Submitted:
06 March 2024
Posted:
06 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Remarks on Terminology of Passive Sampling Devices and Conceptional Distinction of Analytical Evaluation Procedures
3. Presentation of Selected Publications
3.1. Passive Samplers of Type-1
3.2. Passive Samplers of Type-2
4. Conclusions, Critical Remarks, and Outlook
Acknowledgments
Conflicts of Interest
References
- Harper, M.; Purnell, C.J., Diffusive sampling - A review, Am. Ind. Hyg. Assoc. J., 1987, 48, 214-218. [CrossRef]
- Brown, H., Monitoring the ambient environment with diffusive samplers: Theory and practical considerations, J. Environ. Monit., 2000, 2, 1-9. [CrossRef]
- Klanova, J.; Kohoutek J.; Hamplová, L.; Urbanová, P.; Holoubek, I., Passive air sampler as a tool for long-term air pollution monitoring: Part 1: Performance assessment for seasonal and spatial variations, Environ. Pollut., 2006, 144, 393-405. [CrossRef]
- Greenwood, R.; Mills, G.; Vrana, B. (Eds.), Passive sampling techniques in environmental monitoring, in: Wilson & Wilson’s Comprehensive Analytical Chemistry, Elsevier, Amsterdam, 2007, Vol. 48, Part I, Chapters 1-6.
- Kot-Wasik, A.; Zabiegała, B.; Urbanowicz, M.; Dominiak, E.; Wasik, A.; Namieśnik, J., Advances in passive sampling in environmental studies, Anal. Chim. Acta, 2007, 602,141-163. [CrossRef]
- Seethapathy, S.; Gorecki, T.; Li, X., Passive sampling in environmental analysis, J. Chrom. A, 2008, 1184, 234-253. [CrossRef]
- Pienaar, J.J.; Beukes, J.P.; van Zyl, P.G.; Lehmann, C.M.B.; Aherne, J., Passive diffusion sampling devices for monitoring ambient air concentrations, Chapter 2, in: Comprehensive Analytical Chemistry, Elsevier, Forbes, P.B.C. (Ed.), 70, 13-52, 2015. [CrossRef]
- Buzica, D.; Gerboles, M.; Amantini, L., Laboratory and field inter-comparison of NO2 diffusive samplers, European Commission; Institute for Environment and Sustainability, Emissions and Health Unit, 2003. [CrossRef]
- Hafkenscheid, T.; Fromage-Mariette, A.; Goelen, E.; Hangartner, M.; Pfeffer, U.; Plaisance, H.; de Santis, F.; Saunders, K.; Swaans, W.; Tang, Targa, J.; van Hoek, C.; Gerboles, M., Review of the application of diffusive samplers in the European Union for the monitoring of nitrogen dioxide in ambient air, European Commission Joint Research Centre Institute for Environment and Sustainability, 2009. ISBN 978-92-79-12052-7.
- US-EPA, Passive samplers for investigations of air quality: Method description, implementation, and comparison to alternative sampling methods. https://clu-in.org/download/issues/vi/VI-passive-samplers-600-R-14-434.pdf. (archived on 15.2.2024).
- World Meteorological Organization - Global Atmospheric Watch (GAW), Report on passive samplers for atmospheric chemistry measurements and their role in GAW, Collection(s) and Series: WMO/TD- No. 829; GAW Report- No. 122, 1998. https://library.wmo.int/doc_num.php?explnum_id=9671 (archived on 15.2.2024).
- Stevenson, K.; Bush, T.; Mooney, D., Five years of nitrogen dioxide measurements with diffusion tube samplers at over 1000 sites in the UK, Atmos. Environ., 2001, 35, 281-287. [CrossRef]
- Hagenbjörk-Gustafsson, Validation of diffusive samplers for nitrogen oxides and applications in various environments, Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Sweden, 2014. ISBN: 978-91-7601-144-7.
