0.004–0.106 μg/mL | ND | China | [236] | ||
| LOQ: 0.008–0.209 μg/mL | ||||||||||
| LR: 0.05–5.00 μg/mL | ||||||||||
| R: 88.17–113.46% | ||||||||||
| RSD: 0.002–1.951% | ||||||||||
| LOD, Limit of detection; LOQ, Limit of quantification; LR, linear range; R2, determination coefficient; R, recovery; RSD%, Relative standard deviation; CCα, decision limit; CCβ, detection capability; CV, coefficient of variation; ND, not detected; NS, not specified; PFAS, Perfluoroalkyl and polyfluoroalkyl substances; PCBs, Polychlorinated biphenyls; PAHs, Polyaromatic hydrocarbons; SLE, solid liquid extraction; SPE, solid phase extraction;MSPE, magnetic solid phase extraction; SPME, solid phase microextraction; FPSE, fabric phase sorptive extraction;LPE, liquid phase extraction; dSPE, dispersive solid phase extraction;LLE, liquid-liquid extraction; DFE, dispersive filter extraction; DLLME, dispersive liquid-liquid microextraction; LPME, liquid-phase microextraction; HS-SPME, headspace solid phase microextraction;VALLME,vortex-assisted liquid-liquid microextraction. | ||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