- Wilson, S.M.; Serre, M.L., Use of passive samplers to measure atmospheric ammonia levels in a high-density industrial hog farm area of eastern North Carolina, Atmos. Environ., 2007, 41, 6074-6086. [CrossRef]
- Adon, M.; Galy-Lacaux, C.; Yoboué, V.; Delon, C.; Lacaux, J. P.; Castera, P.; Gardrat, E.; Pienaar, J.; Al Ourabi, H.; Laouali, D.; Diop, B.; Sigha-Nkamdjou, L.; Akpo, A.; Tathy, J. P.; Lavenu, F.; Mougin, E., Long term measurements of sulfur dioxide, nitrogen dioxide, ammonia, nitric acid and ozone in Africa using passive samplers, Atmos. Chem. Phys., 2010, 10, 7467–7487. [CrossRef]
- Caballero, S.; Esclapez, R.; Galindo, N.; Mantilla, E.; Crespo, J., Use of a passive sampling network for the determination of urban NO2 spatiotemporal variations, Atmos. Environ., 2012, 63, 148-155. [CrossRef]
- Yao, X.H.; Zhang, L., Analysis of passive-sampler monitored atmospheric ammonia at 74 sites across southern Ontario, Canada, Biogeosciences, 2013, 10, 7913–7925. [CrossRef]
- Höhne, A.; Schulte, R.A.A.; Kulicke, M.; Huynh, T.-T.; Telgmann, M.; Frenzel, W.; Held, A. Assessing the spatial distribution of NO2 and influencing factors in urban areas - Passive sampling in a citizen science project in Berlin, Germany. Atmosphere, 2023, 14, 360. [CrossRef]
- Krupa, S.V.; Legge, A.H., Passive sampling of ambient, gaseous air pollutants: an assessment from an ecological perspective, Environ. Pollut., 2000, 107, 31-45. [CrossRef]
- Heal, M.R.; O'Donoghue, M.A.; Agius, R.M.; Beverland, I.J., Application of passive diffusion tubes to short-term indoor and personal exposure measurement of NO2, Environ. Int., 1999, 25, 3-8. [CrossRef]
- Yu, C.; Morandi, M.; Weisel, C., Passive dosimeters for nitrogen dioxide in personal/indoor air sampling: A review, J. Expo. Sci. Environ. Epidemiol., 2008, 18, 441–451. [CrossRef]
- Tomkins, F.C., Goldsmith, R.L., A new personal dosimeter for the monitoring of industrial pollutants, Am. Ind. Hyg. Assoc. J., 1977, 38, 371-377. [CrossRef]
- London, J., The observed distribution of atmospheric ozone and its variations. In: Whitten, R.C.; Prasad, S.S. (Eds.), Ozone in the free atmosphere. Van Nostrand Reinhold Company, New York, 11-65, 1985.
- McBridge, S.; Edwards, J.D., Lead acetate test for hydrogen sulfide gas, Department of Commerce, Technologic Papers of the Bureau of Standards, No. 41, 1914 https://nvlpubs.nist.gov/nistpubs/nbstechnologic/nbstechnologicpaperT41.pdf (archived on 15.2.2024).
- cited in: Baasch, D., Die Methoden und die Meßtechnik der quantitativen SO2-Bestimmung in der Luft, Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 1973, 80(2), 81-87, Eugen Ulmer KG.
- Thomas, F.W.; Davidson, C.M., Monitoring sulfur dioxide with lead peroxide cylinders, J. Air Pollut. Control Assoc., 1961, 11, 24-27. [CrossRef]
- N.A. Huey, The lead dioxide estimation of sulfur dioxide pollution, J. Air Pollut. Control Assoc., 1968, 18, 610. [CrossRef]
- Determination of the immission rate by means of the IRMA-method, VDI 3794, Part 1, 1982, Beuth, Berlin.
- Palmes, E.D.; Gunnison, A.F.; DiMattio, J.; Tomczyk, C., Personal sampler for nitrogen dioxide, Am. Ind. Hyg. Assoc. J., 1976, 37, 570-577. [CrossRef]
- Reiszner, K.D.; West, P.W., Collection and determination of sulfur dioxide incorporating permeation and West-Gaeke procedure, Environ. Sci. Technol., 1973, 7, 526-532. [CrossRef]
- Kring, E.V.; Lautenberger, W.J.; Baker, W.B.; Douglas, J.J., Hoffman, R.A., A new passive colorimetric air monitoring badge system for ammonia, sulfur dioxide and nitrogen dioxide, American Industrial Hygiene Association Journal, 1980, 42, 373-381. 373–381. [CrossRef]
- Yanagisawa, Y.; Nishimura, H., A badge-type personal sampler for measurement of personal exposure to NO2 and NO in ambient air, Environ. Int., 1982, 8, 235-242. [CrossRef]
- Bamberger, R.L.; Esposito, G.G.; Jacobs, B.W.; Podolak, G.E.; Mazur, J.F., A new personal sampler for organic vapors, Am. Ind. Hyg. Assoc. J., 1978, 39, 701-708. [CrossRef]
- Delcourt, J.; Sandino, J.P., Performance assessment of a passive sampler in industrial atmospheres. Int. Arch. Occup. Environ. Health, 2000, 74, 49–54. [CrossRef]
- Kasper, A.; Puxbaum, H., “Badge-type” passive sampler for monitoring ambient ammonia concentrations, Fresenius’ J. Anal. Chem., 1994, 350, 448–453. [CrossRef]
- De Santis, F.; Allegrini, I.; Fazio, M.C.; Pasella, D.; Piredda, R., Development of a passive sampling technique for the determination of nitrogen dioxide and sulphur dioxide in ambient air, Anal. Chim. Acta, 1979, 346, 127-134. [CrossRef]
- Zhou, J.; Smith, S., Measurement of ozone concentrations in ambient air using a badge-type passive monitor, J. Air Waste Manag. Assoc., 1997, 47, 697-703. [CrossRef]
- West, P.W., Passive sampling of ambient and work place atmospheres by means of gas permeation. In: Toribara, T.Y.; Coleman, J.R.; Dahneke, B.E.; Feldman, I. (Eds.), Environmental Pollutants. Environmental Science Research, Vol. 13. Springer, Boston, MA, 1978. [CrossRef]
- Zhou, X.; Lee, S.; Xu, Z.; Yoon, J, Recent progress on the development of chemosensors for gases, Chem. Rev., 2015, 115, 7944-8000. [CrossRef]
- A. Azzouz, A.; Vikrant, K.; Kim, K.-H.; Ballesteros, E.; Rhadfi, T.; Malik, A.K., Advances in colorimetric and optical sensing for gaseous volatile organic compounds, TrAC Trends Anal. Chem., 2019,118, 502-516. [CrossRef]
- Sun, L.; Rotaru, A.; Robeyns, K.; Garcia, Y., A colorimetric sensor for the highly selective, ultra-sensitive, and rapid detection of volatile organic compounds and hazardous gases, Ind. Eng. Chem. Res., 2021, 60, 8788-8798. [CrossRef]
- Kawamura, K.; Miyazawa, K.; Kent, L., The past, present and future in tube- and paper-based colorimetric gas detectors, Appl. Chem., 2021, 1, 14-40. [CrossRef]
- Silva-Neto, H.A.; Sousa, L.R.; Coltro, W.K.T., Colorimetric paper-based analytical devices, In: Paper-based Analytical Devices for Chemical Analysis and Diagnostics, de Araujo, W.R.; Paixão, T.L.R.C. (Eds.), Chapter 4, 59-79, 2022. [CrossRef]
- Ishiguro, G.; Kawabe, T.; Nakano, N., Development of a detection tablet for a portable NO2 monitoring system, Anal. Sci., 2006, 22, 789–791. [CrossRef]
- Maruo, Y.Y.; Nakamura, J., Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies, Anal. Chim. Acta, 2011, 702, 247-253. [CrossRef]
- Adhikari, S.; Conrad, S.C.; Held, A.; Frenzel, W., Simplified procedures for evaluation of passive samplers for nitrogen dioxide, Talanta Open, 2022, 5, 100096. [CrossRef]
- Hill, R.H.; Fraser, D.A., Passive dosimetry using detector tubes, Am. Ind. Hyg. Assoc. J., 2008, 41, 721-729. [CrossRef]
- McConnaughey, P.W.; McKee, E.S.; Pritts, I.M., Passive colorimetric dosimeter tubes for ammonia, carbon monoxide, carbon dioxide, hydrogen sulfide, nitrogen dioxide and sulfur dioxide. Am. Ind. Hyg. Assoc. J., 1985, 46, 357-362. [CrossRef]
- Evergreen Medical Services, Gas Monitoring Badges, https://www.evergreenmedical.com/services/environmental-monitoring/gas-monitoring-badges (archived on 15.2.2024).
- SKC Ltd, Dorset, Passive samplers https://www.skcltd.com/products2/passive-samplers.html and https://www.skcinc.com/categories/color-dosimeter-tubes (archived on 15.2.2024).
- ChemSee - Appealing Products, Inc., Toxic Gas Dosimeters. https://www.chemsee.com/commercial/toxic-gas/available-products/dosimeters/ (archived on 15.2.2024).
- Namieśnik, J.; Zabiegała, B.; Kot-Wasik, A., Partyka, M.; Wasik, A., Passive sampling and/or extraction techniques in environmental analysis: a review, Anal. Bioanal. Chem., 2005, 381, 279–301. [CrossRef]
- Cape, J.N., The use of passive diffusion tubes for measuring concentrations of nitrogen dioxide in air, Crit. Rev. Anal. Chem., 2009, 39, 289-310. [CrossRef]
- Fan, Y.; Li, J.; Guo, Y.; Xie, L.; Zhang, G., Digital image colorimetry on smartphone for chemical analysis: a review, Measurement, 2021, 171, 108829. [CrossRef]
- Grudpan, K.; Kolev, S.D.; Lapanantnopakhun, S.; McKelvie, I.D.; Wongwilai, W., Applications of everyday IT and communications devices in modern analytical chemistry: a review, Talanta, 2015, 136, 84-94. [CrossRef]
- Capitán-Vallvey, L.F.; López-Ruiz, N.; Martínez-Olmos, A.; Erenas, M.M.; Palma, A.J., Recent developments in computer vision-based analytical chemistry: a tutorial review, Anal. Chim. Acta, 2015, 899, 23-56. [CrossRef]
- Pohanka, M., Small camera as a handheld colorimetric tool in the analytical chemistry. Chem. Pap., 2017, 71, 1553–1561. [CrossRef]
- Kiliç, V.; Horzum, N.; Solmaz, M.E., From sophisticated analysis to colorimetric determination: Smartphone spectrometers and colorimetry, In: Color detection, Zeng, L.-W.; Cao S.-L. (Eds.), Intech Open, 2020. [CrossRef]
- Rezazadeh, M.; Seidi, S.; Lid, M.; Pedersen-Bjergaard, S.; Yamini, Y., The modern role of smartphones in analytical chemistry, Trends Anal. Chem., 2019, 118, 548-555. [CrossRef]
- Rose, V.E.; Perkins, J.L., Passive dosimetry - State of the art review, Am. Ind. Hyg. Assoc. J.,1982, 43, 605-621. [CrossRef]
- Namiesnik, J,; Gorecki, T.; Kozlowski, E.; Torres, L.; Mathieu, J., Passive dosimeters - An approach to atmospheric pollutant analysis, Sci. Total Environ., 1984, 38, 225-258. [CrossRef]
- Hulanicki, A.; Glab, S.; Ingman, F., Chemical sensors: definitions and classification, Pure & Appl. Chem., 1991, 63(9), 1247-1250. [CrossRef]
- Wolfbeis, O.S. Chemical sensors – survey and trends, Fresenius J. Anal. Chem., 1990, 337, 522- 527. [CrossRef]
- Sefton, M.V.; Kostas, A.V.; Lombardi, C., Stain length passive dosimeters, Am. Ind. Hyg. Assoc. J., 1982, 43, 820-824. [CrossRef]
- Nash, D.G.; Leith, D., Use of passive diffusion tubes to monitor air pollutants, J. Air Waste Manag. Assoc., 2010, 60, 204-209. [CrossRef]
- Sen, A.; Albarella, J.D.; Carey, J.R.; Kim, P.; McNamara, W.B., Low-cost colorimetric sensor for the quantitative detection of gaseous hydrogen sulfide, Sens. Actuators B Chem., 2008, 134, 234-237. [CrossRef]
- Fàbrega, C.; Fernández, L.; Monereo, O.; Pons-Balagué, AS.; Xuriguera, E.; Casals, O.; Waag, A.; Prades, J.D., Highly specific and wide range NO2 sensor with color readout, ACS Sensors, 2017, 2(11), 1612-1618. [CrossRef]
- Greenawald, L.A.; Boss, G.R.; Snyder, J.L.; Reeder, A.; Bell, S., Development of an inexpensive RGB color sensor for the detection of hydrogen cyanide gas, ACS Sensors. 2017, 2(10), 1458-1466. [CrossRef]
- Duffy, E.; Huttunen, K.; Lahnavik, R.; Smeaton, A.F.; Morrin, A., Visualising household air pollution: Colorimetric sensor arrays for monitoring volatile organic compounds indoors. PLoS ONE, 2021, 16(10): e0258281. [CrossRef]
- Roales, J.; Moscoso, F.G.; Vargas, A.P.; Lopes-Costa, T.; Pedrosa, J.M., Colorimetric gas detection using molecular devices and an RGB sensor, Chemosensors, 2023, 11, 92. [CrossRef]
- Cerrato-Alvarez, M.; Frutos-Puerto, S.; Miró-Rodríguez, C.; Pinilla-Gil, E., Measurement of tropospheric ozone by digital image analysis of indigotrisulfonate-impregnated passive sampling pads using a smartphone camera, Microchem. J., 2020, 154, 104535. [CrossRef]
- de França Souza, P.A.; Neto, J.L.A.; Cardoso, A.A., A simple technique based on digital images for determination of nitrogen dioxide in ambient air, Water, Air, Soil Pollut., 2021, 232, 72. [CrossRef]
- Shi C.; He X.; Kiwfo, K.; Held, A.; Frenzel, W., Optimization of smartphone-based evaluation of tube-type passive samplers using atmospheric nitrogen dioxide determination as an example, J. Environ. Sci. Health A, 2023, submitted.
- Pla-Tolós, J.; Moliner-Martínez, Y.; Verdú-Andrés, J.; Casanova-Chafer, J.; Molins-Legua, C.; Campíns-Falcó, P., New optical paper sensor for in situ measurement of hydrogen sulphide in waters and atmospheres, Talanta, 2016, Vol. 156-157, 79-86. [CrossRef]
- Sekine, Y.; Katori, R.; Tsuda, Y.; Kitahara, T., Colorimetric monitoring of formaldehyde in indoor environment using built-in camera on mobile phone, Environ. Technol., 2016, 37, 1647-1655. [CrossRef]
- E. de Barros Santos, E.; Moher, P.; Ferlin, S.; Fostier, A.H.; Mazali, I.O.; Telmer, K.; Brolo, A.K., Proof of concept for a passive sampler for monitoring of gaseous elemental mercury in artisanal gold mining, Sci. Rep., 2017, 7, 16513. [CrossRef]
- Salcedo, A.R.M.; Sevilla, F.B., Colorimetric determination of mercury vapor using smartphone camera-based imaging, Instrum. Sci. Technol., 2018, 46(4), 450-462. [CrossRef]
- Park, D.-H.; Heo, J.-M.; Jeong, W.; Yoo, Y.H.; Park, B.J.; Kim, J.-M., Smartphone-based VOC sensor using colorimetric polydiacetylenes, ACS Appl. Mater. Interfaces, 2018, 10(5), 5014-5021. [CrossRef]
- Vargas, A.P.; Gámez, F.; Roales, J.; Lopes-Costa, T.; Pedrosa, J.M., A paper-based ultrasensitive optical sensor for the selective detection of H2S vapors, Chemosensors, 2021, 9, 40. [CrossRef]
- Devi, P.; Singh, J.P., Highly sensitive colorimetric gas sensor based on indium oxide nanostructures for H2S detection at room temperature, IEEE Sensors Journal, 2021, 21(17), 18512-18518. [CrossRef]
- Khachornsakkul, K.; Hung, K.-H.; Chang, J.-J.; Dungchai, W.; Chen, C.-H., A rapid and highly sensitive paper-based colorimetric device for the on-site screening of ammonia gas, Analyst, 2021, 146, 2919-2927. [CrossRef]
- Engel, L.; Benito-Altamirano, I.; Tarantik, K.R.; Pannek, C.; Dold, M.; Prades, J.G.; Wöllenstein, J., Printed sensor labels for colorimetric detection of ammonia, formaldehyde and hydrogen sulfide from the ambient air, Sensors and Actuators: B. Chemical, 2021, 330, 129281. [CrossRef]
- Wang, Z.; Liu, J.; Zhang, L.; Nie, W.; Liu, J.; Yang, J.; Li. Y., Copper (II)-azo complex modified hydrogel: A sensitive colorimetric sensor for visual detection of H2S gas, Sensors Actuators B: Chemical, 2023, 376, 132968. [CrossRef]
- Choi, H.; Seo, J.H.; Weon, S., Visualizing indoor ozone exposures via o-dianisidine based colorimetric passive sampler, J. Hazard. Mater., 2023, 460, 132510. [CrossRef]
- De Craemer, S.; Vercauteren, J.; Fierens, F.; Lefebvre, W.; Meysman, F.J.R., Using large-scale NO2 data from citizen science for air-quality compliance and policy support, Environ. Sci. Technol., 54 (2020) 11070-11078. [CrossRef]
- Shi, C., Smartphone-basierte und kolorimetrische Auswertung von Passivsammlern für die Bestimmung von Stickstoffdioxid, Bachelor Thesis, Technische Universität Berlin, 2022.
- He, X., Smartphone-basierte Auswertung von Passivsammlern für die Bestimmung von Stickstoffdioxid und Anwendung der Methode zu Ermittlung der NO2-Belastung in Berlin, Master Thesis, Technische Universität Berlin, 2024.
| Year | Analyte gas | Sorbent fabrication | Sampler geometry |
Reagent | Detection condition |
Photographing condition | Evaluation software | Color system | Working range | LOD | Application | Ref. |
| Type-1 | ||||||||||||
| 2020 | Ozone | pre-immobilized coloring reagent on sorbent | commercial passive samplers (Owaga badge) | Indigo | direct detection of fading of blue color | photo box | Corel DRAW X5 and Matlab software | RGB | 11-109 μg m−3 (exposure time not given) | 3.3 μg m−3 | Suburban environment | [71] |
| 2021 | Nitrogen dioxide | immobilized trapping reagent into sorbent pad | lab made passive sampler holder (tube type) | Griess-Saltzman reagent | adding Griess-Saltzman gel | photo box | ImageJ | RGB | not given | 32 µg m-3 (24-h exposure) |
No real sample analysis | [72] |
| 2023 | Nitrogen dioxide | immobilized trapping reagent into sorbent pad | lab made passive sampler holder (Palmes tube) | Griess-Saltzman reagent | adding pre-mix reagents (Griess-Saltzman) | without photo box (ambient light) | ImageJ | RGB | 10-120 µg m-3 (14 days exposure) | 5 µg m-3 (14 days exposure) |
Urban environment | [73] |
| Type-2 | ||||||||||||
| 2016 | Hydrogen sulphide | pre-immobilized coloring reagent on sorbent | no sampler holder | N, N-Dimethyl-p-phenylenediamine and Fe (III) | direct detection of methylene blue product | photo box | GIMP software | CMYK | 5-50 ppm (30 min exposure) |
0.12 ppm (30 min exposure) |
Sewage treatment plant | [74] |
| 2016 | Formalde-hyde | pre-immobilized coloring reagent agar sorbent | no sampler holder | 4-Amino-3-hydrazino-5-mercapto-1,2,4-triazole, ZnO, KIO4 | direct detection of color change | without photo box (ambient light) | Adobe photoshop | RGB | 20-85 µg.m-3 (24-h exposure) | 11 µg m-3 (24-h exposure) |
Indoor air (formaldehyde emission flux) | [75] |
| 2017 | Mercury vapor |
pre-impregnated Corning porous Vycor glass reagent on sorbent | no sampler holder | Nanogold | direct detection of color change | not given | not given | RGB | uptake 0.06 - 0.6 μg |
not given | Personal sampling of miners | [76] |
| 2018 | Mercury vapor |
pre-immobilized cuprous iodide/polystyrene composite on sorbent | no sampler holder | Cuprous iodide/poly- styrene composite |
direct detection of color change | photo box | ImageJ | RGB | 61-270 μg.m-3 (30 min exposure) |
16 μg m-3 (30 min exposure) |
No application reported | [77] |
| Table 1 continued | ||||||||||||
| Year | Analyte gas | Sorbent fabrication | Sampler geometry |
Reagent | Detection condition |
Photographing condition | Evaluation software | Color system | Working range | LOD | Application | Ref. |
| 2018 | VOC | pre-immobilized reagent on sorbent | cap of vial | Polydiacetylenes | direct detection of color change | not given | Adobe photoshop/Android Studio app. | RGB | not given | not given | Identification of VOC | [78] |
| 2021 | Hydrogen sulphide | pre-immobilized reagent on sorbent | encapsulated between two glass plates | Arene-derivative dye | direct detection of color change | without photo box (ambient light) | Adobe photoshop | CIELAB, RGB, HSB and CMYK | 0-1.5 ppm (15 min exposure) |
not given | No application reported | [79] |
| 2021 | Hydrogen sulphide | pre-immobilized coloring reagent on surface of glass substrate |
no sampler holder | Indium oxide nanostructure | direct detection of color change | photo box | Colorimetric Detector application | Optical darkness ratio | not given | 10 ppm (30 sec exposure) |
No application reported | [80] |
| 2021 | Ammonia | pre-immobilized reagent on paper sorbent | not given | Methyl orange | direct detection of color change | photo box | ColorAssist app | HIS | 6.0-54.0 ppb (3 min exposure) |
2 ppb (exposure time not given) | Chicken farm | [81] |
| 2021 | Ammonia, formalde-hyde, hydrogen sulfide |
pre-immobilized (screen-printing) reagent on polymer-coated paper | no sampler holder | Bromocresol green, fluorescent dye (primary amine), cupper azo complex |
direct detection of color change | photo box | Time-lapse app | RGB | not given | not given | No application reported | [82] |
| 2023 | Hydrogen sulphide | pre-immobilized reagent on agarose hydrogel | cap of centrifuge tube | Copper (II)-azo complex | direct detection of color change | not given | ColorAssist app | RGB | 1-50 ppb (10 min exposure) |
43.34 ppb (10 min exposure) |
Exhaled breath | [83] |
| 2023 | Ozone | pre-immobilized reagent on poldimethyl siloxane sheet | no sampler holder | o-Dianisidine | direct detection of color change | photo box | ImageJ | RGB | 0–200 ppb (8 h exposure) |
1.79 ppb (8 h exposure) |
Printing store, rubber molding press factory, residential house. | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
